Knowledge

Mid-Pleistocene Transition

Source 📝

76:. After the MPT there have been strongly asymmetric cycles with long-duration cooling of the climate and build-up of thick ice sheets, followed by a fast change from extreme glacial conditions to a warm interglacial. This led to less dynamic ice sheets. Interglacials before the MPT had lower levels of atmospheric carbon dioxide compared to interglacials after the MPT. One of the MPT's effects was causing ice sheets to become higher in altitude and less slippery compared to before. The MPT greatly increased the reservoirs of hydrocarbons locked up as permafrost methane or methane clathrate during glacial intervals. This led to larger methane releases during deglaciations. The cycle lengths have varied, with an average length of approximately 100,000 years. 126:
amplification which appears as a missing-link for the MPT. The study hypothesises that both the glacio-eustatic water mass component in the obliquity band may controlled the Earth's oblateness changes and the obliquity phase lag estimated to be <5.0 kyr, explain obliquity’s damping by the obliquity-oblateness feedback as latent physical mechanism at the origin of the MPT. The obliquity damping might have contributed to the strengthening of the short eccentricity response by mitigating the obliquity ‘ice killing’ during obliquity maxima (interglacials), favouring the obliquity-cycle skipping and a feedback-amplified ice growth in the short eccentricity band.
33: 125:
A 2023 study formulates an innovative hypothesis on the origin of the MPT (obliquity damping hypothesis). This hypothesis is based on the observational evidence of obliquity damping in climate proxies and sea-level record during the Last 1.2 Ma. Obliquity damping is linked with short eccentricity
251:
In the Eastern Equatorial Pacific (EEP), denitrification increased during interglacials while decreasing during glacials. Deep water coral growth in the Maui Nui Complex was enhanced by the high amplitude glacial cycles brought about by the MPT, while
113:
are believed to have been covered by thick layers of regoliths, which have been worn away over large areas by subsequent glaciations. Later glaciations were increasingly based on core areas, with thick ice sheets strongly coupled to bare bedrock.
104:
Regoliths are believed to affect glaciation because ice with its base on regolith at the pressure melting point will slide with relative ease, which limits the thickness of the ice sheet. Before the Quaternary, northern
121:
played a role in the increase in amplitude of glacial-interglacial cycles because this increase in carbon storage capacity is coincident with the transition from 41-kyr to 100-kyr glacial-interglacial cycles.
1238:
Zhan, Tao; Yang, Ye; Liang, Yanxia; Liu, Xiaoyan; Zeng, Fangming; Ge, Junyi; Ma, Yongfa; Zhao, Keliang; Zhou, Xinying; Jiang, Xia; Huang, Rongfu; Wang, Xun; Zhou, Xin; Deng, Chenglong (1 February 2023).
36:
Five million years of glacial cycles are shown, based on oxygen isotope ratio believed to be a good proxy of global ice volume. The MPT is the transition between the periodicities shown in green.
225:, with stratification being stronger during interstadials than stadials. Paradoxically, variability in ΔδO in the Bay of Bengal between glacials and interglacials decreased following the MPT. 750:
Farmer, J. R.; Hönisch, B.; Haynes, L. L.; Kroon, D.; Jung, S.; Ford, H. L.; Raymo, M. E.; Jaume-Seguí, M.; Bell, D. B.; Goldstein, S. L.; Pena, L. D.; Yehudai, M.; Kim, J. (8 April 2019).
1447:
Ellerton, D.; Rittenour, T. M.; Shulmeister, J.; Roberts, A. P.; Miot da Silva, G.; Gontz, A.; Hesp, P. A.; Moss, T.; Patton, N.; Santini, T.; Welsh, K.; Zhao, X. (14 November 2022).
1119:"LARGE MAMMALS FAUNAL DYNAMICS IN SOUTHWESTERN EUROPE DURING THE LATE EARLY PLEISTOCENE: IMPLICATIONS FOR THE BIOCHRONOLOGICAL ASSESSMENT AND CORRELATION OF MAMMALIAN FAUNAS" 1321:"A paleoproductivity shift in the northwestern Bay of Bengal (IODP Site U1445) across the Mid-Pleistocene transition in response to weakening of the Indian summer monsoon" 1148:
Capozzi, Rossella; Picotti, Vincenzo; Bracchi, Valentina Alice; Caridi, Francesca; Sabbatini, Anna; Taviani, Marco; Bernasconi, Stefano; Negri, Alessandra (1 April 2024).
1602: 1554: 1504: 1365: 1325: 1285: 1245: 1154: 991:
Ohneiser, Christian; Hulbe, Christina L.; Beltran, Catherine; Riesselman, Christina R.; Moy, Christopher M.; Condon, Donna B.; Worthington, Rachel A. (5 December 2022).
221:
experienced increased stratification as a result of the strengthening of the ISM, which resulted in increased riverine flux, inhibiting mixing and creating a shallow
1598:"Environmental changes in the East Equatorial Pacific during the Mid Pleistocene Transition and implications for the Last Global Extinction of benthic foraminifera" 1241:"Decreasing summer monsoon precipitation during the Mid-Pleistocene transition revealed by a pollen record from lacustrine deposits of the Northeast Plain of China" 101:
may be related to changes in volcanic outgassing, the burial of ocean sediments, carbonate weathering or iron fertilization of oceans from glacially induced dust.
1150:"Mid-Pleistocene Transition at a shallowing shelf: Tectonic and eustatic forcings in the paleoenvironment of the Enza section, Northern Apennines mountain front" 585: 236:
and the Cooloola Sand Mass. The increasing amplitude of sea level variations led to increased redistribution of sediments stored on the seafloor across the
68:
epoch. Before the MPT, the glacial cycles were dominated by a 41,000-year periodicity with low-amplitude, thin ice sheets, and a linear relationship to the
826:"Global Evidence of Obliquity Damping in Climate Proxies and Sea-Level Record during the Last 1.2 Ma: A Missing Link for the Mid-Pleistocene Transition" 920:"Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression" 244:
by drastically decreasing the flow of sediment to the area of continental shelf north of Fraser Island, a necessary precondition for the growth of
1647: 475: 474:
Clark, Peter U; Archer, David; Pollard, David; Blum, Joel D; Rial, Jose A; Brovkin, Victor; Mix, Alan C; Pisias, Nicklas G; Roy, Martin (2006).
691: 648: 432: 737:"Chalk et al. (2017): Causes of ice age intensification across the Mid-Pleistocene Transition, PNAS December 12, 2017 114 (50) 13114-13119" 1281:"Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia" 584:
Yamamoto, Masanobu; Clemens, Steven C.; Seki, Osamu; Tsuchiya, Yuko; Huang, Yongsong; O'ishi, Ryouta; Abe-Ouchi, Ayako (31 March 2022).
1039:
Cronin, T.M.; DeNinno, L.H.; Polyak, L.; Caverly, E.K.; Poore, R.Z.; Brenner, A.; Rodriguez-Lazaro, J.; Marzen, R.E. (September 2014).
966:
Petra Bajo; et al. (2020). "Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition".
881: 1279:
Zhou, Xinying; Yang, Jilong; Wang, Shiqi; Xiao, Guoqiao; Zhao, Keliang; Zheng, Yan; Shen, Hui; Li, Xiaoqiang (15 September 2018).
213:
During the MPT, the Indian Summer Monsoon (ISM) decreased in strength. In the middle of the MPT, there was a sudden decrease in
1548:
Faichney, Iain D. E.; Webster, Jody M.; Clague, David A.; Braga, Juan C.; Renema, Willem; Potts, Donald C. (15 January 2011).
476:"The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2" 1500:"Southern Ocean sourced waters modulate Eastern Equatorial Pacific denitrification during the Mid-Pleistocene transition" 1405: 377:"Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal | Science Advances" 1550:"The impact of the Mid-Pleistocene Transition on the composition of submerged reefs of the Maui Nui Complex, Hawaii" 642:
Bailey, Ian; Bolton, Clara T.; DeConto, Robert M.; Pollard, David; Schiebel, Ralf; Wilson, Paul A. (26 March 2010).
1204: 924: 685:
Panieri, Giuliana; Knies, Jochen; Vadakkepuliyambatta, Sunil; Lee, Amicia L.; Schubert, Carsten J. (8 April 2023).
483: 64:
glaciations. The transition occurred gradually, taking place approximately 1.25–0.7 million years ago, in the
1642: 1449:"Fraser Island (K'gari) and initiation of the Great Barrier Reef linked by Middle Pleistocene sea-level change" 1083: 138: 786: 536:
Yan, Yuzhen; Kurbatov, Andrei V.; Mayewski, Paul A.; Shackleton, Sarah; Higgins, John A. (8 December 2022).
152: 1200:"Westerly aridity in the western Tarim Basin driven by global cooling since the mid-Pleistocene transition" 1198:
Liu, Hongye; Zhang, Rui; Gu, Yansheng; Dai, Gaowen; Li, Lin; Guan, Shuo; Fu, Zhongbiao (15 December 2023).
1549: 1361:"Prolonged South Asian Monsoon variability and weakened denitrification during Mid-Pleistocene Transition" 1079:"Loop Current attenuation after the Mid-Pleistocene Transition contributes to Northern hemisphere cooling" 292: 1399:
Bhadra, Sudhira R.; Saraswat, Rajeev; Kumar, Sanjeev; Verma, Sangeeta; Naik, Dinesh Kumar (August 2023).
1041:"Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean" 830: 1596:
Diz, Paula; Peñalver-Clavel, Irene; Hernández-Almeida, Iván; Bernasconi, Stefano M. (1 February 2020).
508: 97:
from northern hemisphere areas subject to glacial processes during the Quaternary. The reduction in CO
1662: 1462: 1414: 933: 890: 839: 765: 700: 657: 492: 441: 325: 267: 217:, likely due to increased solubility of oxygen during lengthened glacial periods. After the MPT, the 81: 428:"A gradual change is more likely to have caused the Mid-Pleistocene Transition than an abrupt event" 313: 1652: 644:"A low threshold for North Atlantic ice rafting from "low-slung slippery" late Pliocene ice sheets" 277: 134: 90: 69: 85:. The MPT can now be reproduced by numerical models that assume a decreasing level of atmospheric 1597: 1499: 1480: 1400: 1360: 1320: 1280: 1240: 1199: 1149: 1078: 1040: 1014: 919: 799: 617: 559: 341: 241: 141:
continued to be governed dominantly by fluctuations in obliquity until about 400,000 years ago.
1657: 1571: 1453: 997: 968: 857: 791: 756: 718: 590: 542: 408: 237: 203: 166: 73: 17: 1611: 1563: 1521: 1513: 1470: 1422: 1374: 1334: 1294: 1254: 1213: 1171: 1163: 1092: 1052: 1006: 973: 941: 898: 847: 781: 773: 708: 665: 607: 599: 551: 500: 449: 398: 390: 381: 333: 287: 282: 214: 79:
The Mid-Pleistocene Transition was long a problem to explain, as described in the article
1466: 1418: 937: 894: 843: 769: 704: 661: 496: 445: 329: 258:
disappeared from this reef complex. Benthic foraminiferal diversity in the EEP dropped.
129:
However, a 2020 study concluded that ice age terminations might have been influenced by
32: 586:"Increased interglacial atmospheric CO2 levels followed the mid-Pleistocene Transition" 403: 376: 171: 118: 86: 1401:"Mid-Pleistocene Transition altered upper water column structure in the Bay of Bengal" 1636: 1484: 1118: 1018: 992: 903: 876: 803: 621: 563: 537: 233: 218: 187:. The increased intensity of transgressive-regressive cycles is recorded in northern 106: 57: 1426: 1217: 945: 751: 504: 345: 169:-Galerian transition and may have led to the local extinction of, among other taxa, 1056: 159: 145: 993:"West Antarctic ice volume variability paced by obliquity until 400,000 years ago" 337: 1615: 1567: 1517: 1378: 1338: 1298: 1258: 1167: 1096: 852: 825: 752:"Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles" 222: 195: 177: 65: 1475: 1448: 1010: 713: 686: 603: 555: 454: 427: 194:
The cooling brought about by the MPT increased westerly aridity in the western
162:
decreased in strength, contributing to the cooling of the Northern Hemisphere.
777: 245: 130: 117:
It has also been proposed that an enlarged deep ocean carbon inventory in the
61: 1575: 861: 795: 722: 538:"Early Pleistocene East Antarctic temperature in phase with local insolation" 977: 736: 272: 199: 412: 394: 133:
since the Mid-Pleistocene Transition, which caused stronger summers in the
240:. The development of Fraser Island indirectly led to the formation of the 670: 643: 254: 183: 148: 94: 1176: 1359:
Tripathi, Shubham; Tiwari, Manish; Behera, Padmasini (15 August 2023).
110: 1526: 612: 426:
Legrain, Etienne; Parrenin, Frédéric; Capron, Emilie (23 March 2023).
72:
from axial tilt. Because of this, sheets were more dynamic during the
207: 375:
Brovkin, V.; Calov, R.; Ganopolski, A.; Willeit, M. (April 2019).
188: 687:"Evidence of Arctic methane emissions across the mid-Pleistocene" 229: 1319:
Lee, Jongmin; Kim, Sunghan; Khim, Boo-Keun (15 December 2020).
248:
on such an enormous scale as found in the Great Barrier Reef.
198:. East Asian Summer Monsoon (EASM) precipitation declined. 137:. Evidence suggests that fluctuations in the volume of the 314:"Mid-Pleistocene revolution and the 'eccentricity myth'" 228:
In Australia the MPT resulted in the formation of the
1498:
Diz, Paula; Pérez-Arlucea, Marta (1 September 2021).
1077:
Hübscher, Christian; Nürnberg, Dirk (February 2023).
972:. Vol. 367, no. 6483. pp. 1235–1239. 1603:Palaeogeography, Palaeoclimatology, Palaeoecology 1555:Palaeogeography, Palaeoclimatology, Palaeoecology 1505:Palaeogeography, Palaeoclimatology, Palaeoecology 1366:Palaeogeography, Palaeoclimatology, Palaeoecology 1326:Palaeogeography, Palaeoclimatology, Palaeoecology 1286:Palaeogeography, Palaeoclimatology, Palaeoecology 1246:Palaeogeography, Palaeoclimatology, Palaeoecology 1155:Palaeogeography, Palaeoclimatology, Palaeoecology 787:20.500.11820/a56ecd3b-7adc-4d37-8ca2-8e17440b1ff5 318:Geological Society, London, Special Publications 56:), is a fundamental change in the behaviour of 531: 529: 8: 877:"Climate friction and the Earth's obliquity" 312:Maslin, Mark A.; Ridgwell, Andy J. (2005). 165:In Europe, the MPT was associated with the 875:Levrard, B.; Laskar, J. (September 2003). 1525: 1474: 1175: 902: 851: 785: 712: 669: 611: 453: 402: 370: 368: 366: 364: 362: 93:to this decrease, and gradual removal of 31: 27:Change in glacial cycles c. 1m years ago 469: 467: 465: 304: 144:A major faunal turnover occurred among 692:Communications Earth & Environment 433:Communications Earth & Environment 649:Paleoceanography and Paleoclimatology 7: 1625:– via Elsevier Science Direct. 1585:– via Elsevier Science Direct. 1537:– via Elsevier Science Direct. 1436:– via Elsevier Science Direct. 1388:– via Elsevier Science Direct. 1348:– via Elsevier Science Direct. 1308:– via Elsevier Science Direct. 1268:– via Elsevier Science Direct. 1227:– via Elsevier Science Direct. 1187:– via Elsevier Science Direct. 1106:– via Elsevier Science Direct. 1066:– via Elsevier Science Direct. 955:– via Elsevier Science Direct. 1123:Alpine and Mediterranean Quaternary 1117:Palombo, Maria Rita (19 May 2016). 824:Viaggi, Paolo (21 November 2023). 25: 882:Geophysical Journal International 904:10.1046/j.1365-246X.2003.02021.x 1427:10.1016/j.gloplacha.2023.104174 1218:10.1016/j.quascirev.2023.108412 946:10.1016/j.quascirev.2006.07.013 918:Huybers, Peter (January 2007). 505:10.1016/j.quascirev.2006.07.008 1648:Events that forced the climate 1057:10.1016/j.marmicro.2014.05.001 491:(23–24). Elsevier: 3150–3184. 1: 338:10.1144/GSL.SP.2005.247.01.02 18:Middle Pleistocene Transition 1616:10.1016/j.palaeo.2019.109487 1568:10.1016/j.palaeo.2010.11.027 1518:10.1016/j.palaeo.2021.110531 1379:10.1016/j.palaeo.2023.111637 1339:10.1016/j.palaeo.2020.110018 1299:10.1016/j.palaeo.2018.06.007 1259:10.1016/j.palaeo.2022.111357 1168:10.1016/j.palaeo.2024.112087 1097:10.1016/j.margeo.2022.106976 1406:Global and Planetary Change 853:10.3390/geosciences13120354 1679: 1476:10.1038/s41561-022-01062-6 1205:Quaternary Science Reviews 1011:10.1038/s41561-022-01088-w 925:Quaternary Science Reviews 714:10.1038/s43247-023-00772-y 604:10.1038/s41561-022-00918-1 556:10.1038/s41561-022-01095-x 484:Quaternary Science Reviews 455:10.1038/s43247-023-00754-0 50:Mid-Pleistocene Revolution 42:Mid-Pleistocene Transition 778:10.1038/s41561-019-0334-6 1045:Marine Micropaleontology 139:West Antarctic Ice Sheet 978:10.1126/science.aaw1114 153:planktonic foraminifera 395:10.1126/sciadv.aav7337 293:Timeline of glaciation 37: 48:), also known as the 35: 671:10.1029/2009PA001736 268:100,000-year problem 202:expanded across the 184:Xenocyon lycaonoides 82:100,000-year problem 70:Milankovitch forcing 1467:2022NatGe..15.1017E 1419:2023GPC...22704174B 938:2007QSRv...26...37H 895:2003GeoJI.154..970L 844:2023Geosc..13..354V 770:2019NatGe..12..355F 705:2023ComEE...4..109P 662:2010PalOc..25.1212B 497:2006QSRv...25.3150C 446:2023ComEE...4...90L 330:2005GSLSP.247...19M 278:Milankovitch cycles 135:Northern Hemisphere 242:Great Barrier Reef 178:Megantereon whitei 38: 1461:(12): 1017–1026. 1454:Nature Geoscience 998:Nature Geoscience 757:Nature Geoscience 591:Nature Geoscience 543:Nature Geoscience 514:on 31 August 2017 238:continental shelf 204:North China Plain 167:Epivillafranchian 74:Early Pleistocene 16:(Redirected from 1670: 1643:Paleoclimatology 1627: 1626: 1624: 1622: 1593: 1587: 1586: 1584: 1582: 1545: 1539: 1538: 1536: 1534: 1529: 1495: 1489: 1488: 1478: 1444: 1438: 1437: 1435: 1433: 1396: 1390: 1389: 1387: 1385: 1356: 1350: 1349: 1347: 1345: 1316: 1310: 1309: 1307: 1305: 1276: 1270: 1269: 1267: 1265: 1235: 1229: 1228: 1226: 1224: 1195: 1189: 1188: 1186: 1184: 1179: 1145: 1139: 1138: 1136: 1134: 1114: 1108: 1107: 1105: 1103: 1074: 1068: 1067: 1065: 1063: 1036: 1030: 1029: 1027: 1025: 988: 982: 981: 963: 957: 956: 954: 952: 915: 909: 908: 906: 872: 866: 865: 855: 821: 815: 814: 812: 810: 789: 747: 741: 740: 733: 727: 726: 716: 682: 676: 675: 673: 639: 633: 632: 630: 628: 615: 581: 575: 574: 572: 570: 533: 524: 523: 521: 519: 513: 507:. Archived from 480: 471: 460: 459: 457: 423: 417: 416: 406: 382:Science Advances 372: 357: 356: 354: 352: 309: 288:Paleothermometer 283:Paleoclimatology 151:and benthic and 21: 1678: 1677: 1673: 1672: 1671: 1669: 1668: 1667: 1633: 1632: 1631: 1630: 1620: 1618: 1595: 1594: 1590: 1580: 1578: 1547: 1546: 1542: 1532: 1530: 1497: 1496: 1492: 1446: 1445: 1441: 1431: 1429: 1398: 1397: 1393: 1383: 1381: 1358: 1357: 1353: 1343: 1341: 1318: 1317: 1313: 1303: 1301: 1278: 1277: 1273: 1263: 1261: 1237: 1236: 1232: 1222: 1220: 1197: 1196: 1192: 1182: 1180: 1147: 1146: 1142: 1132: 1130: 1116: 1115: 1111: 1101: 1099: 1076: 1075: 1071: 1061: 1059: 1038: 1037: 1033: 1023: 1021: 990: 989: 985: 965: 964: 960: 950: 948: 917: 916: 912: 874: 873: 869: 823: 822: 818: 808: 806: 749: 748: 744: 735: 734: 730: 684: 683: 679: 641: 640: 636: 626: 624: 583: 582: 578: 568: 566: 535: 534: 527: 517: 515: 511: 478: 473: 472: 463: 425: 424: 420: 389:(4): eaav7337. 374: 373: 360: 350: 348: 311: 310: 306: 301: 264: 215:denitrification 100: 28: 23: 22: 15: 12: 11: 5: 1676: 1674: 1666: 1665: 1660: 1655: 1650: 1645: 1635: 1634: 1629: 1628: 1588: 1562:(3): 493–506. 1540: 1490: 1439: 1391: 1351: 1311: 1271: 1230: 1190: 1140: 1109: 1084:Marine Geology 1069: 1031: 983: 958: 932:(1–2): 37–55. 910: 889:(3): 970–990. 867: 816: 764:(5): 355–360. 742: 728: 677: 634: 598:(4): 307–313. 576: 525: 461: 418: 358: 303: 302: 300: 297: 296: 295: 290: 285: 280: 275: 270: 263: 260: 172:Puma pardoides 119:Atlantic Ocean 98: 87:carbon dioxide 58:glacial cycles 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1675: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1640: 1638: 1617: 1613: 1609: 1605: 1604: 1599: 1592: 1589: 1577: 1573: 1569: 1565: 1561: 1557: 1556: 1551: 1544: 1541: 1528: 1523: 1519: 1515: 1511: 1507: 1506: 1501: 1494: 1491: 1486: 1482: 1477: 1472: 1468: 1464: 1460: 1456: 1455: 1450: 1443: 1440: 1428: 1424: 1420: 1416: 1412: 1408: 1407: 1402: 1395: 1392: 1380: 1376: 1372: 1368: 1367: 1362: 1355: 1352: 1340: 1336: 1332: 1328: 1327: 1322: 1315: 1312: 1300: 1296: 1292: 1288: 1287: 1282: 1275: 1272: 1260: 1256: 1252: 1248: 1247: 1242: 1234: 1231: 1219: 1215: 1211: 1207: 1206: 1201: 1194: 1191: 1178: 1173: 1169: 1165: 1161: 1157: 1156: 1151: 1144: 1141: 1128: 1124: 1120: 1113: 1110: 1098: 1094: 1090: 1086: 1085: 1080: 1073: 1070: 1058: 1054: 1050: 1046: 1042: 1035: 1032: 1020: 1016: 1012: 1008: 1004: 1000: 999: 994: 987: 984: 979: 975: 971: 970: 962: 959: 947: 943: 939: 935: 931: 927: 926: 921: 914: 911: 905: 900: 896: 892: 888: 884: 883: 878: 871: 868: 863: 859: 854: 849: 845: 841: 837: 833: 832: 827: 820: 817: 805: 801: 797: 793: 788: 783: 779: 775: 771: 767: 763: 759: 758: 753: 746: 743: 738: 732: 729: 724: 720: 715: 710: 706: 702: 698: 694: 693: 688: 681: 678: 672: 667: 663: 659: 655: 651: 650: 645: 638: 635: 623: 619: 614: 609: 605: 601: 597: 593: 592: 587: 580: 577: 565: 561: 557: 553: 549: 545: 544: 539: 532: 530: 526: 510: 506: 502: 498: 494: 490: 486: 485: 477: 470: 468: 466: 462: 456: 451: 447: 443: 439: 435: 434: 429: 422: 419: 414: 410: 405: 400: 396: 392: 388: 384: 383: 378: 371: 369: 367: 365: 363: 359: 347: 343: 339: 335: 331: 327: 323: 319: 315: 308: 305: 298: 294: 291: 289: 286: 284: 281: 279: 276: 274: 271: 269: 266: 265: 261: 259: 257: 256: 249: 247: 243: 239: 235: 234:Fraser Island 231: 226: 224: 220: 219:Bay of Bengal 216: 211: 209: 205: 201: 197: 192: 190: 186: 185: 180: 179: 174: 173: 168: 163: 161: 156: 154: 150: 147: 142: 140: 136: 132: 127: 123: 120: 115: 112: 109:and northern 108: 107:North America 102: 96: 92: 88: 84: 83: 77: 75: 71: 67: 63: 59: 55: 51: 47: 43: 34: 30: 19: 1619:. Retrieved 1607: 1601: 1591: 1579:. Retrieved 1559: 1553: 1543: 1531:. Retrieved 1509: 1503: 1493: 1458: 1452: 1442: 1430:. Retrieved 1410: 1404: 1394: 1382:. Retrieved 1370: 1364: 1354: 1342:. Retrieved 1330: 1324: 1314: 1302:. Retrieved 1290: 1284: 1274: 1262:. Retrieved 1250: 1244: 1233: 1221:. Retrieved 1209: 1203: 1193: 1181:. Retrieved 1177:10281/459999 1159: 1153: 1143: 1131:. Retrieved 1129:(2): 143–168 1126: 1122: 1112: 1100:. Retrieved 1088: 1082: 1072: 1060:. Retrieved 1048: 1044: 1034: 1022:. Retrieved 1002: 996: 986: 967: 961: 949:. Retrieved 929: 923: 913: 886: 880: 870: 835: 829: 819: 807:. Retrieved 761: 755: 745: 731: 696: 690: 680: 653: 647: 637: 625:. Retrieved 595: 589: 579: 567:. Retrieved 550:(1): 50–55. 547: 541: 516:. Retrieved 509:the original 488: 482: 437: 431: 421: 386: 380: 349:. Retrieved 324:(1): 19–34. 321: 317: 307: 253: 250: 227: 212: 210:contracted. 193: 182: 176: 170: 164: 160:Loop Current 157: 146:Arctic Ocean 143: 128: 124: 116: 103: 80: 78: 53: 49: 45: 41: 39: 29: 1663:Pleistocene 1621:9 September 1581:9 September 1533:9 September 1384:9 September 1344:9 September 1304:9 September 1293:: 287–294. 1264:9 September 1223:9 September 1183:9 September 1133:25 February 1102:9 September 1062:9 September 1051:: 118–133. 838:(12): 354. 831:Geosciences 809:20 December 656:(1): 1–14. 246:coral reefs 223:thermocline 196:Tarim Basin 91:sensitivity 66:Pleistocene 60:during the 1653:Glaciology 1637:Categories 1610:: 109487. 1527:11093/2308 1512:: 110531. 1413:: 104174. 1373:: 111637. 1333:: 110018. 1253:: 111357. 1212:: 108412. 1162:: 112087. 1091:: 106976. 699:(1): 109. 627:20 January 613:2115/86913 299:References 200:Grasslands 62:Quaternary 1576:0031-0182 1485:253538370 1019:254326281 1005:: 44–49. 862:2076-3263 804:133953916 796:1752-0908 723:2662-4435 622:247844873 564:254484999 440:(1): 90. 273:Chibanian 149:ostracods 131:obliquity 95:regoliths 89:, a high 1658:Ice ages 1024:19 April 569:19 April 413:30949580 351:19 April 346:73611295 262:See also 255:Acropora 1463:Bibcode 1432:10 June 1415:Bibcode 969:Science 934:Bibcode 891:Bibcode 840:Bibcode 766:Bibcode 701:Bibcode 658:Bibcode 518:5 April 493:Bibcode 442:Bibcode 404:6447376 326:Bibcode 208:forests 111:Eurasia 1574:  1483:  1017:  951:2 June 860:  802:  794:  721:  620:  562:  411:  401:  344:  181:, and 1481:S2CID 1015:S2CID 800:S2CID 618:S2CID 560:S2CID 512:(PDF) 479:(PDF) 342:S2CID 230:dunes 189:Italy 1623:2024 1583:2024 1572:ISSN 1535:2024 1434:2024 1386:2024 1346:2024 1306:2024 1266:2024 1225:2024 1185:2024 1135:2024 1104:2024 1064:2024 1026:2023 953:2024 858:ISSN 811:2023 792:ISSN 719:ISSN 629:2023 571:2023 520:2019 409:PMID 353:2023 158:The 40:The 1612:doi 1608:539 1564:doi 1560:299 1522:hdl 1514:doi 1510:577 1471:doi 1423:doi 1411:227 1375:doi 1371:624 1335:doi 1331:560 1295:doi 1291:505 1255:doi 1251:611 1214:doi 1210:322 1172:hdl 1164:doi 1160:639 1093:doi 1089:456 1053:doi 1049:111 1007:doi 974:doi 942:doi 899:doi 887:154 848:doi 782:hdl 774:doi 709:doi 666:doi 608:hdl 600:doi 552:doi 501:doi 450:doi 399:PMC 391:doi 334:doi 322:247 232:of 206:as 155:. 54:MPR 46:MPT 1639:: 1606:. 1600:. 1570:. 1558:. 1552:. 1520:. 1508:. 1502:. 1479:. 1469:. 1459:15 1457:. 1451:. 1421:. 1409:. 1403:. 1369:. 1363:. 1329:. 1323:. 1289:. 1283:. 1249:. 1243:. 1208:. 1202:. 1170:. 1158:. 1152:. 1127:29 1125:. 1121:. 1087:. 1081:. 1047:. 1043:. 1013:. 1003:16 1001:. 995:. 940:. 930:26 928:. 922:. 897:. 885:. 879:. 856:. 846:. 836:13 834:. 828:. 798:. 790:. 780:. 772:. 762:12 760:. 754:. 717:. 707:. 695:. 689:. 664:. 654:25 652:. 646:. 616:. 606:. 596:15 594:. 588:. 558:. 548:16 546:. 540:. 528:^ 499:. 489:25 487:. 481:. 464:^ 448:. 436:. 430:. 407:. 397:. 385:. 379:. 361:^ 340:. 332:. 320:. 316:. 191:. 175:, 1614:: 1566:: 1524:: 1516:: 1487:. 1473:: 1465:: 1425:: 1417:: 1377:: 1337:: 1297:: 1257:: 1216:: 1174:: 1166:: 1137:. 1095:: 1055:: 1028:. 1009:: 980:. 976:: 944:: 936:: 907:. 901:: 893:: 864:. 850:: 842:: 813:. 784:: 776:: 768:: 739:. 725:. 711:: 703:: 697:4 674:. 668:: 660:: 631:. 610:: 602:: 573:. 554:: 522:. 503:: 495:: 458:. 452:: 444:: 438:4 415:. 393:: 387:5 355:. 336:: 328:: 99:2 52:( 44:( 20:)

Index

Middle Pleistocene Transition

glacial cycles
Quaternary
Pleistocene
Milankovitch forcing
Early Pleistocene
100,000-year problem
carbon dioxide
sensitivity
regoliths
North America
Eurasia
Atlantic Ocean
obliquity
Northern Hemisphere
West Antarctic Ice Sheet
Arctic Ocean
ostracods
planktonic foraminifera
Loop Current
Epivillafranchian
Puma pardoides
Megantereon whitei
Xenocyon lycaonoides
Italy
Tarim Basin
Grasslands
North China Plain
forests

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.