Knowledge (XXG)

Middle Miocene disruption

Source 📝

162: 134:
sheet growth, the lighter O isotopes found in ocean water are drawn out as precipitation and consolidate in ice sheets while a higher concentration of O is left behind for foraminifera to utilize. The >180° phase reversal in the 41-kyr obliquity cycle around 14.0 to 13.8 Ma has also been interpreted as a signal of the EAIE.
150:(CRBG), the cessation of kaolin-producing pedogenic processes occurred at the start of the MMCT and has been used as a proxy marker for the end of the MMCO. Southwestern Australia exhibited the most arid conditions it had witnessed over any interval of the Miocene, while northwestern Australia was also hyperarid. In the 116:
about 13.94 Ma, reflecting a mean annual temperature drop of 25-30 °C. Significant sections of ice on the Antarctic continent are believed to have started growth at the beginning of the Middle Miocene disruption and continued to expand until about 10 Ma. This growth has been attributed primarily to
341:
were noted to have been extant in these northern latitudes prior to the permanent cooling step, but then became extinct between 14 and 13.5 Ma. Another indicator that would lead to extinctions is the conservative estimate that temperatures in the Antarctic region may have cooled by at least 8 C in
133:
and pH levels in the ocean determined by boron isotopic levels in calcium carbonate. One of the primary indicators for the significant global ice sheet growth is the higher concentration of O found in benthic foraminifera from oceanic sediment cores during this time period. During periods of ice
304:
have been suggested to have brought about this change in ocean circulation. Another hypothesis for the crash involves the shrinkage and shoaling of the Central American Seaway, limiting water mass exchange between the Atlantic and Pacific Oceans. Evidence for this event is known from the Indian
137:
During the MMCT, the latitudinal precipitation gradient declined in Europe, though it increased during short term warming periods superimposed on the broader cooling trend, whereas the seasonality of mean temperature increased. Global cooling during the MMCT caused aridification in
300:), occurred during the early Tortonian, shortly after the cooling event; this event is generally regarded to have been induced by the changes in thermohaline circulation resulting from the Middle Miocene disruption. Changes in the intensity and seasonality of the Indian 329:, and giant turtles through the Miocene Climatic Optimum (18 to 16 Ma) in Central Europe (45-42°N palaeolatitude). This was then followed by a major and permanent cooling step marked by the Mid Miocene disruption between 14.8 and 14.1 Ma. Two crocodilians of the genera 1177:
Groeneveld, Jeroen; Henderiks, Jorijntje; Renema, Willem; McHugh, Cecilia M.; De Vleeschouwer, David; Christensen, Beth A.; Fulthorpe, Craig S.; Reuning, Lars; Gallagher, Stephen J.; Bogus, Kara; Auer, Gerald; Ishiwa, Takeshige; Expedition 356 Scientists (5 May 2017).
288:
found that there is a statistically significant mean periodicity (where P is less than .01) of about 26 million years for 12 major extinction events. There is debate whether this potential periodicity is caused by some set of recurrent cycles or biologic factors.
1903: 1627: 308:
One of the other primary effects of the climatic cooling during the Middle Miocene was the biotic impact on terrestrial and oceanic lifeforms. A primary example of these extinctions is indicated by the observed occurrence of
923:
Flower, B. P.; Kennett, J. P. (December 1993). "Middle Miocene ocean-climate transition: High-resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, southwest Pacific".
279:
The Middle Miocene disruption is considered a significant extinction event and has been analyzed in terms of the importance of there being a possible periodicity between extinction events. A study from
108:
One of the primary effects of the climatic cooling that took place during this time period was the growth of the EAIS, termed the East Antarctic Ice Sheet Expansion (EAIE). A thermal shift from wet to
2029: 267:
An additional suggested cause for the Middle Miocene disruption has been attributed to a shift from a solar insolation cycle that is obliquity dominated to one that is dominated by eccentricity (see
264:
is believed to have closed around this time, exacerbating the disruptions of ocean circulation patterns that caused the MMCT. The cooling of the Southern Ocean was coupled to the growth of the EAIS.
260:(NADW) production. The reduction in water transport from the warm Indian Ocean to the cool Southern Ocean is believed to be responsible for the increase in AABW production. The 1744:
Lübbers, Julia; Kuhnt, Wolfgang; Holbourn, Ann E.; Bolton, Clara T.; Gray, Emmeline; Usui, Yoichi; Kochhann, Karlos G. D.; Beil, Sebastian; Andersen, Nils (16 April 2019).
2022: 1859: 1497: 1329: 1079: 1023: 967: 1245: 305:
Ocean, Pacific Ocean, Atlantic Ocean, Caribbean Sea, and Mediterranean Sea, suggesting the decline of carbonate-producing marine organisms was a global phenomenon.
161: 2015: 1075:"Modeling the effects of global cooling and the Tethyan Seaway closure on North African and South Asian climates during the Middle Miocene Climate Transition" 2251: 2177: 2239: 122: 1127: 799: 2227: 1986: 1806: 1750: 1385: 926: 743: 342:
the summer months 14 Ma. This Antarctic cooling, along with significant changes in temperature gradients in Central Europe as indicated by
182:
concentrations in the atmosphere has been linked to drawdown of the gas into organic material deposited along continental margins like the
165:
Significant drop off in both temperature and deep sea ocean temperature as measured by delta O after the Middle Miocene Climatic Optimum.
244:
brought about major climatic and biotic changes. Oceanic circulation changes that took place during the MMCT are defined by increases in
1379:
Diester-Haass, Liselotte; Billups, Katharina; Gröcke, Darren R.; François, Louis; Lefebvre, Vincent; Emeis, Kay C. (18 February 2009).
2117: 2141: 548:; Kennett, James P.; Lea, David W. (17 September 2004). "Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion". 2165: 2153: 2002: 346:'s study on ectothermic vertebrates, provide evidence that plant and animal life needed to migrate or adapt in order to survive. 1493:"The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling" 77:(MMCO), a period of relative warmth from 18 to 14 Ma. Cooling that led to the Middle Miocene disruption is primarily attributed 2203: 1265: 74: 2533: 1547:
Leutert, Thomas J.; Auderset, Alexandra; Martínez-García, Alfredo; Modestou, Sevasti; Meckler, A. Nele (31 August 2020).
155: 2538: 1441: 433:
Pearson, Paul N.; Palmer, Martin R. (2000). "Atmospheric carbon dioxide concentrations over the past 60 million years".
271:). This change would have been significant enough for conditions near the Antarctic continent to allow for glaciation. 1325:"Climate change during Cenozoic inferred from global carbon cycle model including igneous and hydrothermal activities" 147: 73:
of terrestrial and aquatic life forms that occurred during this climatic interval. This period was preceded by the
794: 2263: 1122: 257: 812: 2215: 2069: 1259:
Bao, Jing; Song, Chunhui; Yang, Yibo; Fang, Xiaomin; Meng, Qingquan; Feng, Ying; He, Pengju (1 February 2019).
842: 199: 113: 54: 1802:"Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway" 678:"Antarctic ice-sheet response to atmospheric CO<sub>2</sub> and insolation in the Middle Miocene" 2543: 795:"Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains" 129:
fell temporarily from about 300 to 140 ppm as estimated by the relationship between atmospheric levels of CO
245: 1261:"Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic" 1745: 1239: 492: 2189: 1851: 1324: 1260: 1018: 962: 53:, and resulted in the growth of ice sheet volumes globally, and the reestablishment of the ice of the 1912: 1815: 1759: 1636: 1562: 1506: 1450: 1394: 1338: 1274: 1193: 1136: 1088: 1032: 976: 935: 863: 752: 691: 627: 559: 501: 444: 385: 198:
from about 300 to 140ppm and lead to processes of global cooling that helped in the expansion of the
50: 486:
Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (1 April 2021).
1436: 1380: 1073:
Zhang, Jian; Hu, Yongyun; Zhu, Chenguang; Flögel, Sascha; Fang, Xiaomin; Sun, Jimin (1 June 2023).
1027:. The Neogene of Eurasia: Spatial gradients and temporal trends - The second synthesis of NECLIME. 971:. The Neogene of Eurasia: Spatial gradients and temporal trends - The second synthesis of NECLIME. 682: 545: 376: 268: 118: 97: 85: 1381:"Mid-Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle" 540: 538: 121:
changes in oceanic and atmospheric currents, with possible amplification by a significant drop in
1775: 1699: 1596: 1298: 1074: 895: 738: 651: 591: 517: 487: 468: 372:"The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)" 183: 109: 89: 17: 343: 1019:"Precipitation patterns in the Miocene of Central Europe and the development of continentality" 488:"Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years" 2548: 2105: 1982: 1948: 1930: 1726: 1672: 1654: 1588: 1553: 1522: 1466: 1410: 1354: 1290: 1227: 1209: 1152: 1048: 992: 887: 879: 854: 816: 768: 709: 643: 583: 575: 550: 460: 403: 241: 93: 1897:; Johnson, Jesse V.; Leng, Melanie J.; Machlus, Malka L.; Newton, Angela E. (5 August 2008). 793:
Lewis, A.R.; Marchant, D.R.; Ashworth, A.C.; Hemming, S.R.; Machlus, M.L. (1 November 2007).
2038: 1938: 1920: 1868: 1823: 1767: 1716: 1708: 1695:"The Oligo–Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea" 1662: 1644: 1578: 1570: 1549:"Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene" 1514: 1458: 1402: 1346: 1282: 1217: 1201: 1184: 1144: 1096: 1040: 984: 943: 871: 808: 760: 737:
Tian, Jun; Yang, Mei; Lyle, Mitchell W.; Wilkens, Roy; Shackford, Julia K. (11 March 2013).
699: 635: 618: 567: 509: 452: 435: 393: 223: 38:) was a relatively steady period of climatic cooling that occurred around the middle of the 194:
drawdown are thought to have been extensive enough to drop atmospheric concentrations in CO
614:"Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion" 612:
Holbourn, Ann; Kuhnt, Wolfgang; Schulz, Michael; Erlenkeuser, Helmut (24 November 2005).
92:. These may have been amplified by changes in oceanic and atmospheric circulation due to 1916: 1819: 1763: 1640: 1566: 1510: 1454: 1398: 1342: 1278: 1197: 1140: 1092: 1036: 980: 939: 867: 756: 695: 631: 563: 505: 448: 389: 1943: 1894: 1852:"The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe" 1721: 1694: 1222: 1179: 249: 237: 78: 1872: 1667: 1622: 1492: 1350: 174:
The primary cause of the cooling that came out of the MMCO was changing atmospheric CO
2527: 2331: 1801: 1779: 1600: 1518: 1302: 846: 521: 472: 331: 326: 285: 281: 1898: 1548: 1180:"Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies" 595: 513: 899: 655: 337: 322: 261: 253: 151: 139: 371: 1286: 1100: 1044: 988: 739:"Obliquity and long eccentricity pacing of the Middle Miocene climate transition" 677: 1800:
Nisancioglu, Kerim Hestnes; Raymo, Maureen; Stone, Peter H. (11 February 2003).
230: 1904:
Proceedings of the National Academy of Sciences of the United States of America
1712: 1628:
Proceedings of the National Academy of Sciences of the United States of America
2394: 2367: 2304: 1574: 613: 318: 187: 143: 70: 1979:
Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change
1934: 1746:"The Middle to Late Miocene "Carbonate Crash" in the Equatorial Indian Ocean" 1658: 1592: 1526: 1470: 1414: 1358: 1294: 1213: 1156: 1052: 996: 883: 820: 772: 713: 579: 407: 2376: 2286: 2081: 1925: 1899:"Mid-Miocene cooling and the extinction of tundra in continental Antarctica" 875: 571: 314: 310: 226: 1952: 1730: 1231: 1205: 891: 647: 587: 464: 398: 88:
by organic material before becoming caught in different locations like the
1676: 1649: 1123:"Miocene global change recorded in Columbia River basalt–hosted paleosols" 704: 229:
caused the MMCT, but this is contradicted by geological evidence from the
2358: 2349: 2322: 2313: 2295: 2093: 1828: 1771: 1583: 1462: 1406: 370:
Hamon, N.; Sepulchre, P.; Lefebvre, V.; Ramstein, G. (28 November 2013).
158:
sharply decreased around 12.6 Ma, indicating a major aridification event.
47: 963:"Miocene precipitation in Europe: Temporal trends and spatial gradients" 639: 2385: 2340: 1893:
Lewis, Adam R.; Marchant, David R.; Ashworth, Allan C.; Hedenäs, Lars;
764: 301: 206: 39: 1437:"Himalayan-Tibetan Erosion Is Not the Cause of Neogene Global Cooling" 1017:
Bruch, Angela A.; Utescher, Torsten; Mosbrugger, Volker (1 May 2011).
947: 1148: 847:"Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present" 456: 2007: 732: 730: 209:
deposits at this time, also contributed heavily to the reduction in
205:
Organic carbon burial on land, evidenced by widespread formation of
190:, an explanation known as the Monterey Hypothesis. These sites of CO 1121:
Hobbs, Kevin Michael; Parrish, Judith Totman (1 September 2016).
961:
Böhme, Madelaine; Winklhofer, Michael; Ilg, August (1 May 2011).
222:
Another hypothesis is that increased silicate weathering of the
210: 2011: 248:(AABW) production, the halting of saline water delivery to the 43: 1323:
Kashiwagi, Hirohiko; Shikazono, Naotatsu (25 October 2003).
813:
10.1130/0016-7606(2007)119[1449:MMMGCC]2.0.CO;2
676:
Langebroek, P. M.; Paul, A.; Schulz, M. (22 October 2009).
1688: 1686: 365: 363: 361: 359: 1491:
Flower, Benjamin P.; Kennett, James P. (1 April 1994).
918: 916: 428: 426: 424: 292:A sharp drop in carbonate production, known as the 1693:Torfstein, Adi; Steinberg, Josh (14 August 2020). 1435:Clift, Peter D.; Jonell, Tara N. (28 April 2021). 607: 605: 1860:Palaeogeography, Palaeoclimatology, Palaeoecology 1623:"Periodicity of extinctions in the geologic past" 1498:Palaeogeography, Palaeoclimatology, Palaeoecology 1330:Palaeogeography, Palaeoclimatology, Palaeoecology 1080:Palaeogeography, Palaeoclimatology, Palaeoecology 1024:Palaeogeography, Palaeoclimatology, Palaeoecology 968:Palaeogeography, Palaeoclimatology, Palaeoecology 1621:Raup, D. M.; Sepkoski, J. J. (1 February 1984). 2023: 1977:Allmon, Warren D.; Bottjer, David J. (2001). 841:Zachos, James C.; Pagani, Mark; Sloan, Lisa; 8: 1244:: CS1 maint: numeric names: authors list ( 2030: 2016: 2008: 1942: 1924: 1827: 1720: 1666: 1648: 1582: 1221: 703: 397: 160: 1981:. New York: Columbia University Press. 1480:– via American Geophysical Union. 355: 1237: 1128:Geological Society of America Bulletin 845:; Billups, Katharina (27 April 2001). 800:Geological Society of America Bulletin 1807:Paleoceanography and Paleoclimatology 1751:Paleoceanography and Paleoclimatology 1386:Paleoceanography and Paleoclimatology 927:Paleoceanography and Paleoclimatology 100:factors may also have played a role. 7: 1368:– via Elsevier Science Direct. 1110:– via Elsevier Science Direct. 1062:– via Elsevier Science Direct. 1006:– via Elsevier Science Direct. 744:Geochemistry, Geophysics, Geosystems 1850:Böhme, Madelaine (November 2001). 32:Middle Miocene Climatic Transition 25: 18:Middle Miocene Climate Transition 2512:Millions of years before present 1266:Journal of Asian Earth Sciences 514:10.1016/j.earscirev.2021.103503 240:concentrations, alterations to 236:As well significant changes in 75:Middle Miocene Climatic Optimum 67:Middle Miocene extinction peak, 1: 1873:10.1016/S0031-0182(03)00367-5 1351:10.1016/S0031-0182(03)00506-6 1519:10.1016/0031-0182(94)90251-8 1442:Geophysical Research Letters 1287:10.1016/j.jseaes.2018.10.018 1166:– via GeoScienceWorld. 1101:10.1016/j.palaeo.2023.111541 1045:10.1016/j.palaeo.2010.10.002 989:10.1016/j.palaeo.2010.09.028 148:Columbia River Basalt Group 2565: 1713:10.1038/s41598-020-70652-4 123:atmospheric carbon dioxide 59:Middle Miocene disruption, 2045: 2003:Middle Miocene global map 1575:10.1038/s41561-020-0623-0 258:North Atlantic Deep Water 63:Middle Miocene extinction 114:Transantarctic Mountains 84:being pulled out of the 55:East Antarctic Ice Sheet 1926:10.1073/pnas.0802501105 876:10.1126/science.1059412 572:10.1126/science.1100061 294:Miocene Carbonate Crash 1206:10.1126/sciadv.1602567 399:10.5194/cp-9-2687-2013 246:Antarctic Bottom Water 166: 1650:10.1073/pnas.81.3.801 705:10.5194/cp-5-633-2009 493:Earth-Science Reviews 164: 125:(ppm): atmospheric CO 112:is recorded from the 27:Mass extinction event 2534:Langhian extinctions 2252:Cretaceous–Paleogene 1829:10.1029/2002PA000767 1772:10.1029/2018PA003482 1463:10.1029/2020GL087742 1407:10.1029/2008PA001605 807:(11–12): 1449–1461. 546:Shevenell, Amelia E. 69:refers to a wave of 2539:Miocene extinctions 2204:Ordovician-Silurian 2178:Cambrian-Ordovician 2118:Cenomanian-Turonian 1917:2008PNAS..10510676L 1911:(31): 10676–10680. 1820:2003PalOc..18.1006N 1764:2019PaPa...34..813L 1641:1984PNAS...81..801R 1567:2020NatGe..13..634L 1511:1994PPP...108..537F 1455:2021GeoRL..4887742C 1399:2009PalOc..24.1209D 1343:2003PPP...199..167K 1279:2019JAESc.170..155B 1198:2017SciA....3E2567G 1141:2016GSAB..128.1543H 1135:(9–10): 1543–1554. 1093:2023PPP...61911541Z 1037:2011PPP...304..202B 981:2011PPP...304..212B 940:1993PalOc...8..811F 868:2001Sci...292..686Z 757:2013GGG....14.1740T 696:2009CliPa...5..633L 683:Climate of the Past 640:10.1038/nature04123 632:2005Natur.438..483H 564:2004Sci...305.1766S 558:(5691): 1766–1770. 506:2021ESRv..21503503S 449:2000Natur.406..695P 390:2013CliPa...9.2687H 377:Climate of the Past 269:Milankovitch cycles 156:silicate weathering 110:cold-based glaciers 2142:Rainforest collaps 1895:Hemming, Sidney R. 1700:Scientific Reports 765:10.1002/ggge.20108 184:Monterey Formation 178:levels. Falling CO 167: 90:Monterey Formation 86:Earth's atmosphere 61:alternatively the 2521: 2520: 2240:Triassic–Jurassic 2166:Smithian-Spathian 2094:Toarcian turnover 2039:Extinction events 1988:978-0-231-10994-9 1554:Nature Geoscience 948:10.1029/93pa02196 862:(5517): 686–693. 626:(7067): 483–487. 443:(6797): 695–699. 256:, and additional 242:ocean circulation 94:continental drift 57:(EAIS). The term 46:(Ma), during the 44:million years ago 16:(Redirected from 2556: 2278: 2273: 2266: 2261: 2254: 2249: 2242: 2237: 2230: 2225: 2218: 2213: 2206: 2201: 2192: 2187: 2180: 2175: 2168: 2163: 2156: 2151: 2144: 2139: 2132: 2127: 2120: 2115: 2108: 2103: 2096: 2091: 2084: 2079: 2072: 2067: 2060: 2055: 2032: 2025: 2018: 2009: 1992: 1964: 1963: 1961: 1959: 1946: 1928: 1890: 1884: 1883: 1881: 1879: 1867:(3–4): 389–401. 1856: 1847: 1841: 1840: 1838: 1836: 1831: 1797: 1791: 1790: 1788: 1786: 1741: 1735: 1734: 1724: 1690: 1681: 1680: 1670: 1652: 1618: 1612: 1611: 1609: 1607: 1586: 1544: 1538: 1537: 1535: 1533: 1488: 1482: 1481: 1479: 1477: 1432: 1426: 1425: 1423: 1421: 1376: 1370: 1369: 1367: 1365: 1320: 1314: 1313: 1311: 1309: 1256: 1250: 1249: 1243: 1235: 1225: 1185:Science Advances 1174: 1168: 1167: 1165: 1163: 1149:10.1130/B31437.1 1118: 1112: 1111: 1109: 1107: 1070: 1064: 1063: 1061: 1059: 1014: 1008: 1007: 1005: 1003: 958: 952: 951: 920: 911: 910: 908: 906: 851: 838: 832: 831: 829: 827: 790: 784: 783: 781: 779: 751:(6): 1740–1755. 734: 725: 724: 722: 720: 707: 673: 667: 666: 664: 662: 609: 600: 599: 542: 533: 532: 530: 528: 483: 477: 476: 457:10.1038/35021000 430: 419: 418: 416: 414: 401: 384:(6): 2687–2702. 367: 275:Extinction event 170:Suggested causes 96:. Additionally, 21: 2564: 2563: 2559: 2558: 2557: 2555: 2554: 2553: 2524: 2523: 2522: 2517: 2516: 2515: 2514: 2513: 2510: 2509: 2508: 2503: 2502: 2497: 2496: 2491: 2490: 2485: 2484: 2479: 2478: 2473: 2472: 2467: 2466: 2461: 2460: 2455: 2454: 2449: 2448: 2443: 2442: 2437: 2436: 2430: 2429: 2428: 2427: 2422: 2421: 2420: 2415: 2414: 2413: 2408: 2407: 2406: 2400: 2399: 2398: 2397: 2390: 2389: 2388: 2381: 2380: 2379: 2372: 2371: 2370: 2363: 2362: 2361: 2354: 2353: 2352: 2345: 2344: 2343: 2336: 2335: 2334: 2327: 2326: 2325: 2318: 2317: 2316: 2309: 2308: 2307: 2300: 2299: 2298: 2291: 2290: 2289: 2281: 2280: 2279: 2274: 2271: 2268: 2267: 2262: 2259: 2256: 2255: 2250: 2247: 2244: 2243: 2238: 2235: 2232: 2231: 2226: 2223: 2220: 2219: 2214: 2211: 2208: 2207: 2202: 2199: 2195: 2194: 2193: 2188: 2185: 2182: 2181: 2176: 2173: 2170: 2169: 2164: 2161: 2158: 2157: 2152: 2149: 2146: 2145: 2140: 2137: 2134: 2133: 2128: 2125: 2122: 2121: 2116: 2113: 2110: 2109: 2104: 2101: 2098: 2097: 2092: 2089: 2086: 2085: 2080: 2077: 2074: 2073: 2068: 2065: 2062: 2061: 2056: 2053: 2041: 2036: 1999: 1989: 1976: 1973: 1971:Further reading 1968: 1967: 1957: 1955: 1892: 1891: 1887: 1877: 1875: 1854: 1849: 1848: 1844: 1834: 1832: 1814:(1): 6-1–6-12. 1799: 1798: 1794: 1784: 1782: 1743: 1742: 1738: 1692: 1691: 1684: 1620: 1619: 1615: 1605: 1603: 1546: 1545: 1541: 1531: 1529: 1490: 1489: 1485: 1475: 1473: 1434: 1433: 1429: 1419: 1417: 1378: 1377: 1373: 1363: 1361: 1322: 1321: 1317: 1307: 1305: 1258: 1257: 1253: 1236: 1192:(5): e1602567. 1176: 1175: 1171: 1161: 1159: 1120: 1119: 1115: 1105: 1103: 1072: 1071: 1067: 1057: 1055: 1016: 1015: 1011: 1001: 999: 960: 959: 955: 922: 921: 914: 904: 902: 849: 840: 839: 835: 825: 823: 792: 791: 787: 777: 775: 736: 735: 728: 718: 716: 675: 674: 670: 660: 658: 611: 610: 603: 544: 543: 536: 526: 524: 485: 484: 480: 432: 431: 422: 412: 410: 369: 368: 357: 352: 344:Madelaine Böhme 277: 217: 197: 193: 181: 177: 172: 132: 128: 119:orbitally paced 106: 98:orbitally paced 82: 28: 23: 22: 15: 12: 11: 5: 2562: 2560: 2552: 2551: 2546: 2544:Miocene events 2541: 2536: 2526: 2525: 2519: 2518: 2511: 2506: 2504: 2500: 2498: 2494: 2492: 2488: 2486: 2482: 2480: 2476: 2474: 2470: 2468: 2464: 2462: 2458: 2456: 2452: 2450: 2446: 2444: 2440: 2438: 2434: 2432: 2431: 2425: 2424: 2423: 2418: 2417: 2416: 2411: 2410: 2409: 2405:Neoproterozoic 2404: 2403: 2402: 2401: 2393: 2392: 2391: 2384: 2383: 2382: 2375: 2374: 2373: 2366: 2365: 2364: 2357: 2356: 2355: 2348: 2347: 2346: 2339: 2338: 2337: 2330: 2329: 2328: 2321: 2320: 2319: 2312: 2311: 2310: 2303: 2302: 2301: 2294: 2293: 2292: 2285: 2284: 2283: 2282: 2270: 2269: 2258: 2257: 2246: 2245: 2234: 2233: 2228:Permo-Triassic 2222: 2221: 2210: 2209: 2198: 2197: 2196: 2184: 2183: 2172: 2171: 2160: 2159: 2148: 2147: 2136: 2135: 2130:Middle Miocene 2124: 2123: 2112: 2111: 2100: 2099: 2088: 2087: 2076: 2075: 2070:End-Ediacaran? 2064: 2063: 2052: 2051: 2050: 2049: 2048: 2047: 2046: 2043: 2042: 2037: 2035: 2034: 2027: 2020: 2012: 2006: 2005: 1998: 1997:External links 1995: 1994: 1993: 1987: 1972: 1969: 1966: 1965: 1885: 1842: 1792: 1758:(5): 813–832. 1736: 1682: 1635:(3): 801–805. 1613: 1561:(9): 634–639. 1539: 1505:(3): 537–555. 1483: 1427: 1371: 1337:(3): 167–185. 1315: 1251: 1169: 1113: 1065: 1031:(3): 202–211. 1009: 975:(3): 212–218. 953: 934:(6): 811–843. 912: 833: 785: 726: 690:(4): 633–646. 668: 601: 534: 478: 420: 354: 353: 351: 348: 276: 273: 250:Southern Ocean 238:greenhouse gas 215: 195: 191: 179: 175: 171: 168: 130: 126: 105: 102: 80: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2561: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2531: 2529: 2396: 2387: 2378: 2369: 2360: 2351: 2342: 2333: 2332:Carboniferous 2324: 2315: 2306: 2297: 2288: 2277: 2265: 2253: 2241: 2229: 2217: 2216:Late Devonian 2205: 2191: 2179: 2167: 2155: 2143: 2131: 2119: 2107: 2095: 2083: 2071: 2059: 2044: 2040: 2033: 2028: 2026: 2021: 2019: 2014: 2013: 2010: 2004: 2001: 2000: 1996: 1990: 1984: 1980: 1975: 1974: 1970: 1954: 1950: 1945: 1940: 1936: 1932: 1927: 1922: 1918: 1914: 1910: 1906: 1905: 1900: 1896: 1889: 1886: 1874: 1870: 1866: 1862: 1861: 1853: 1846: 1843: 1830: 1825: 1821: 1817: 1813: 1809: 1808: 1803: 1796: 1793: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1752: 1747: 1740: 1737: 1732: 1728: 1723: 1718: 1714: 1710: 1706: 1702: 1701: 1696: 1689: 1687: 1683: 1678: 1674: 1669: 1664: 1660: 1656: 1651: 1646: 1642: 1638: 1634: 1630: 1629: 1624: 1617: 1614: 1602: 1598: 1594: 1590: 1585: 1584:11250/2735798 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1555: 1550: 1543: 1540: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1499: 1494: 1487: 1484: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1443: 1438: 1431: 1428: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1387: 1382: 1375: 1372: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1331: 1326: 1319: 1316: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1267: 1262: 1255: 1252: 1247: 1241: 1233: 1229: 1224: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1186: 1181: 1173: 1170: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1129: 1124: 1117: 1114: 1102: 1098: 1094: 1090: 1086: 1082: 1081: 1076: 1069: 1066: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1025: 1020: 1013: 1010: 998: 994: 990: 986: 982: 978: 974: 970: 969: 964: 957: 954: 949: 945: 941: 937: 933: 929: 928: 919: 917: 913: 901: 897: 893: 889: 885: 881: 877: 873: 869: 865: 861: 857: 856: 848: 844: 843:Thomas, Ellen 837: 834: 822: 818: 814: 810: 806: 802: 801: 796: 789: 786: 774: 770: 766: 762: 758: 754: 750: 746: 745: 740: 733: 731: 727: 715: 711: 706: 701: 697: 693: 689: 685: 684: 679: 672: 669: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 620: 615: 608: 606: 602: 597: 593: 589: 585: 581: 577: 573: 569: 565: 561: 557: 553: 552: 547: 541: 539: 535: 523: 519: 515: 511: 507: 503: 499: 495: 494: 489: 482: 479: 474: 470: 466: 462: 458: 454: 450: 446: 442: 438: 437: 429: 427: 425: 421: 409: 405: 400: 395: 391: 387: 383: 379: 378: 373: 366: 364: 362: 360: 356: 349: 347: 345: 340: 339: 334: 333: 332:Gavialosuchus 328: 327:Alligatoridae 324: 320: 316: 312: 306: 303: 299: 295: 290: 287: 286:Jack Sepkoski 283: 274: 272: 270: 265: 263: 262:Tethys Seaway 259: 255: 251: 247: 243: 239: 234: 232: 228: 225: 220: 218: 213: 208: 203: 201: 189: 185: 169: 163: 159: 157: 153: 149: 145: 141: 135: 124: 120: 115: 111: 103: 101: 99: 95: 91: 87: 83: 76: 72: 68: 64: 60: 56: 52: 49: 45: 42:, roughly 14 41: 37: 33: 19: 2276:Major events 2275: 2129: 2058:Minor events 2057: 1978: 1956:. Retrieved 1908: 1902: 1888: 1876:. Retrieved 1864: 1858: 1845: 1833:. Retrieved 1811: 1805: 1795: 1783:. Retrieved 1755: 1749: 1739: 1707:(1): 13817. 1704: 1698: 1632: 1626: 1616: 1604:. Retrieved 1558: 1552: 1542: 1530:. Retrieved 1502: 1496: 1486: 1474:. Retrieved 1446: 1440: 1430: 1418:. Retrieved 1390: 1384: 1374: 1362:. Retrieved 1334: 1328: 1318: 1306:. Retrieved 1270: 1264: 1254: 1240:cite journal 1189: 1183: 1172: 1160:. Retrieved 1132: 1126: 1116: 1104:. Retrieved 1084: 1078: 1068: 1056:. Retrieved 1028: 1022: 1012: 1000:. Retrieved 972: 966: 956: 931: 925: 903:. Retrieved 859: 853: 836: 824:. Retrieved 804: 798: 788: 776:. Retrieved 748: 742: 717:. Retrieved 687: 681: 671: 659:. Retrieved 623: 617: 555: 549: 525:. Retrieved 497: 491: 481: 440: 434: 411:. Retrieved 381: 375: 338:Diplocynodon 336: 330: 323:Tomistominae 307: 297: 293: 291: 278: 266: 254:Indian Ocean 235: 221: 211: 204: 173: 152:Qaidam Basin 140:North Africa 136: 107: 66: 62: 58: 35: 31: 29: 1606:31 December 1532:31 December 1308:31 December 1273:: 155–165. 826:31 December 778:31 December 527:24 December 413:31 December 231:Indus River 186:of coastal 71:extinctions 2528:Categories 2395:Quaternary 2368:Cretaceous 2305:Ordovician 2154:Capitanian 1476:11 January 1420:11 January 1364:11 January 1162:11 January 1087:: 111541. 1058:11 January 1002:11 January 500:: 103503. 350:References 319:Cordylidae 315:chameleons 282:David Raup 188:California 144:South Asia 2412:Palæozoic 2377:Paleogene 2287:Ediacaran 2082:Lau event 1935:0027-8424 1780:146593169 1659:0027-8424 1601:221381641 1593:1752-0908 1527:0031-0182 1471:0094-8276 1415:0883-8305 1359:0031-0182 1303:133933898 1295:1367-9120 1214:2375-2548 1157:0016-7606 1053:0031-0182 997:0031-0182 884:0036-8075 821:0016-7606 773:1525-2027 714:1814-9332 580:0036-8075 522:233579194 473:205008176 408:1814-9332 311:Varanidae 252:from the 227:Himalayas 224:uplifting 146:. In the 2549:Langhian 2426:Cenozoic 2419:Mesozoic 2359:Jurassic 2350:Triassic 2323:Devonian 2314:Silurian 2296:Cambrian 2264:Holocene 1958:19 April 1953:18678903 1878:19 April 1835:21 April 1785:19 April 1731:32796882 1232:28508066 905:19 April 892:11326091 661:19 April 648:16306989 596:27369039 588:15375266 465:10963587 233:system. 48:Langhian 2386:Neogene 2341:Permian 2190:Olson's 1944:2495011 1913:Bibcode 1816:Bibcode 1760:Bibcode 1722:7427807 1677:6583680 1637:Bibcode 1563:Bibcode 1507:Bibcode 1451:Bibcode 1395:Bibcode 1339:Bibcode 1275:Bibcode 1223:5425240 1194:Bibcode 1137:Bibcode 1089:Bibcode 1033:Bibcode 977:Bibcode 936:Bibcode 900:2365991 864:Bibcode 855:Science 753:Bibcode 692:Bibcode 656:4406410 628:Bibcode 560:Bibcode 551:Science 502:Bibcode 445:Bibcode 386:Bibcode 302:monsoon 207:lignite 104:Effects 40:Miocene 2272:  2106:Aptian 2054:  1985:  1951:  1941:  1933:  1778:  1729:  1719:  1675:  1668:344925 1665:  1657:  1599:  1591:  1525:  1469:  1413:  1357:  1301:  1293:  1230:  1220:  1212:  1155:  1106:4 July 1051:  995:  898:  890:  882:  819:  771:  719:4 July 712:  654:  646:  619:Nature 594:  586:  578:  520:  471:  463:  436:Nature 406:  1855:(PDF) 1776:S2CID 1597:S2CID 1449:(8). 1393:(1). 1299:S2CID 896:S2CID 850:(PDF) 652:S2CID 592:S2CID 518:S2CID 469:S2CID 51:stage 2495:−100 2489:−150 2483:−200 2477:−250 2471:−300 2465:−350 2459:−400 2453:−450 2447:−500 2441:−550 2435:−600 1983:ISBN 1960:2023 1949:PMID 1931:ISSN 1880:2023 1837:2023 1787:2023 1727:PMID 1673:PMID 1655:ISSN 1608:2023 1589:ISSN 1534:2023 1523:ISSN 1478:2024 1467:ISSN 1422:2024 1411:ISSN 1366:2024 1355:ISSN 1310:2023 1291:ISSN 1246:link 1228:PMID 1210:ISSN 1164:2024 1153:ISSN 1108:2024 1060:2024 1049:ISSN 1004:2024 993:ISSN 907:2023 888:PMID 880:ISSN 828:2023 817:ISSN 780:2023 769:ISSN 721:2024 710:ISSN 663:2023 644:PMID 584:PMID 576:ISSN 529:2023 461:PMID 415:2023 404:ISSN 335:and 284:and 200:EAIS 142:and 36:MMCT 30:The 2501:−50 1939:PMC 1921:doi 1909:105 1869:doi 1865:195 1824:doi 1768:doi 1717:PMC 1709:doi 1663:PMC 1645:doi 1579:hdl 1571:doi 1515:doi 1503:108 1459:doi 1403:doi 1347:doi 1335:199 1283:doi 1271:170 1218:PMC 1202:doi 1145:doi 1133:128 1097:doi 1085:619 1041:doi 1029:304 985:doi 973:304 944:doi 872:doi 860:292 809:doi 805:119 761:doi 700:doi 636:doi 624:438 568:doi 556:305 510:doi 498:215 453:doi 441:406 394:doi 298:MCC 65:or 2530:: 1947:. 1937:. 1929:. 1919:. 1907:. 1901:. 1863:. 1857:. 1822:. 1812:18 1810:. 1804:. 1774:. 1766:. 1756:34 1754:. 1748:. 1725:. 1715:. 1705:10 1703:. 1697:. 1685:^ 1671:. 1661:. 1653:. 1643:. 1633:81 1631:. 1625:. 1595:. 1587:. 1577:. 1569:. 1559:13 1557:. 1551:. 1521:. 1513:. 1501:. 1495:. 1465:. 1457:. 1447:48 1445:. 1439:. 1409:. 1401:. 1391:24 1389:. 1383:. 1353:. 1345:. 1333:. 1327:. 1297:. 1289:. 1281:. 1269:. 1263:. 1242:}} 1238:{{ 1226:. 1216:. 1208:. 1200:. 1188:. 1182:. 1151:. 1143:. 1131:. 1125:. 1095:. 1083:. 1077:. 1047:. 1039:. 1021:. 991:. 983:. 965:. 942:. 930:. 915:^ 894:. 886:. 878:. 870:. 858:. 852:. 815:. 803:. 797:. 767:. 759:. 749:14 747:. 741:. 729:^ 708:. 698:. 686:. 680:. 650:. 642:. 634:. 622:. 616:. 604:^ 590:. 582:. 574:. 566:. 554:. 537:^ 516:. 508:. 496:. 490:. 467:. 459:. 451:. 439:. 423:^ 402:. 392:. 380:. 374:. 358:^ 325:, 321:, 317:, 313:, 219:. 214:CO 202:. 154:, 79:CO 2507:0 2505:│ 2499:│ 2493:│ 2487:│ 2481:│ 2475:│ 2469:│ 2463:│ 2457:│ 2451:│ 2445:│ 2439:│ 2433:│ 2260:↓ 2248:↓ 2236:↓ 2224:↓ 2212:↓ 2200:↓ 2186:↓ 2174:↓ 2162:↓ 2150:↓ 2138:↓ 2126:↓ 2114:↓ 2102:↓ 2090:↓ 2078:↓ 2066:↓ 2031:e 2024:t 2017:v 1991:. 1962:. 1923:: 1915:: 1882:. 1871:: 1839:. 1826:: 1818:: 1789:. 1770:: 1762:: 1733:. 1711:: 1679:. 1647:: 1639:: 1610:. 1581:: 1573:: 1565:: 1536:. 1517:: 1509:: 1461:: 1453:: 1424:. 1405:: 1397:: 1349:: 1341:: 1312:. 1285:: 1277:: 1248:) 1234:. 1204:: 1196:: 1190:3 1147:: 1139:: 1099:: 1091:: 1043:: 1035:: 987:: 979:: 950:. 946:: 938:: 932:8 909:. 874:: 866:: 830:. 811:: 782:. 763:: 755:: 723:. 702:: 694:: 688:5 665:. 638:: 630:: 598:. 570:: 562:: 531:. 512:: 504:: 475:. 455:: 447:: 417:. 396:: 388:: 382:9 296:( 216:2 212:p 196:2 192:2 180:2 176:2 131:2 127:2 81:2 34:( 20:)

Index

Middle Miocene Climate Transition
Miocene
million years ago
Langhian
stage
East Antarctic Ice Sheet
extinctions
Middle Miocene Climatic Optimum
CO2
Earth's atmosphere
Monterey Formation
continental drift
orbitally paced
cold-based glaciers
Transantarctic Mountains
orbitally paced
atmospheric carbon dioxide
North Africa
South Asia
Columbia River Basalt Group
Qaidam Basin
silicate weathering

Monterey Formation
California
EAIS
lignite
pCO2
uplifting
Himalayas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.