Knowledge

Protein folding

Source 📝

1252:
however, it does not reveal the numerous folding pathways that are possible. A different molecule of the same exact protein may be able to follow marginally different folding pathways, seeking different lower energy intermediates, as long as the same native structure is reached. Different pathways may have different frequencies of utilization depending on the thermodynamic favorability of each pathway. This means that if one pathway is found to be more thermodynamically favorable than another, it is likely to be used more frequently in the pursuit of the native structure. As the protein begins to fold and assume its various conformations, it always seeks a more thermodynamically favorable structure than before and thus continues through the energy funnel. Formation of secondary structures is a strong indication of increased stability within the protein, and only one combination of secondary structures assumed by the polypeptide backbone will have the lowest energy and therefore be present in the native state of the protein. Among the first structures to form once the polypeptide begins to fold are alpha helices and beta turns, where alpha helices can form in as little as 100 nanoseconds and beta turns in 1 microsecond.
530:. Chaperones exist in all cellular compartments and interact with the polypeptide chain in order to allow the native three-dimensional conformation of the protein to form; however, chaperones themselves are not included in the final structure of the protein they are assisting in. Chaperones may assist in folding even when the nascent polypeptide is being synthesized by the ribosome. Molecular chaperones operate by binding to stabilize an otherwise unstable structure of a protein in its folding pathway, but chaperones do not contain the necessary information to know the correct native structure of the protein they are aiding; rather, chaperones work by preventing incorrect folding conformations. In this way, chaperones do not actually increase the rate of individual steps involved in the folding pathway toward the native structure; instead, they work by reducing possible unwanted aggregations of the polypeptide chain that might otherwise slow down the search for the proper intermediate and they provide a more efficient pathway for the polypeptide chain to assume the correct conformations. Chaperones are not to be confused with folding 814:
one must have a suitable solvent for crystallization, obtain a pure protein at supersaturated levels in solution, and precipitate the crystals in solution. Once a protein is crystallized, X-ray beams can be concentrated through the crystal lattice which would diffract the beams or shoot them outwards in various directions. These exiting beams are correlated to the specific three-dimensional configuration of the protein enclosed within. The X-rays specifically interact with the electron clouds surrounding the individual atoms within the protein crystal lattice and produce a discernible diffraction pattern. Only by relating the electron density clouds with the amplitude of the X-rays can this pattern be read and lead to assumptions of the phases or phase angles involved that complicate this method. Without the relation established through a mathematical basis known as
851:
different but discrete protein states, i.e. native state, intermediate states, unfolded state, depends on the denaturant value; therefore, the global fluorescence signal of their equilibrium mixture also depends on this value. One thus obtains a profile relating the global protein signal to the denaturant value. The profile of equilibrium unfolding may enable one to detect and identify intermediates of unfolding. General equations have been developed by Hugues Bedouelle to obtain the thermodynamic parameters that characterize the unfolding equilibria for homomeric or heteromeric proteins, up to trimers and potentially tetramers, from such profiles. Fluorescence spectroscopy can be combined with fast-mixing devices such as
994: 843:
proteins, at the interface between two protein domains, or at the interface between subunits of oligomeric proteins. In this apolar environment, they have high quantum yields and therefore high fluorescence intensities. Upon disruption of the protein's tertiary or quaternary structure, these side chains become more exposed to the hydrophilic environment of the solvent, and their quantum yields decrease, leading to low fluorescence intensities. For Trp residues, the wavelength of their maximal fluorescence emission also depend on their environment.
1260:
transition state. The transition state can be referred to as a variant or premature form of the native state rather than just another intermediary step. The folding of the transition state is shown to be rate-determining, and even though it exists in a higher energy state than the native fold, it greatly resembles the native structure. Within the transition state, there exists a nucleus around which the protein is able to fold, formed by a process referred to as "nucleation condensation" where the structure begins to collapse onto the nucleus.
1269: 1248:. The description of protein folding by the leveling free-energy landscape is also consistent with the 2nd law of thermodynamics. Physically, thinking of landscapes in terms of visualizable potential or total energy surfaces simply with maxima, saddle points, minima, and funnels, rather like geographic landscapes, is perhaps a little misleading. The relevant description is really a high-dimensional phase space in which manifolds might take a variety of more complicated topological forms. 970:(NMR) is able to collect protein structural data by inducing a magnet field through samples of concentrated protein. In NMR, depending on the chemical environment, certain nuclei will absorb specific radio-frequencies. Because protein structural changes operate on a time scale from ns to ms, NMR is especially equipped to study intermediate structures in timescales of ps to s. Some of the main techniques for studying proteins structure and non-folding protein structural changes include 204:
conformation. The amino acid composition is not as important as the sequence. The essential fact of folding, however, remains that the amino acid sequence of each protein contains the information that specifies both the native structure and the pathway to attain that state. This is not to say that nearly identical amino acid sequences always fold similarly. Conformations differ based on environmental factors as well; similar proteins fold differently based on where they are found.
700:-like structures which can cause degenerative disorders and cell death. The amyloids are fibrillary structures that contain intermolecular hydrogen bonds which are highly insoluble and made from converted protein aggregates. Therefore, the proteasome pathway may not be efficient enough to degrade the misfolded proteins prior to aggregation. Misfolded proteins can interact with one another and form structured aggregates and gain toxicity through intermolecular interactions. 1198: 430: 231: 477:, or the inward folding of the hydrophobic groups. The hydrophobic collapse introduces entropy back to the system via the breaking of the water cages which frees the ordered water molecules. The multitude of hydrophobic groups interacting within the core of the globular folded protein contributes a significant amount to protein stability after folding, because of the vastly accumulated van der Waals forces (specifically 990:. NOE is especially useful because magnetization transfers can be observed between spatially proximal hydrogens are observed. Different NMR experiments have varying degrees of timescale sensitivity that are appropriate for different protein structural changes. NOE can pick up bond vibrations or side chain rotations, however, NOE is too sensitive to pick up protein folding because it occurs at larger timescale. 473:
aqueous environment, the water molecules tend to aggregate around the hydrophobic regions or side chains of the protein, creating water shells of ordered water molecules. An ordering of water molecules around a hydrophobic region increases order in a system and therefore contributes a negative change in entropy (less entropy in the system). The water molecules are fixed in these water cages which drives the
1012:
thermodynamics and kinetics between the excited and ground. Saturation Transfer measures changes in signal from the ground state as excited states become perturbed. It uses weak radio frequency irradiation to saturate the excited state of a particular nuclei which transfers its saturation to the ground state. This signal is amplified by decreasing the magnetization (and the signal) of the ground state.
330: 457: 1030:, excited intermediates were studied with relaxation dispersion and Saturation transfer. SOD1 had been previously tied to many disease causing mutants which were assumed to be involved in protein aggregation, however the mechanism was still unknown. By using Relaxation Dispersion and Saturation Transfer experiments many excited intermediate states were uncovered misfolding in the SOD1 mutants. 800: 39: 1307:. Because of computational cost, ab initio MD folding simulations with explicit water are limited to peptides and small proteins. MD simulations of larger proteins remain restricted to dynamics of the experimental structure or its high-temperature unfolding. Long-time folding processes (beyond about 1 millisecond), like folding of larger proteins (>150 residues) can be accessed using 1137:(vWF) is a protein with an essential role in blood clot formation process. It discovered – using single molecule optical tweezers measurement – that calcium-bound vWF acts as a shear force sensor in the blood. Shear force leads to unfolding of the A2 domain of vWF, whose refolding rate is dramatically enhanced in the presence of calcium. Recently, it was also shown that the simple src 31: 511: 219: 606:, mechanical forces, and the presence of chemical denaturants can contribute to protein denaturation, as well. These individual factors are categorized together as stresses. Chaperones are shown to exist in increasing concentrations during times of cellular stress and help the proper folding of emerging proteins as well as denatured or misfolded ones. 1221:, meaning that naturally evolved proteins have optimized their folding energy landscapes, and that nature has chosen amino acid sequences so that the folded state of the protein is sufficiently stable. In addition, the acquisition of the folded state had to become a sufficiently fast process. Even though nature has reduced the level of 1341:. The longest published result of a simulation performed using Anton as of 2011 was a 2.936 millisecond simulation of NTL9 at 355 K. Such simulations are currently able to unfold and refold small proteins (<150 amino acids residues) in equilibrium and predict how mutations affect folding kinetics and stability. 1251:
The unfolded polypeptide chain begins at the top of the funnel where it may assume the largest number of unfolded variations and is in its highest energy state. Energy landscapes such as these indicate that there are a large number of initial possibilities, but only a single native state is possible;
588:
to humans, suggesting that they evolved very early and have an important function. Some proteins never fold in cells at all except with the assistance of chaperones which either isolate individual proteins so that their folding is not interrupted by interactions with other proteins or help to unfold
597:
amorphous aggregates. The external factors involved in protein denaturation or disruption of the native state include temperature, external fields (electric, magnetic), molecular crowding, and even the limitation of space (i.e. confinement), which can have a big influence on the folding of proteins.
1259:
for a particular protein is found. The transition state in the energy funnel diagram is the conformation that must be assumed by every molecule of that protein if the protein wishes to finally assume the native structure. No protein may assume the native structure without first passing through the
1011:
phenomenon. This technique exposes the target nuclei to a 90 pulse followed by one or more 180 pulses. As the nuclei refocus, a broad distribution indicates the target nuclei is involved in an intermediate excited state. By looking at Relaxation dispersion plots the data collect information on the
842:
are high enough to give good fluorescence signals. Both Trp and Tyr are excited by a wavelength of 280 nm, whereas only Trp is excited by a wavelength of 295 nm. Because of their aromatic character, Trp and Tyr residues are often found fully or partially buried in the hydrophobic core of
813:
is one of the more efficient and important methods for attempting to decipher the three dimensional configuration of a folded protein. To be able to conduct X-ray crystallography, the protein under investigation must be located inside a crystal lattice. To place a protein inside a crystal lattice,
750:
or Vyndaqel (a kinetic stabilizer of tetrameric transthyretin) for the treatment of transthyretin amyloid diseases. This suggests that the process of amyloid fibril formation (and not the fibrils themselves) causes the degeneration of post-mitotic tissue in human amyloid diseases. Misfolding and
550:
because they provide the protein with the aid needed to assume its proper alignments and conformations efficiently enough to become "biologically relevant". This means that the polypeptide chain could theoretically fold into its native structure without the aid of chaperones, as demonstrated by
203:
The primary structure of a protein, its linear amino-acid sequence, determines its native conformation. The specific amino acid residues and their position in the polypeptide chain are the determining factors for which portions of the protein fold closely together and form its three-dimensional
850:
of proteins by measuring the variation in the intensity of fluorescence emission or in the wavelength of maximal emission as functions of a denaturant value. The denaturant can be a chemical molecule (urea, guanidinium hydrochloride), temperature, pH, pressure, etc. The equilibrium between the
695:
that are organized in a supramolecular arrangement known as a cross-β structure. These β-sheet-rich assemblies are very stable, very insoluble, and generally resistant to proteolysis. The structural stability of these fibrillar assemblies is caused by extensive interactions between the protein
472:
Minimizing the number of hydrophobic side-chains exposed to water is an important driving force behind the folding process. The hydrophobic effect is the phenomenon in which the hydrophobic chains of a protein collapse into the core of the protein (away from the hydrophilic environment). In an
288:
The α-Helices and β-Sheets are commonly amphipathic, meaning they have a hydrophilic and a hydrophobic portion. This ability helps in forming tertiary structure of a protein in which folding occurs so that the hydrophilic sides are facing the aqueous environment surrounding the protein and the
1132:
have been used to stretch single protein molecules from their C- and N-termini and unfold them to allow study of the subsequent refolding. The technique allows one to measure folding rates at single-molecule level; for example, optical tweezers have been recently applied to study folding and
464: 462: 460: 458: 320:
Tertiary structure may give way to the formation of quaternary structure in some proteins, which usually involves the "assembly" or "coassembly" of subunits that have already folded; in other words, multiple polypeptide chains could interact to form a fully functional quaternary protein.
463: 269:
to form a spiral shape (refer to figure on the right). The β pleated sheet is a structure that forms with the backbone bending over itself to form the hydrogen bonds (as displayed in the figure to the left). The hydrogen bonds are between the amide hydrogen and carbonyl oxygen of the
1367:
AlphaFold's protein structure prediction results at CASP were described as "transformational" and "astounding". Some researchers noted that the accuracy is not high enough for a third of its predictions, and that it does not reveal the physical mechanism of protein folding for the
274:. There exists anti-parallel β pleated sheets and parallel β pleated sheets where the stability of the hydrogen bonds is stronger in the anti-parallel β sheet as it hydrogen bonds with the ideal 180 degree angle compared to the slanted hydrogen bonds formed by parallel sheets. 1364:, a test that measures the degree of similarity between the structure, predicted by a computational program, and the empirical structure, determined experimentally in a lab. A score of 100 is considered a complete match, within the distance cutoff used for calculating GDT. 696:
monomers, formed by backbone hydrogen bonds between their β-strands. The misfolding of proteins can trigger the further misfolding and accumulation of other proteins into aggregates or oligomers. The increased levels of aggregated proteins in the cell leads to formation of
168:
proteins with lengths of up to a hundred amino acids typically fold in a single step. Time scales of milliseconds are the norm, and the fastest known protein folding reactions are complete within a few microseconds. The folding time scale of a protein depends on its size,
461: 289:
hydrophobic sides are facing the hydrophobic core of the protein. Secondary structure hierarchically gives way to tertiary structure formation. Once the protein's tertiary structure is formed and stabilized by the hydrophobic interactions, there may also be
1051:
by determining the overall size of a monolayer of the protein and its density in real time at sub-Angstrom resolution, although real-time measurement of the kinetics of protein folding are limited to processes that occur slower than ~10 Hz. Similar to
489:
molecule containing a large hydrophobic region. The strength of hydrogen bonds depends on their environment; thus, H-bonds enveloped in a hydrophobic core contribute more than H-bonds exposed to the aqueous environment to the stability of the native state.
1175:
is a thought experiment based on the observation that if a protein were folded by sequential sampling of all possible conformations, it would take an astronomical amount of time to do so, even if the conformations were sampled at a rapid rate (on the
837:
is a highly sensitive method for studying the folding state of proteins. Three amino acids, phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp), have intrinsic fluorescence properties, but only Tyr and Trp are used experimentally because their
1170:
In 1969, Cyrus Levinthal noted that, because of the very large number of degrees of freedom in an unfolded polypeptide chain, the molecule has an astronomical number of possible conformations. An estimate of 3 or 10 was made in one of his papers.
1006:
have become some of the primary techniques for NMR analysis of folding. In addition, both techniques are used to uncover excited intermediate states in the protein folding landscape. To do this, CPMG Relaxation dispersion takes advantage of the
3533:
Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (December 2005). "Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses".
1161:
Computational studies of protein folding includes three main aspects related to the prediction of protein stability, kinetics, and structure. A 2013 review summarizes the available computational methods for protein folding.
1068:
The study of protein folding has been greatly advanced in recent years by the development of fast, time-resolved techniques. Experimenters rapidly trigger the folding of a sample of unfolded protein and observe the resulting
416:
Proteins will have limitations on their folding abilities by the restricted bending angles or conformations that are possible. These allowable angles of protein folding are described with a two-dimensional plot known as the
305:
arrangement in a native structure of a protein. Tertiary structure of a protein involves a single polypeptide chain; however, additional interactions of folded polypeptide chains give rise to quaternary structure formation.
1184:
scale). Based upon the observation that proteins fold much faster than this, Levinthal then proposed that a random conformational search does not occur, and the protein must, therefore, fold through a series of meta-stable
742:. It is not completely clear whether the aggregates are the cause or merely a reflection of the loss of protein homeostasis, the balance between synthesis, folding, aggregation and protein turnover. Recently the 493:
In proteins with globular folds, hydrophobic amino acids tend to be interspersed along the primary sequence, rather than randomly distributed or clustered together. However, proteins that have recently been born
690:
if it cannot achieve its normal native state. This can be due to mutations in the amino acid sequence or a disruption of the normal folding process by external factors. The misfolded protein typically contains
997:
Timescale of protein structural changes matched with NMR experiments. For protein folding, CPMG Relaxation Dispersion (CPMG RD) and chemical exchange saturation transfer (CEST) collect data in the appropriate
440:
Protein folding must be thermodynamically favorable within a cell in order for it to be a spontaneous reaction. Since it is known that protein folding is a spontaneous reaction, then it must assume a negative
80:
The folding of many proteins begins even during the translation of the polypeptide chain. The amino acids interact with each other to produce a well-defined three-dimensional structure, known as the protein's
1236:" landscape allows the protein to fold to the native state through any of a large number of pathways and intermediates, rather than being restricted to a single mechanism. The theory is supported by both 3800:
Ould-Abeih MB, Petit-Topin I, Zidane N, Baron B, Bedouelle H (June 2012). "Multiple folding states and disorder of ribosomal protein SA, a membrane receptor for laminin, anticarcinogens, and pathogens".
4173:
Cross GH, Freeman NJ, Swann MJ (2008). "Dual Polarization Interferometry: A Real-Time Optical Technique for Measuring (Bio)molecular Orientation, Structure and Function at the Solid/Liquid Interface".
1548: 1276:, like the one diagrammed here, to model the possible shapes and folding pathways a protein can take as it condenses from its initial randomly coiled state (left) into its native 3D structure (right). 621:
have been found that grow at temperatures as high as 122 °C, which of course requires that their full complement of vital proteins and protein assemblies be stable at that temperature or above.
572:. Under certain conditions some proteins can refold; however, in many cases, denaturation is irreversible. Cells sometimes protect their proteins against the denaturing influence of heat with 735:. These age onset degenerative diseases are associated with the aggregation of misfolded proteins into insoluble, extracellular aggregates and/or intracellular inclusions including cross-β 1360:, a long-standing structureprediction contest The team achieved a level of accuracy much higher than any other group. It scored above 90% for around two-thirds of the proteins in CASP's 459: 6256: 975: 971: 5047:
Schaefer M, Bartels C, Karplus M (December 1998). "Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model".
771:, where loss of function is the origin of the disorder. While protein replacement therapy has historically been used to correct the latter disorders, an emerging approach is to use 100:
are important. Failure to fold into a native structure generally produces inactive proteins, but in some instances, misfolded proteins have modified or toxic functionality. Several
936:(FT) instruments, provide powerful means for determining protein conformations in solution even for very large protein molecules. Such VCD studies of proteins can be combined with 892:
are chiral, and thus absorb such light. The absorption of this light acts as a marker of the degree of foldedness of the protein ensemble. This technique has been used to measure
6509: 2429:
Deechongkit S, Nguyen H, Powers ET, Dawson PE, Gruebele M, Kelly JW (July 2004). "Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics".
5646: 2343:
Cui D, Ou S, Patel S (December 2014). "Protein-spanning water networks and implications for prediction of protein–protein interactions mediated through hydrophobic effects".
1128:
Single molecule techniques such as optical tweezers and AFM have been used to understand protein folding mechanisms of isolated proteins as well as proteins with chaperones.
979: 153:, and other contexts. Residual structure present, if any, in the supposedly unfolded state may form a folding initiation site and guide the subsequent folding reactions. 5395:
Piana S, Piana S, Sarkar K, Lindorff-Larsen K, Guo M, Gruebele M, Shaw DE (2010). "Computational Design and Experimental Testing of the Fastest-Folding β-Sheet Protein".
826:
use the presence of a heavy metal ion to diffract the X-rays into a more predictable manner, reducing the number of variables involved and resolving the phase problem.
6054: 561:
Along with its role in aiding native structure formation, chaperones are shown to be involved in various roles such as protein transport, degradation, and even allow
609:
Under some conditions proteins will not fold into their biochemically functional forms. Temperatures above or below the range that cells tend to live in will cause
436:. In the compact fold (to the right), the hydrophobic amino acids (shown as black spheres) collapse toward the center to become shielded from aqueous environment. 3761:"Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus unfolds through a monomeric intermediate. A quantitative analysis under equilibrium conditions" 453:. For a negative delta G to arise and for protein folding to become thermodynamically favorable, then either enthalpy, entropy, or both terms must be favorable. 1228:
A consequence of these evolutionarily selected sequences is that proteins are generally thought to have globally "funneled energy landscapes" (a term coined by
246:
is the first step in the folding process that a protein takes to assume its native structure. Characteristic of secondary structure are the structures known as
6249: 4941:"Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism" 265:. Formation of intramolecular hydrogen bonds provides another important contribution to protein stability. α-helices are formed by hydrogen bonding of the 557:; however, this process proves to be too inefficient or too slow to exist in biological systems; therefore, chaperones are necessary for protein folding 3439:
Hammarström P, Wiseman RL, Powers ET, Kelly JW (January 2003). "Prevention of transthyretin amyloid disease by changing protein misfolding energetics".
4635: 5867: 5639: 6242: 1426: 1047:
is a surface-based technique for measuring the optical properties of molecular layers. When used to characterize protein folding, it measures the
6854: 4016:
Vallurupalli P, Bouvignies G, Kay LE (May 2012). "Studying "invisible" excited protein states in slow exchange with a major state conformation".
993: 164:, and must pass through a number of intermediate states, like checkpoints, before the process is complete. On the other hand, very small single- 546:
or interconversion between cis and trans stereoisomers of peptide group. Chaperones are shown to be critical in the process of protein folding
4300:
Park C, Marqusee S (March 2005). "Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding".
4856: 4688:
Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (March 1995). "Funnels, pathways, and the energy landscape of protein folding: a synthesis".
4190: 3613: 3195:"Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation" 2163: 2105: 1945: 1639: 1560: 1478: 1431: 4206:
Bu Z, Cook J, Callaway DJ (September 2001). "Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin".
6152: 6047: 5455: 3970:
Ortega, Gabriel; Pons, Miquel; Millet, Oscar (2013). "Protein Functional Dynamics in Multiple Timescales as Studied by NMR Spectroscopy".
2185:
Zhang G, Ignatova Z (February 2011). "Folding at the birth of the nascent chain: coordinating translation with co-translational folding".
5431: 1225:
in proteins, some degree of it remains up to now as can be observed in the presence of local minima in the energy landscape of proteins.
5632: 908:(Tm) of the protein. As for fluorescence spectroscopy, circular-dichroism spectroscopy can be combined with fast-mixing devices such as 93: 1149:
Biotin painting enables condition-specific cellular snapshots of (un)folded proteins. Biotin 'painting' shows a bias towards predicted
7072: 1117: 534:
proteins, which catalyze chemical reactions responsible for slow steps in folding pathways. Examples of folding catalysts are protein
2147: 6157: 6147: 3987: 3683:
Bedouelle H (February 2016). "Principles and equations for measuring and interpreting protein stability: From monomer to tetramer".
1150: 1081:. Among the many scientists who have contributed to the development of these techniques are Jeremy Cook, Heinrich Roder, Terry Oas, 499: 5523:
Callaway, Ewen (30 November 2020). "'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures".
3404:
Soto C, Estrada L, Castilla J (March 2006). "Amyloids, prions and the inherent infectious nature of misfolded protein aggregates".
664:
Some proteins have multiple native structures, and change their fold based on some external factors. For example, the KaiB protein
5501: 6137: 2927:
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013). "Molecular chaperone functions in protein folding and proteostasis".
1044: 1039: 1015:
The main limitations in NMR is that its resolution decreases with proteins that are larger than 25 kDa and is not as detailed as
823: 712: 880:
is one of the most general and basic tools to study protein folding. Circular dichroism spectroscopy measures the absorption of
656:
chaperonin that is absolutely necessary for the folding and assembly in vivo of the bacteriophage T4 major capsid protein gp23.
6265: 6142: 6040: 5895: 3193:
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (August 2008).
1441: 724: 720: 589:
misfolded proteins, allowing them to refold into the correct native structure. This function is crucial to prevent the risk of
7097: 6465: 929: 3720:"Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength" 708: 1206: 1023: 5598: 6678: 6104: 6094: 5860: 1292: 1241: 1630:
Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2010). "Protein Structure and Function".
1019:. Additionally, protein NMR analysis is quite difficult and can propose multiple solutions from the same NMR spectrum. 6623: 6167: 6084: 1416: 562: 243: 213: 134: 7107: 6089: 5655: 4610: 967: 768: 315: 283: 74: 4343:
Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ (January 2014). "Chaperone action at the single-molecule level".
3054:"Electric field-driven disruption of a native beta-sheet protein conformation and generation of a helix-structure" 6223: 6079: 1963:"The design and characterization of two proteins with 88% sequence identity but different structure and function" 987: 901: 834: 772: 743: 590: 539: 198: 7102: 6563: 5216:"De novo prediction of protein folding pathways and structure using the principle of sequential stabilization" 2270: 565:
exposed to certain external denaturant factors an opportunity to refold into their correct native structures.
92:
The correct three-dimensional structure is essential to function, although some parts of functional proteins
6888: 5853: 2884:
Hartl FU, Bracher A, Hayer-Hartl M (July 2011). "Molecular chaperones in protein folding and proteostasis".
1369: 1349: 1308: 791:
or folding of proteins and observing conformational changes using standard non-crystallographic techniques.
478: 7060: 4666: 4544: 4486:"Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein" 3256: 1376:
and great progress towards a decades-old grand challenge of biology, predicting the structure of proteins.
156:
The duration of the folding process varies dramatically depending on the protein of interest. When studied
6929: 6124: 6114: 6063: 2041: 1172: 1003: 732: 716: 354: 350: 904:
of unfolding as well as the protein's m value, or denaturant dependence. A temperature melt measures the
6310: 6132: 5999: 5731: 1396: 1373: 1186: 1134: 1016: 905: 893: 881: 847: 810: 804: 788: 181: 2222:"Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell" 896:
of the protein by measuring the change in this absorption as a function of denaturant concentration or
485:
exists as a driving force in thermodynamics only if there is the presence of an aqueous medium with an
4575:
Compiani M, Capriotti E (December 2013). "Computational and theoretical methods for protein folding".
2121: 5890: 5579: 5532: 5353: 5227: 5168: 4952: 4894: 4813: 4758: 4650: 4497: 4440: 4254: 4127: 4067: 3929: 3642: 3448: 3299: 3206: 3065: 2839: 2783: 2570: 2503: 2438: 2395: 2033: 1974: 1887: 1826: 1588: 1361: 1082: 1048: 474: 433: 374: 366: 346: 255: 58: 5097: 2046: 1814: 1655:
Yagi-Utsumi M, Chandak MS, Yanaka S, Hiranyakorn M, Nakamura T, Kato K, Kuwajima K (November 2020).
6273: 6193: 6162: 5767: 1406: 1386: 1338: 535: 521: 410: 338: 5619: 6919: 6287: 5556: 5506: 5473: 5377: 4918: 4723: 4697: 4325: 3836:
Royer CA (May 2006). "Probing protein folding and conformational transitions with fluorescence".
3515: 3472: 3383: 2993: 2909: 2863: 2807: 2560: 2493: 2462: 2368: 2325: 1860: 1612: 1411: 1296: 1273: 1116:
is routinely used to probe the fraction unfolded under a wide range of solution conditions (e.g.
1074: 1053: 877: 872: 860: 784: 687: 581: 577: 568:
A fully denatured protein lacks both tertiary and secondary structure, and exists as a so-called
515: 495: 482: 235: 5298: 2964:"The denatured state (the other half of the folding equation) and its role in protein stability" 5344:
Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (October 2011). "How fast-folding proteins fold".
6589: 6099: 6071: 5931: 5905: 5787: 5679: 5548: 5412: 5369: 5255: 5196: 5137: 5064: 5029: 4980: 4910: 4862: 4852: 4786: 4715: 4592: 4525: 4466: 4409: 4360: 4317: 4282: 4223: 4186: 4155: 4093: 4033: 3993: 3983: 3949: 3901: 3853: 3818: 3782: 3741: 3700: 3660: 3609: 3551: 3507: 3464: 3421: 3375: 3327: 3268: 3234: 3175: 3140: 3091: 3034: 2985: 2944: 2901: 2855: 2799: 2745: 2696: 2647: 2598: 2529: 2454: 2411: 2360: 2317: 2251: 2202: 2159: 2101: 2071: 2002: 1941: 1903: 1852: 1795: 1756: 1721: 1686: 1635: 1604: 1556: 1525: 1474: 1304: 1268: 949: 937: 933: 913: 815: 669: 668:, acting as a clock for cyanobacteria. It has been estimated that around 0.5–4% of PDB ( 618: 442: 418: 101: 86: 4114:
Sekhar A, Rumfeldt JA, Broom HR, Doyle CM, Sobering RE, Meiering EM, Kay LE (November 2016).
3503: 2095: 580:(a type of chaperone), which assist other proteins both in folding and in remaining folded. 502:, show the opposite pattern of hydrophobic amino acid clustering along the primary sequence. 180:
Understanding and simulating the protein folding process has been an important challenge for
6849: 6808: 6803: 6778: 6768: 6763: 6753: 6553: 6218: 6009: 5967: 5962: 5957: 5782: 5705: 5540: 5463: 5404: 5361: 5245: 5235: 5186: 5176: 5127: 5056: 5019: 5011: 4970: 4960: 4902: 4844: 4821: 4776: 4766: 4707: 4658: 4611:"Structural Biochemistry/Proteins/Protein Folding - Wikibooks, open books for an open world" 4584: 4555: 4515: 4505: 4456: 4448: 4399: 4391: 4352: 4309: 4272: 4262: 4215: 4178: 4145: 4135: 4083: 4075: 4025: 3975: 3941: 3891: 3845: 3810: 3772: 3731: 3692: 3650: 3603: 3543: 3499: 3456: 3413: 3365: 3317: 3307: 3224: 3214: 3167: 3130: 3122: 3081: 3073: 3024: 2975: 2936: 2893: 2847: 2791: 2735: 2727: 2716:"A Shift in Aggregation Avoidance Strategy Marks a Long-Term Direction to Protein Evolution" 2686: 2678: 2637: 2629: 2588: 2578: 2519: 2511: 2446: 2403: 2352: 2307: 2241: 2233: 2194: 2061: 2051: 1992: 1982: 1895: 1842: 1834: 1787: 1748: 1713: 1676: 1668: 1657:"Residual Structure of Unfolded Ubiquitin as Revealed by Hydrogen/Deuterium-Exchange 2D NMR" 1596: 1515: 1507: 1421: 1401: 1330: 1256: 1210: 1129: 1102: 1078: 1070: 983: 631: 468:
Entropy is decreased as the water molecules become more orderly near the hydrophobic solute.
398: 302: 174: 97: 50: 6824: 6758: 4843:. Progress in Molecular Biology and Translational Science. Vol. 84. pp. 161–202. 2097:
Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding
429: 7055: 5915: 5808: 5772: 4243:"Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp" 4056:"Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding" 3573: 2940: 1237: 1197: 1086: 764: 610: 120: 4742: 3158:
Ellis RJ (July 2006). "Molecular chaperones: assisting assembly in addition to folding".
1229: 1002:
Because protein folding takes place in about 50 to 3000 s CPMG Relaxation dispersion and
822:" would render predicting the diffraction patterns very difficult. Emerging methods like 728: 5575: 5536: 5357: 5231: 5172: 4956: 4898: 4817: 4762: 4654: 4501: 4444: 4258: 4131: 4071: 3974:. Advances in Protein Chemistry and Structural Biology. Vol. 92. pp. 219–251. 3646: 3490:
Chiti F, Dobson CM (2006). "Protein misfolding, functional amyloid, and human disease".
3452: 3303: 3210: 3069: 2843: 2787: 2574: 2507: 2442: 2399: 2037: 1978: 1891: 1830: 1717: 1592: 230: 6602: 6597: 6188: 6109: 5936: 5813: 5741: 5710: 5669: 5250: 5215: 5191: 5156: 5024: 4999: 4520: 4485: 4461: 4428: 4404: 4379: 4277: 4242: 4150: 4116:"Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy" 4115: 4088: 4055: 3979: 3322: 3287: 3229: 3194: 3135: 3110: 3086: 3053: 2740: 2715: 2691: 2666: 2642: 2617: 2524: 2481: 2386:
Tanford C (June 1978). "The hydrophobic effect and the organization of living matter".
2066: 2021: 1997: 1962: 1704:
Kim PS, Baldwin RL (1990). "Intermediates in the folding reactions of small proteins".
1681: 1656: 1520: 1495: 1245: 1233: 1090: 543: 294: 266: 165: 160:, the slowest folding proteins require many minutes or hours to fold, primarily due to 5083: 4848: 3896: 2515: 2246: 2221: 1752: 7091: 5994: 5989: 5777: 5560: 5477: 5000:"Using simulations to provide the framework for experimental protein folding studies" 4975: 4940: 4781: 4746: 3370: 3353: 2593: 2548: 2152: 1864: 1544: 1462: 1372:
to be considered solved. Nevertheless, it is considered a significant achievement in
1214: 1201:
The energy funnel by which an unfolded polypeptide chain assumes its native structure
839: 819: 394: 382: 378: 342: 290: 262: 258: 170: 150: 124: 5381: 4747:"Protein folding funnels: a kinetic approach to the sequence-structure relationship" 4727: 4329: 3519: 3476: 3387: 2997: 2372: 2329: 617:
turn opaque). Protein thermal stability is far from constant, however; for example,
6958: 6940: 6203: 5695: 4922: 4885:
Dill KA, MacCallum JL (November 2012). "The protein-folding problem, 50 years on".
4804:
Sharma V, Kaila VR, Annila A (2009). "Protein folding as an evolutionary process".
2913: 2867: 2811: 2466: 1616: 1391: 1319: 1315: 1303:. First equilibrium folding simulations were done using implicit solvent model and 1094: 917: 909: 856: 852: 329: 271: 82: 6234: 4267: 4182: 3696: 3029: 3012: 1899: 1878:
Anfinsen CB (July 1973). "Principles that govern the folding of protein chains".
7034: 6902: 6014: 6004: 5736: 5700: 5132: 5115: 4825: 3945: 2980: 2963: 2731: 2682: 2312: 2295: 1436: 1281: 1113: 1098: 1057: 961: 897: 889: 885: 799: 756: 752: 681: 569: 486: 406: 247: 223: 138: 70: 38: 5544: 5220:
Proceedings of the National Academy of Sciences of the United States of America
5161:
Proceedings of the National Academy of Sciences of the United States of America
4945:
Proceedings of the National Academy of Sciences of the United States of America
4751:
Proceedings of the National Academy of Sciences of the United States of America
4490:
Proceedings of the National Academy of Sciences of the United States of America
4120:
Proceedings of the National Academy of Sciences of the United States of America
4079: 3417: 3199:
Proceedings of the National Academy of Sciences of the United States of America
3171: 3126: 2553:
Proceedings of the National Academy of Sciences of the United States of America
2237: 2026:
Proceedings of the National Academy of Sciences of the United States of America
1967:
Proceedings of the National Academy of Sciences of the United States of America
1466: 341:
that is mainly guided by hydrophobic interactions, formation of intramolecular
6864: 6292: 6198: 5941: 5818: 5762: 5746: 5715: 5468: 5408: 5114:
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (July 2016).
5015: 3655: 3630: 3077: 2198: 1791: 1672: 1181: 1177: 1138: 787:, typically, experimental techniques for studying protein folding rely on the 692: 362: 358: 251: 128: 66: 30: 5624: 4662: 3777: 3760: 3736: 3719: 115:
formed by misfolded proteins, the infectious varieties of which are known as
6612: 6558: 6019: 5834: 5803: 5365: 5240: 5181: 4906: 4771: 4510: 4140: 3460: 3312: 3219: 2667:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 2633: 2583: 2056: 1987: 1345: 1300: 1287: 1008: 760: 747: 614: 594: 531: 5552: 5416: 5373: 5259: 5200: 5141: 5060: 5033: 4984: 4965: 4914: 4866: 4711: 4596: 4529: 4470: 4413: 4364: 4321: 4286: 4227: 4219: 4159: 4097: 4037: 3997: 3953: 3857: 3822: 3745: 3704: 3664: 3555: 3511: 3468: 3425: 3379: 3331: 3238: 3179: 3144: 3095: 3038: 2948: 2905: 2803: 2749: 2700: 2651: 2533: 2458: 2407: 2364: 2255: 2206: 2075: 2006: 1856: 1799: 1690: 1608: 751:
excessive degradation instead of folding and function leads to a number of
5068: 4790: 4719: 3905: 3879: 3786: 3272: 2989: 2859: 2830:
Hartl FU (June 1996). "Molecular chaperones in cellular protein folding".
2602: 2321: 1907: 1760: 1725: 1529: 524:
are a class of proteins that aid in the correct folding of other proteins
510: 6892: 6525: 6517: 6032: 5972: 5910: 5432:"DeepMind solves 50-year-old 'grand challenge' with protein folding A.I." 2498: 2415: 1353: 652:
particles during infection. Like GroES, gp31 forms a stable complex with
636: 585: 553: 446: 370: 298: 157: 62: 17: 5157:"Characterization of protein-folding pathways by reduced-space modeling" 4702: 4429:"Calcium modulates force sensing by the von Willebrand factor A2 domain" 3354:"Protein-misfolding diseases and chaperone-based therapeutic approaches" 2897: 2795: 2565: 2450: 1847: 1600: 218: 77:. This structure permits the protein to become biologically functional. 6643: 6530: 6490: 6421: 6416: 6411: 6406: 6401: 6356: 6183: 5982: 5977: 5876: 5583: 4452: 3111:"Effects of macromolecular crowding on protein folding and aggregation" 2356: 1838: 736: 697: 626: 599: 526: 450: 386: 161: 142: 112: 109: 105: 54: 4588: 4395: 4356: 4029: 3849: 3814: 3547: 1511: 1333:, a massively parallel supercomputer designed and built around custom 1240:
and experimental studies, and it has been used to improve methods for
6859: 6834: 6829: 6819: 6783: 6773: 6748: 6733: 6728: 6723: 6718: 6713: 6708: 6703: 6698: 6663: 6648: 6495: 6460: 6445: 6440: 6435: 6396: 6391: 6386: 6381: 6376: 6371: 6366: 6361: 6351: 6346: 6341: 6336: 6331: 5319: 5273: 4313: 2851: 1323: 1255:
There exists a saddle point in the energy funnel landscape where the
739: 573: 373:; however, a protein molecule may fold spontaneously during or after 2549:"Evidence for nonrandom hydrophobicity structures in protein chains" 1775: 4560: 1813:
Scalvini, Barbara; Sheikhhassani, Vahid; Mashaghi, Alireza (2021).
445:
value. Gibbs free energy in protein folding is directly related to
301:
residues. These non-covalent and covalent contacts take a specific
7050: 7040: 7030: 7015: 6997: 6992: 6987: 6982: 6914: 6874: 6839: 6813: 6798: 6793: 6788: 6743: 6738: 6693: 6688: 6683: 6653: 6638: 6535: 6504: 6485: 6480: 6475: 6470: 6455: 6450: 6430: 6326: 6319: 6315: 6305: 6300: 1634:(Third ed.). New York, NY: Garland Science. pp. 120–70. 1267: 941: 704: 653: 649: 648:
and able to substitute for it in the assembly of bacteriophage T4
645: 509: 428: 390: 229: 116: 37: 29: 5502:'The game has changed.' AI triumphs at solving protein structures 4484:
Jagannathan B, Elms PJ, Bustamante C, Marqusee S (October 2012).
3880:"Protein structure determination in solution by NMR spectroscopy" 2296:"Forces contributing to the conformational stability of proteins" 123:
are caused by the incorrect folding of some proteins because the
7065: 7045: 7025: 7020: 6970: 6953: 6909: 6897: 6879: 6869: 6668: 6658: 6633: 6628: 6573: 6568: 4545:"Biotinylation by proximity labelling favours unfolded proteins" 2271:"Torsion Angles and the Ramachnadran Plot in Protein Structures" 1739:
Jackson SE (1998). "How do small single-domain proteins fold?".
1357: 1334: 1027: 665: 146: 6238: 6036: 5849: 5628: 2714:
Foy SG, Wilson BA, Bertram J, Cordes MH, Masel J (April 2019).
1295:
can be used for simulating various aspects of protein folding.
6213: 6208: 4839:
Robson B, Vaithilingam A (2008). "Protein Folding Revisited".
1329:
Long continuous-trajectory simulations have been performed on
3255:
Marusich, EI; Kurochkina, LP; Mesyanzhinov, VV (April 1998).
2774:
Dobson CM (December 2003). "Protein folding and misfolding".
1579:
Selkoe DJ (December 2003). "Folding proteins in fatal ways".
1299:(MD) was used in simulations of protein folding and dynamics 613:
proteins to unfold or denature (this is why boiling makes an
85:. This structure is determined by the amino-acid sequence or 2020:
Rose GD, Fleming PJ, Banavar JR, Maritan A (November 2006).
1077:, ultrafast mixing of solutions, photochemical methods, and 640:) appears to be structurally and functionally homologous to 5845: 2220:
van den Berg B, Wain R, Dobson CM, Ellis RJ (August 2000).
1961:
Alexander PA, He Y, Chen Y, Orban J, Bryan PN (July 2007).
1465:, Johnson A, Lewis J, Raff M, Roberts K, Walters P (2002). 1232:) that are largely directed toward the native state. This " 783:
While inferences about protein folding can be made through
603: 402: 137:
of proteins is a process of transition from a folded to an
4643:
Journal de Chimie Physique et de Physico-Chimie Biologique
3574:"Phase Problem in X-ray Crystallography, and Its Solution" 2294:
Pace CN, Shirley BA, McNutt M, Gajiwala K (January 1996).
846:
Fluorescence spectroscopy can be used to characterize the
421:, depicted with psi and phi angles of allowable rotation. 4427:
Jakobi AJ, Mashaghi A, Tans SJ, Huizinga EG (July 2011).
727:, as well as intracellular aggregation diseases such as 1352:(AI) protein structure prediction program developed by 5116:"Coarse-Grained Protein Models and Their Applications" 1496:"The formation and stabilization of protein structure" 409:, the possible presence of cofactors and of molecular 5456:"Structural biology: How proteins got their close-up" 4806:
Physica A: Statistical Mechanics and Its Applications
3109:
van den Berg B, Ellis RJ, Dobson CM (December 1999).
1133:
unfolding of proteins involved in blood coagulation.
715:(mad cow disease), amyloid-related illnesses such as 1314:
Several large-scale computational projects, such as
1209:
of a protein during folding can be visualized as an
779:
Experimental techniques for studying protein folding
775:
to fold mutated proteins to render them functional.
7008: 6939: 6928: 6611: 6588: 6546: 6286: 6272: 6176: 6123: 6070: 5950: 5924: 5883: 5827: 5796: 5755: 5724: 5688: 5662: 5299:"The Folding@home Consortium (FAHC) – Folding@home" 3934:
Progress in Nuclear Magnetic Resonance Spectroscopy
3583:. Macmillan Publishers Ltd, Nature Publishing Group 3286:Porter, Lauren L.; Looger, Loren L. (5 June 2018). 2547:Irbäck A, Peterson C, Potthast F (September 1996). 1774:Kubelka J, Hofrichter J, Eaton WA (February 2004). 932:(VCD) techniques for proteins, currently involving 5496: 5494: 5214:Adhikari AN, Freed KF, Sosnick TR (October 2012). 2482:"On hydrophobicity correlations in protein chains" 2151: 1141:accesses multiple unfolding pathways under force. 1056:, the stimulus for folding can be a denaturant or 855:, to measure protein folding kinetics, generate a 27:Change of a linear protein chain to a 3D structure 3347: 3345: 3343: 3341: 3013:"Molecular chaperones in protein quality control" 254:that fold rapidly because they are stabilized by 5576:"CASP14 #s just came out and they're astounding" 3678: 3676: 3674: 2616:Wilson BA, Foy SG, Neme R, Masel J (June 2017). 676:Protein misfolding and neurodegenerative disease 108:are believed to result from the accumulation of 5518: 5516: 4054:Neudecker P, Lundström P, Kay LE (March 2009). 3292:Proceedings of the National Academy of Sciences 3288:"Extant fold-switching proteins are widespread" 3250: 3248: 956:Protein nuclear magnetic resonance spectroscopy 238:displaying hydrogen bonding within the backbone 4934: 4932: 3567: 3565: 2769: 2767: 2765: 2763: 2761: 2759: 2089: 2087: 2085: 584:have been found in all species examined, from 6250: 6048: 5861: 5640: 4683: 4681: 4679: 3017:Journal of Biochemistry and Molecular Biology 2879: 2877: 2825: 2823: 2821: 1471:Molecular Biology of the Cell; Fourth Edition 8: 5084:"Fragment-based Protein Folding Simulations" 4880: 4878: 4876: 4841:Molecular Biology of Protein Folding, Part B 3718:Monsellier E, Bedouelle H (September 2005). 3399: 3397: 2022:"A backbone-based theory of protein folding" 1931: 1929: 1927: 1925: 1923: 1921: 1919: 1917: 1064:Studies of folding with high time resolution 944:data for protein solutions in heavy water (D 4543:Minde DP, Ramakrishna M, Lilley KS (2018). 4380:"Protein folding and unfolding under force" 4378:Jagannathan B, Marqusee S (November 2013). 3724:Protein Engineering, Design & Selection 3605:Principles of Protein X-Ray Crystallography 1815:"Topological principles of protein folding" 1574: 1572: 1238:computational simulations of model proteins 6936: 6283: 6257: 6243: 6235: 6055: 6041: 6033: 5868: 5854: 5846: 5647: 5633: 5625: 924:Vibrational circular dichroism of proteins 5467: 5249: 5239: 5190: 5180: 5131: 5023: 4974: 4964: 4780: 4770: 4701: 4636:"Are there pathways for protein folding?" 4559: 4519: 4509: 4460: 4403: 4276: 4266: 4241:Minde DP, Maurice MM, Rüdiger SG (2012). 4149: 4139: 4087: 3895: 3776: 3735: 3654: 3608:. Springer Science & Business Media. 3369: 3321: 3311: 3257:"Chaperones in bacteriophage T4 assembly" 3228: 3218: 3134: 3085: 3028: 2979: 2739: 2690: 2641: 2592: 2582: 2564: 2523: 2497: 2311: 2245: 2065: 2055: 2045: 1996: 1986: 1846: 1680: 1519: 333:All forms of protein structure summarized 4018:Journal of the American Chemical Society 3504:10.1146/annurev.biochem.75.101304.123901 1473:. New York and London: Garland Science. 1344:In 2020 a team of researchers that used 1196: 1157:Computational studies of protein folding 1022:In a study focused on the folding of an 992: 798: 703:Aggregated proteins are associated with 455: 361:of the protein begins to fold while the 328: 217: 5004:Archives of Biochemistry and Biophysics 1454: 1427:Protein misfolding cyclic amplification 3972:Dynamics of Proteins and Nucleic Acids 3928:Zhuravleva A, Korzhnev DM (May 2017). 2480:Irbäck A, Sandelin E (November 2000). 634:, and the phage encoded gp31 protein ( 551:protein folding experiments conducted 365:portion of the protein is still being 353:. The process of folding often begins 4109: 4107: 4049: 4047: 4011: 4009: 4007: 3965: 3963: 3923: 3921: 3919: 3917: 3915: 3873: 3871: 3869: 3867: 2941:10.1146/annurev-biochem-060208-092442 2187:Current Opinion in Structural Biology 1780:Current Opinion in Structural Biology 1467:"The Shape and Structure of Proteins" 1432:Protein structure prediction software 1213:. According to Joseph Bryngelson and 1004:chemical exchange saturation transfer 542:that may be involved in formation of 7: 5454:Stoddart, Charlotte (1 March 2022). 3052:Ojeda-May P, Garcia ME (July 2010). 2665:Willis S, Masel J (September 2018). 5574:@MoAlQuraishi (November 30, 2020). 5155:Kmiecik S, Kolinski A (July 2007). 4998:Rizzuti B, Daggett V (March 2013). 4175:Handbook of Biosensors and Biochips 3884:The Journal of Biological Chemistry 3765:The Journal of Biological Chemistry 3352:Chaudhuri TK, Paul S (April 2006). 1819:Physical Chemistry Chemical Physics 1776:"The protein folding 'speed limit'" 1718:10.1146/annurev.bi.59.070190.003215 1549:"3. Protein Structure and Function" 1193:Energy landscape of protein folding 1079:laser temperature jump spectroscopy 385:", the process also depends on the 7073:Prokaryotic ubiquitin-like protein 5597:Balls, Phillip (9 December 2020). 3980:10.1016/b978-0-12-411636-8.00006-7 3759:Park YC, Bedouelle H (July 1998). 1936:Voet D, Voet JG, Pratt CW (2016). 1124:Single-molecule force spectroscopy 1118:fast parallel proteolysis (FASTpp) 884:. In proteins, structures such as 25: 5599:"Behind the screens of AlphaFold" 1151:Intrinsically disordered proteins 1073:. Fast techniques in use include 900:. A denaturant melt measures the 325:Driving forces of protein folding 3635:Acta Crystallographica Section D 3371:10.1111/j.1742-4658.2006.05181.x 1555:. San Francisco: W. H. Freeman. 1219:principle of minimal frustration 1045:Dual polarisation interferometry 1040:Dual-polarization interferometry 1034:Dual-polarization interferometry 928:The more recent developments of 824:multiple isomorphous replacement 713:bovine spongiform encephalopathy 666:switches fold throughout the day 261:, as was first characterized by 131:for certain protein structures. 34:Protein before and after folding 5896:Post-translational modification 5680:Structure determination methods 1442:Time-resolved mass spectrometry 721:familial amyloid cardiomyopathy 6603:Mitochondrial targeting signal 6266:Posttranslational modification 5620:Human Proteome Folding Project 3406:Trends in Biochemical Sciences 3160:Trends in Biochemical Sciences 2622:Nature Ecology & Evolution 930:vibrational circular dichroism 686:A protein is considered to be 514:Example of a small eukaryotic 1: 4849:10.1016/S0079-6603(08)00405-4 3897:10.1016/S0021-9258(18)45665-7 3581:Encyclopedia of Life Sciences 3536:Accounts of Chemical Research 3492:Annual Review of Biochemistry 2929:Annual Review of Biochemistry 2516:10.1016/S0006-3495(00)76472-1 1753:10.1016/S1359-0278(98)00033-9 1706:Annual Review of Biochemistry 1291:techniques for computational 1089:, Brian Dyer, William Eaton, 1024:amyotrophic lateral sclerosis 316:Protein quarternary structure 6679:Ubiquitin-conjugating enzyme 5086:. University College London. 5049:Journal of Molecular Biology 4268:10.1371/journal.pone.0046147 4208:Journal of Molecular Biology 4183:10.1002/9780470061565.hbb055 3878:Wüthrich K (December 1990). 3697:10.1016/j.biochi.2015.11.013 3030:10.5483/BMBRep.2005.38.3.259 1900:10.1126/science.181.4096.223 1293:protein structure prediction 1242:protein structure prediction 6967:E2 SUMO-conjugating enzyme 6624:Ubiquitin-activating enzyme 5133:10.1021/acs.chemrev.6b00163 4939:Fersht AR (February 2000). 4826:10.1016/j.physa.2008.12.004 3946:10.1016/j.pnmrs.2016.10.002 2981:10.1096/fasebj.10.1.8566543 2732:10.1534/genetics.118.301719 2683:10.1534/genetics.118.301249 2313:10.1096/fasebj.10.1.8566551 2146:Pratt C, Cornely K (2004). 1417:Potential energy of protein 1264:Modeling of protein folding 940:data for protein crystals, 912:to measure protein folding 707:-related illnesses such as 214:Protein secondary structure 75:three-dimensional structure 69:, changes from an unstable 7124: 6950:E1 SUMO-activating enzyme 5937:Protein structural domains 5656:Protein tertiary structure 5545:10.1038/d41586-020-03348-4 4080:10.1016/j.bpj.2008.12.3907 3418:10.1016/j.tibs.2006.01.002 3172:10.1016/j.tibs.2006.05.001 2962:Shortle D (January 1996). 1938:Principles of Biochemistry 1362:global distance test (GDT) 1326:, target protein folding. 1037: 968:nuclear magnetic resonance 959: 882:circularly polarized light 870: 769:lysosomal storage diseases 679: 619:hyperthermophilic bacteria 540:peptidyl-prolyl isomerases 313: 284:Protein tertiary structure 281: 211: 196: 188:Process of protein folding 42:Results of protein folding 6224:Nucleic acid double helix 5469:10.1146/knowable-022822-1 5430:Shead, Sam (2020-11-30). 5409:10.1016/j.jmb.2010.10.023 5016:10.1016/j.abb.2012.12.015 3656:10.1107/S0907444903017815 3078:10.1016/j.bpj.2010.04.040 2275:www.proteinstructures.com 2199:10.1016/j.sbi.2010.10.008 1940:(Fifth ed.). Wiley. 1792:10.1016/j.sbi.2004.01.013 1673:10.1016/j.bpj.2020.10.003 1494:Anfinsen CB (July 1972). 835:Fluorescence spectroscopy 830:Fluorescence spectroscopy 773:pharmaceutical chaperones 744:European Medicines Agency 709:Creutzfeldt–Jakob disease 672:) proteins switch folds. 199:Protein primary structure 6564:Survival of motor neuron 3930:"Protein folding by NMR" 3778:10.1074/jbc.273.29.18052 3261:Biochemistry. Biokhimiia 3127:10.1093/emboj/18.24.6927 2238:10.1093/emboj/19.15.3870 906:denaturation temperature 500:intrinsically disordered 479:London Dispersion forces 397:), the concentration of 6930:Ubiquitin-like proteins 6889:Deubiquitinating enzyme 5366:10.1126/science.1208351 5241:10.1073/pnas.1209000109 5182:10.1073/pnas.0702265104 5101:(by Molecular Dynamics) 4907:10.1126/science.1219021 4772:10.1073/pnas.89.18.8721 4511:10.1073/pnas.1201800109 4141:10.1073/pnas.1611418113 3602:Drenth J (2007-04-05). 3461:10.1126/science.1079589 3313:10.1073/pnas.1800168115 3220:10.1073/pnas.0712334105 3011:Lee S, Tsai FT (2005). 2634:10.1038/s41559-017-0146 2584:10.1073/pnas.93.18.9533 2057:10.1073/pnas.0606843103 1988:10.1073/pnas.0700922104 1500:The Biochemical Journal 1370:protein folding problem 1350:artificial intelligence 1165: 598:High concentrations of 349:, and it is opposed by 6064:Biomolecular structure 5061:10.1006/jmbi.1998.2172 4966:10.1073/pnas.97.4.1525 4741:Leopold PE, Montal M, 4712:10.1002/prot.340210302 4663:10.1051/jcp/1968650044 4220:10.1006/jmbi.2001.5006 3737:10.1093/protein/gzi046 2408:10.1126/science.653353 2154:Essential Biochemistry 1632:Essential cell biology 1543:Berg JM, Tymoczko JL, 1277: 1217:, proteins follow the 1202: 999: 807: 518: 469: 437: 351:conformational entropy 334: 239: 227: 184:since the late 1960s. 43: 35: 7098:Biochemical reactions 6000:Photoreceptor protein 5732:Immunoglobulin domain 4433:Nature Communications 1397:Denaturation midpoint 1374:computational biology 1337:and interconnects by 1309:coarse-grained models 1271: 1200: 1135:von Willebrand factor 1017:X-ray crystallography 996: 894:equilibrium unfolding 848:equilibrium unfolding 811:X-ray crystallography 805:X-ray crystallography 802: 795:X-ray crystallography 513: 467: 432: 332: 233: 221: 182:computational biology 162:proline isomerization 127:does not produce the 65:as a linear chain of 41: 33: 5891:Protein biosynthesis 4634:Levinthal C (1968). 2618:"De Novo Gene Birth" 1741:Folding & Design 1105:and Lars Konermann. 950:quantum computations 746:approved the use of 536:disulfide isomerases 522:Molecular chaperones 475:hydrophobic collapse 434:Hydrophobic collapse 381:may be regarded as " 347:van der Waals forces 310:Quaternary structure 73:into a more ordered 6288:Heat shock proteins 6194:Protein engineering 5768:Leucine-rich repeat 5537:2020Natur.588..203C 5500:Robert F. Service, 5358:2011Sci...334..517L 5232:2012PNAS..10917442A 5173:2007PNAS..10412330K 4957:2000PNAS...97.1525F 4899:2012Sci...338.1042D 4818:2009PhyA..388..851S 4763:1992PNAS...89.8721L 4655:1968JCP....65...44L 4502:2012PNAS..10917820J 4445:2011NatCo...2..385J 4259:2012PLoSO...746147M 4132:2016PNAS..113E6939S 4126:(45): E6939–E6945. 4072:2009BpJ....96.2045N 4060:Biophysical Journal 3647:2003AcCrD..59.1881T 3631:"The phase problem" 3453:2003Sci...299..713H 3304:2018PNAS..115.5968P 3211:2008PNAS..10510949T 3070:2010BpJ....99..595O 3058:Biophysical Journal 2898:10.1038/nature10317 2844:1996Natur.381..571H 2796:10.1038/nature02261 2788:2003Natur.426..884D 2575:1996PNAS...93.9533I 2508:2000BpJ....79.2252I 2486:Biophysical Journal 2451:10.1038/nature02611 2443:2004Natur.430..101D 2400:1978Sci...200.1012T 2122:"Protein Structure" 2038:2006PNAS..10316623R 1979:2007PNAS..10411963A 1892:1973Sci...181..223A 1831:2021PCCP...2321316S 1825:(37): 21316–21328. 1661:Biophysical Journal 1601:10.1038/nature02264 1593:2003Natur.426..900S 1407:Folding (chemistry) 1339:D. E. Shaw Research 1274:Markov state models 1207:configuration space 1187:intermediate states 1173:Levinthal's paradox 1166:Levinthal's paradox 986:(T1 & T2), and 733:Parkinson's disease 717:Alzheimer's disease 582:Heat shock proteins 578:heat shock proteins 498:, which tend to be 339:spontaneous process 297:formed between two 244:secondary structure 208:Secondary structure 94:may remain unfolded 5510:, 30 November 2020 5278:boinc.bakerlab.org 4745:(September 1992). 4453:10.1038/ncomms1385 2357:10.1002/prot.24683 2128:. Nature Education 1839:10.1039/D1CP03390E 1412:Phi value analysis 1297:Molecular dynamics 1278: 1272:Folding@home uses 1203: 1075:neutron scattering 1054:circular dichroism 1000: 878:Circular dichroism 873:Circular dichroism 867:Circular dichroism 861:Phi value analysis 808: 644:chaperone protein 611:thermally unstable 563:denatured proteins 519: 516:heat shock protein 483:hydrophobic effect 470: 438: 425:Hydrophobic effect 383:folding themselves 355:co-translationally 335: 278:Tertiary structure 240: 236:beta pleated sheet 228: 96:, indicating that 44: 36: 7108:Protein structure 7085: 7084: 7081: 7080: 6590:Protein targeting 6584: 6583: 6232: 6231: 6030: 6029: 5932:Protein structure 5906:Protein targeting 5843: 5842: 5788:Trefoil knot fold 5670:Structural domain 5531:(7837): 203–204. 5460:Knowable Magazine 5098:"Protein folding" 4858:978-0-12-374595-8 4589:10.1021/bi4001529 4396:10.1002/bip.22321 4357:10.1021/cr400326k 4192:978-0-470-01905-4 4030:10.1021/ja3001419 3850:10.1021/cr0404390 3815:10.1021/bi300335r 3629:Taylor G (2003). 3615:978-0-387-33746-3 3572:Cowtan K (2001). 3548:10.1021/ar020073i 3298:(23): 5968–5973. 2165:978-0-471-39387-0 2107:978-0-7167-3268-6 2094:Fersht A (1999). 1947:978-1-118-91840-1 1641:978-0-8153-4454-4 1562:978-0-7167-4684-3 1512:10.1042/bj1280737 1480:978-0-8153-3218-3 1305:umbrella sampling 1026:involved protein 938:X-ray diffraction 934:Fourier transform 816:Fourier transform 789:gradual unfolding 755:diseases such as 670:Protein Data Bank 465: 443:Gibbs free energy 419:Ramachandran plot 295:disulfide bridges 234:An anti-parallel 193:Primary structure 102:neurodegenerative 87:primary structure 16:(Redirected from 7115: 6937: 6850:Ubiquitin ligase 6616:(ubiquitylation) 6554:Alpha crystallin 6284: 6259: 6252: 6245: 6236: 6219:Structural motif 6057: 6050: 6043: 6034: 6010:Phycobiliprotein 5968:Globular protein 5963:Membrane protein 5958:List of proteins 5870: 5863: 5856: 5847: 5828:Irregular folds: 5783:Thioredoxin fold 5706:Homeodomain fold 5649: 5642: 5635: 5626: 5607: 5606: 5594: 5588: 5587: 5571: 5565: 5564: 5520: 5511: 5498: 5489: 5488: 5486: 5484: 5471: 5451: 5445: 5444: 5442: 5441: 5427: 5421: 5420: 5392: 5386: 5385: 5352:(6055): 517–20. 5341: 5335: 5334: 5332: 5330: 5316: 5310: 5309: 5307: 5305: 5295: 5289: 5288: 5286: 5284: 5270: 5264: 5263: 5253: 5243: 5211: 5205: 5204: 5194: 5184: 5152: 5146: 5145: 5135: 5126:(14): 7898–936. 5120:Chemical Reviews 5111: 5105: 5104: 5102: 5094: 5088: 5087: 5079: 5073: 5072: 5044: 5038: 5037: 5027: 4995: 4989: 4988: 4978: 4968: 4936: 4927: 4926: 4893:(6110): 1042–6. 4882: 4871: 4870: 4836: 4830: 4829: 4801: 4795: 4794: 4784: 4774: 4738: 4732: 4731: 4705: 4685: 4674: 4673: 4671: 4665:. Archived from 4640: 4631: 4625: 4624: 4622: 4621: 4615:en.wikibooks.org 4607: 4601: 4600: 4572: 4566: 4565: 4563: 4549: 4540: 4534: 4533: 4523: 4513: 4481: 4475: 4474: 4464: 4424: 4418: 4417: 4407: 4375: 4369: 4368: 4345:Chemical Reviews 4340: 4334: 4333: 4314:10.1038/nmeth740 4297: 4291: 4290: 4280: 4270: 4238: 4232: 4231: 4203: 4197: 4196: 4170: 4164: 4163: 4153: 4143: 4111: 4102: 4101: 4091: 4051: 4042: 4041: 4013: 4002: 4001: 3967: 3958: 3957: 3925: 3910: 3909: 3899: 3890:(36): 22059–62. 3875: 3862: 3861: 3838:Chemical Reviews 3833: 3827: 3826: 3797: 3791: 3790: 3780: 3756: 3750: 3749: 3739: 3715: 3709: 3708: 3680: 3669: 3668: 3658: 3626: 3620: 3619: 3599: 3593: 3592: 3590: 3588: 3578: 3569: 3560: 3559: 3530: 3524: 3523: 3487: 3481: 3480: 3436: 3430: 3429: 3401: 3392: 3391: 3373: 3358:The FEBS Journal 3349: 3336: 3335: 3325: 3315: 3283: 3277: 3276: 3252: 3243: 3242: 3232: 3222: 3205:(31): 10949–54. 3190: 3184: 3183: 3155: 3149: 3148: 3138: 3115:The EMBO Journal 3106: 3100: 3099: 3089: 3049: 3043: 3042: 3032: 3008: 3002: 3001: 2983: 2959: 2953: 2952: 2924: 2918: 2917: 2892:(7356): 324–32. 2881: 2872: 2871: 2852:10.1038/381571a0 2827: 2816: 2815: 2782:(6968): 884–90. 2771: 2754: 2753: 2743: 2726:(4): 1345–1355. 2711: 2705: 2704: 2694: 2662: 2656: 2655: 2645: 2613: 2607: 2606: 2596: 2586: 2568: 2544: 2538: 2537: 2527: 2501: 2499:cond-mat/0010390 2477: 2471: 2470: 2426: 2420: 2419: 2394:(4345): 1012–8. 2383: 2377: 2376: 2340: 2334: 2333: 2315: 2291: 2285: 2284: 2282: 2281: 2269:Al-Karadaghi S. 2266: 2260: 2259: 2249: 2226:The EMBO Journal 2217: 2211: 2210: 2182: 2176: 2175: 2173: 2172: 2157: 2148:"Thermodynamics" 2143: 2137: 2136: 2134: 2133: 2118: 2112: 2111: 2091: 2080: 2079: 2069: 2059: 2049: 2032:(45): 16623–33. 2017: 2011: 2010: 2000: 1990: 1958: 1952: 1951: 1933: 1912: 1911: 1886:(4096): 223–30. 1875: 1869: 1868: 1850: 1810: 1804: 1803: 1771: 1765: 1764: 1736: 1730: 1729: 1701: 1695: 1694: 1684: 1652: 1646: 1645: 1627: 1621: 1620: 1576: 1567: 1566: 1540: 1534: 1533: 1523: 1491: 1485: 1484: 1459: 1422:Protein dynamics 1402:Downhill folding 1387:Anfinsen's dogma 1356:placed first in 1257:transition state 1211:energy landscape 1130:Optical tweezers 916:and to generate 785:mutation studies 639: 632:bacteriophage T4 630:is the host for 466: 291:covalent bonding 226:spiral formation 175:circuit topology 158:outside the cell 141:. It happens in 98:protein dynamics 51:physical process 21: 7123: 7122: 7118: 7117: 7116: 7114: 7113: 7112: 7103:Protein folding 7088: 7087: 7086: 7077: 7004: 6979:E3 SUMO ligase 6943: 6932: 6924: 6615: 6607: 6580: 6542: 6521: 6513: 6291: 6279:protein folding 6277: 6268: 6263: 6233: 6228: 6172: 6119: 6066: 6061: 6031: 6026: 5990:Fibrous protein 5946: 5920: 5916:Protein methods 5901:Protein folding 5879: 5874: 5844: 5839: 5823: 5809:Ferredoxin fold 5792: 5773:Flavodoxin fold 5751: 5720: 5684: 5675:Protein folding 5658: 5653: 5616: 5611: 5610: 5603:Chemistry World 5596: 5595: 5591: 5573: 5572: 5568: 5522: 5521: 5514: 5499: 5492: 5482: 5480: 5453: 5452: 5448: 5439: 5437: 5429: 5428: 5424: 5394: 5393: 5389: 5343: 5342: 5338: 5328: 5326: 5318: 5317: 5313: 5303: 5301: 5297: 5296: 5292: 5282: 5280: 5272: 5271: 5267: 5226:(43): 17442–7. 5213: 5212: 5208: 5167:(30): 12330–5. 5154: 5153: 5149: 5113: 5112: 5108: 5100: 5096: 5095: 5091: 5081: 5080: 5076: 5046: 5045: 5041: 5010:(1–2): 128–35. 4997: 4996: 4992: 4938: 4937: 4930: 4884: 4883: 4874: 4859: 4838: 4837: 4833: 4803: 4802: 4798: 4740: 4739: 4735: 4703:chem-ph/9411008 4687: 4686: 4677: 4669: 4638: 4633: 4632: 4628: 4619: 4617: 4609: 4608: 4604: 4583:(48): 8601–24. 4574: 4573: 4569: 4547: 4542: 4541: 4537: 4496:(44): 17820–5. 4483: 4482: 4478: 4426: 4425: 4421: 4377: 4376: 4372: 4342: 4341: 4337: 4299: 4298: 4294: 4240: 4239: 4235: 4205: 4204: 4200: 4193: 4172: 4171: 4167: 4113: 4112: 4105: 4053: 4052: 4045: 4024:(19): 8148–61. 4015: 4014: 4005: 3990: 3969: 3968: 3961: 3927: 3926: 3913: 3877: 3876: 3865: 3835: 3834: 3830: 3809:(24): 4807–21. 3799: 3798: 3794: 3771:(29): 18052–9. 3758: 3757: 3753: 3717: 3716: 3712: 3682: 3681: 3672: 3641:(11): 1881–90. 3628: 3627: 3623: 3616: 3601: 3600: 3596: 3586: 3584: 3576: 3571: 3570: 3563: 3532: 3531: 3527: 3489: 3488: 3484: 3447:(5607): 713–6. 3438: 3437: 3433: 3403: 3402: 3395: 3351: 3350: 3339: 3285: 3284: 3280: 3254: 3253: 3246: 3192: 3191: 3187: 3157: 3156: 3152: 3121:(24): 6927–33. 3108: 3107: 3103: 3051: 3050: 3046: 3010: 3009: 3005: 2961: 2960: 2956: 2926: 2925: 2921: 2883: 2882: 2875: 2838:(6583): 571–9. 2829: 2828: 2819: 2773: 2772: 2757: 2713: 2712: 2708: 2664: 2663: 2659: 2628:(6): 0146–146. 2615: 2614: 2610: 2566:chem-ph/9512004 2546: 2545: 2541: 2479: 2478: 2474: 2437:(6995): 101–5. 2428: 2427: 2423: 2385: 2384: 2380: 2351:(12): 3312–26. 2342: 2341: 2337: 2293: 2292: 2288: 2279: 2277: 2268: 2267: 2263: 2219: 2218: 2214: 2184: 2183: 2179: 2170: 2168: 2166: 2145: 2144: 2140: 2131: 2129: 2120: 2119: 2115: 2108: 2093: 2092: 2083: 2047:10.1.1.630.5487 2019: 2018: 2014: 1973:(29): 11963–8. 1960: 1959: 1955: 1948: 1935: 1934: 1915: 1877: 1876: 1872: 1812: 1811: 1807: 1773: 1772: 1768: 1738: 1737: 1733: 1703: 1702: 1698: 1667:(10): 2029–38. 1654: 1653: 1649: 1642: 1629: 1628: 1624: 1587:(6968): 900–4. 1578: 1577: 1570: 1563: 1542: 1541: 1537: 1493: 1492: 1488: 1481: 1461: 1460: 1456: 1451: 1446: 1382: 1266: 1195: 1168: 1159: 1147: 1145:Biotin painting 1126: 1111: 1087:Martin Gruebele 1066: 1042: 1036: 984:time relaxation 964: 958: 947: 926: 875: 869: 832: 797: 781: 765:cystic fibrosis 684: 678: 662: 635: 544:disulfide bonds 508: 456: 427: 327: 318: 312: 293:in the form of 286: 280: 242:Formation of a 216: 210: 201: 195: 190: 151:proteinopathies 47:Protein folding 28: 23: 22: 15: 12: 11: 5: 7121: 7119: 7111: 7110: 7105: 7100: 7090: 7089: 7083: 7082: 7079: 7078: 7076: 7075: 7069: 7068: 7063: 7058: 7053: 7048: 7043: 7038: 7028: 7023: 7018: 7012: 7010: 7006: 7005: 7003: 7002: 7001: 7000: 6995: 6990: 6985: 6976: 6975: 6974: 6973: 6964: 6963: 6962: 6961: 6956: 6947: 6945: 6934: 6926: 6925: 6923: 6922: 6917: 6912: 6906: 6905: 6900: 6895: 6885: 6884: 6883: 6882: 6877: 6872: 6867: 6862: 6857: 6845: 6844: 6843: 6842: 6837: 6832: 6827: 6822: 6817: 6811: 6806: 6801: 6796: 6791: 6786: 6781: 6776: 6771: 6766: 6761: 6756: 6751: 6746: 6741: 6736: 6731: 6726: 6721: 6716: 6711: 6706: 6701: 6696: 6691: 6686: 6674: 6673: 6672: 6671: 6666: 6661: 6656: 6651: 6646: 6641: 6636: 6631: 6619: 6617: 6609: 6608: 6606: 6605: 6600: 6598:Signal peptide 6594: 6592: 6586: 6585: 6582: 6581: 6579: 6578: 6577: 6576: 6571: 6561: 6556: 6550: 6548: 6544: 6543: 6541: 6540: 6539: 6538: 6533: 6528: 6523: 6519: 6515: 6511: 6501: 6500: 6499: 6498: 6493: 6488: 6483: 6478: 6473: 6468: 6463: 6458: 6453: 6448: 6443: 6438: 6427: 6426: 6425: 6424: 6419: 6414: 6409: 6404: 6399: 6394: 6389: 6384: 6379: 6374: 6369: 6364: 6359: 6354: 6349: 6344: 6339: 6334: 6323: 6322: 6313: 6308: 6303: 6297: 6295: 6281: 6270: 6269: 6264: 6262: 6261: 6254: 6247: 6239: 6230: 6229: 6227: 6226: 6221: 6216: 6211: 6206: 6201: 6196: 6191: 6189:Protein domain 6186: 6180: 6178: 6174: 6173: 6171: 6170: 6168:Thermodynamics 6165: 6160: 6155: 6150: 6145: 6140: 6135: 6129: 6127: 6121: 6120: 6118: 6117: 6115:Thermodynamics 6112: 6107: 6102: 6097: 6092: 6087: 6082: 6076: 6074: 6068: 6067: 6062: 6060: 6059: 6052: 6045: 6037: 6028: 6027: 6025: 6024: 6023: 6022: 6017: 6012: 6002: 5997: 5992: 5987: 5986: 5985: 5980: 5975: 5965: 5960: 5954: 5952: 5948: 5947: 5945: 5944: 5939: 5934: 5928: 5926: 5922: 5921: 5919: 5918: 5913: 5908: 5903: 5898: 5893: 5887: 5885: 5881: 5880: 5875: 5873: 5872: 5865: 5858: 5850: 5841: 5840: 5838: 5837: 5831: 5829: 5825: 5824: 5822: 5821: 5816: 5814:Ribonuclease A 5811: 5806: 5800: 5798: 5794: 5793: 5791: 5790: 5785: 5780: 5775: 5770: 5765: 5759: 5757: 5753: 5752: 5750: 5749: 5744: 5742:Beta-propeller 5739: 5734: 5728: 5726: 5722: 5721: 5719: 5718: 5713: 5711:Alpha solenoid 5708: 5703: 5698: 5692: 5690: 5686: 5685: 5683: 5682: 5677: 5672: 5666: 5664: 5660: 5659: 5654: 5652: 5651: 5644: 5637: 5629: 5623: 5622: 5615: 5614:External links 5612: 5609: 5608: 5589: 5582:) – via 5566: 5512: 5490: 5446: 5422: 5387: 5336: 5311: 5290: 5274:"Rosetta@home" 5265: 5206: 5147: 5106: 5089: 5074: 5039: 4990: 4928: 4872: 4857: 4831: 4796: 4757:(18): 8721–5. 4733: 4675: 4672:on 2009-09-02. 4626: 4602: 4567: 4561:10.1101/274761 4535: 4476: 4419: 4370: 4335: 4302:Nature Methods 4292: 4253:(10): e46147. 4233: 4198: 4191: 4165: 4103: 4066:(6): 2045–54. 4043: 4003: 3988: 3959: 3911: 3863: 3844:(5): 1769–84. 3828: 3792: 3751: 3710: 3670: 3621: 3614: 3594: 3561: 3542:(12): 911–21. 3525: 3482: 3431: 3393: 3364:(7): 1331–49. 3337: 3278: 3267:(4): 399–406. 3244: 3185: 3166:(7): 395–401. 3150: 3101: 3044: 3003: 2954: 2919: 2873: 2817: 2755: 2706: 2677:(1): 303–313. 2657: 2608: 2559:(18): 9533–8. 2539: 2472: 2421: 2378: 2335: 2286: 2261: 2232:(15): 3870–5. 2212: 2177: 2164: 2138: 2113: 2106: 2081: 2012: 1953: 1946: 1913: 1870: 1805: 1766: 1731: 1696: 1647: 1640: 1622: 1568: 1561: 1535: 1486: 1479: 1453: 1452: 1450: 1447: 1445: 1444: 1439: 1434: 1429: 1424: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1383: 1381: 1378: 1265: 1262: 1234:folding funnel 1194: 1191: 1167: 1164: 1158: 1155: 1146: 1143: 1125: 1122: 1110: 1107: 1091:Sheena Radford 1065: 1062: 1038:Main article: 1035: 1032: 960:Main article: 957: 954: 945: 925: 922: 871:Main article: 868: 865: 840:quantum yields 831: 828: 796: 793: 780: 777: 725:polyneuropathy 680:Main article: 677: 674: 661: 660:Fold switching 658: 624:The bacterium 602:, extremes of 507: 504: 426: 423: 379:macromolecules 377:. While these 357:, so that the 343:hydrogen bonds 326: 323: 314:Main article: 311: 308: 282:Main article: 279: 276: 259:hydrogen bonds 256:intramolecular 212:Main article: 209: 206: 197:Main article: 194: 191: 189: 186: 139:unfolded state 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7120: 7109: 7106: 7104: 7101: 7099: 7096: 7095: 7093: 7074: 7071: 7070: 7067: 7064: 7062: 7059: 7057: 7054: 7052: 7049: 7047: 7044: 7042: 7039: 7036: 7032: 7029: 7027: 7024: 7022: 7019: 7017: 7014: 7013: 7011: 7007: 6999: 6996: 6994: 6991: 6989: 6986: 6984: 6981: 6980: 6978: 6977: 6972: 6969: 6968: 6966: 6965: 6960: 6957: 6955: 6952: 6951: 6949: 6948: 6946: 6944:(SUMOylation) 6942: 6938: 6935: 6931: 6927: 6921: 6918: 6916: 6913: 6911: 6908: 6907: 6904: 6901: 6899: 6896: 6894: 6890: 6887: 6886: 6881: 6878: 6876: 6873: 6871: 6868: 6866: 6863: 6861: 6858: 6856: 6853: 6852: 6851: 6847: 6846: 6841: 6838: 6836: 6833: 6831: 6828: 6826: 6823: 6821: 6818: 6815: 6812: 6810: 6807: 6805: 6802: 6800: 6797: 6795: 6792: 6790: 6787: 6785: 6782: 6780: 6777: 6775: 6772: 6770: 6767: 6765: 6762: 6760: 6757: 6755: 6752: 6750: 6747: 6745: 6742: 6740: 6737: 6735: 6732: 6730: 6727: 6725: 6722: 6720: 6717: 6715: 6712: 6710: 6707: 6705: 6702: 6700: 6697: 6695: 6692: 6690: 6687: 6685: 6682: 6681: 6680: 6676: 6675: 6670: 6667: 6665: 6662: 6660: 6657: 6655: 6652: 6650: 6647: 6645: 6642: 6640: 6637: 6635: 6632: 6630: 6627: 6626: 6625: 6621: 6620: 6618: 6614: 6610: 6604: 6601: 6599: 6596: 6595: 6593: 6591: 6587: 6575: 6572: 6570: 6567: 6566: 6565: 6562: 6560: 6557: 6555: 6552: 6551: 6549: 6545: 6537: 6534: 6532: 6529: 6527: 6524: 6522: 6516: 6514: 6508: 6507: 6506: 6503: 6502: 6497: 6494: 6492: 6489: 6487: 6484: 6482: 6479: 6477: 6474: 6472: 6469: 6467: 6464: 6462: 6459: 6457: 6454: 6452: 6449: 6447: 6444: 6442: 6439: 6437: 6434: 6433: 6432: 6429: 6428: 6423: 6420: 6418: 6415: 6413: 6410: 6408: 6405: 6403: 6400: 6398: 6395: 6393: 6390: 6388: 6385: 6383: 6380: 6378: 6375: 6373: 6370: 6368: 6365: 6363: 6360: 6358: 6355: 6353: 6350: 6348: 6345: 6343: 6340: 6338: 6335: 6333: 6330: 6329: 6328: 6325: 6324: 6321: 6317: 6314: 6312: 6309: 6307: 6304: 6302: 6299: 6298: 6296: 6294: 6289: 6285: 6282: 6280: 6275: 6271: 6267: 6260: 6255: 6253: 6248: 6246: 6241: 6240: 6237: 6225: 6222: 6220: 6217: 6215: 6212: 6210: 6207: 6205: 6202: 6200: 6197: 6195: 6192: 6190: 6187: 6185: 6182: 6181: 6179: 6175: 6169: 6166: 6164: 6161: 6159: 6156: 6154: 6153:Determination 6151: 6149: 6146: 6144: 6141: 6139: 6136: 6134: 6131: 6130: 6128: 6126: 6122: 6116: 6113: 6111: 6108: 6106: 6103: 6101: 6100:Determination 6098: 6096: 6093: 6091: 6088: 6086: 6083: 6081: 6078: 6077: 6075: 6073: 6069: 6065: 6058: 6053: 6051: 6046: 6044: 6039: 6038: 6035: 6021: 6018: 6016: 6013: 6011: 6008: 6007: 6006: 6003: 6001: 5998: 5996: 5995:Chromoprotein 5993: 5991: 5988: 5984: 5981: 5979: 5976: 5974: 5971: 5970: 5969: 5966: 5964: 5961: 5959: 5956: 5955: 5953: 5949: 5943: 5940: 5938: 5935: 5933: 5930: 5929: 5927: 5923: 5917: 5914: 5912: 5909: 5907: 5904: 5902: 5899: 5897: 5894: 5892: 5889: 5888: 5886: 5882: 5878: 5871: 5866: 5864: 5859: 5857: 5852: 5851: 5848: 5836: 5833: 5832: 5830: 5826: 5820: 5819:SH2-like fold 5817: 5815: 5812: 5810: 5807: 5805: 5802: 5801: 5799: 5795: 5789: 5786: 5784: 5781: 5779: 5778:Rossmann fold 5776: 5774: 5771: 5769: 5766: 5764: 5761: 5760: 5758: 5754: 5748: 5745: 5743: 5740: 5738: 5735: 5733: 5730: 5729: 5727: 5723: 5717: 5714: 5712: 5709: 5707: 5704: 5702: 5699: 5697: 5694: 5693: 5691: 5687: 5681: 5678: 5676: 5673: 5671: 5668: 5667: 5665: 5661: 5657: 5650: 5645: 5643: 5638: 5636: 5631: 5630: 5627: 5621: 5618: 5617: 5613: 5604: 5600: 5593: 5590: 5585: 5581: 5577: 5570: 5567: 5562: 5558: 5554: 5550: 5546: 5542: 5538: 5534: 5530: 5526: 5519: 5517: 5513: 5509: 5508: 5503: 5497: 5495: 5491: 5479: 5475: 5470: 5465: 5461: 5457: 5450: 5447: 5436: 5433: 5426: 5423: 5418: 5414: 5410: 5406: 5402: 5398: 5391: 5388: 5383: 5379: 5375: 5371: 5367: 5363: 5359: 5355: 5351: 5347: 5340: 5337: 5325: 5321: 5315: 5312: 5300: 5294: 5291: 5279: 5275: 5269: 5266: 5261: 5257: 5252: 5247: 5242: 5237: 5233: 5229: 5225: 5221: 5217: 5210: 5207: 5202: 5198: 5193: 5188: 5183: 5178: 5174: 5170: 5166: 5162: 5158: 5151: 5148: 5143: 5139: 5134: 5129: 5125: 5121: 5117: 5110: 5107: 5099: 5093: 5090: 5085: 5078: 5075: 5070: 5066: 5062: 5058: 5055:(3): 835–48. 5054: 5050: 5043: 5040: 5035: 5031: 5026: 5021: 5017: 5013: 5009: 5005: 5001: 4994: 4991: 4986: 4982: 4977: 4972: 4967: 4962: 4958: 4954: 4951:(4): 1525–9. 4950: 4946: 4942: 4935: 4933: 4929: 4924: 4920: 4916: 4912: 4908: 4904: 4900: 4896: 4892: 4888: 4881: 4879: 4877: 4873: 4868: 4864: 4860: 4854: 4850: 4846: 4842: 4835: 4832: 4827: 4823: 4819: 4815: 4812:(6): 851–62. 4811: 4807: 4800: 4797: 4792: 4788: 4783: 4778: 4773: 4768: 4764: 4760: 4756: 4752: 4748: 4744: 4737: 4734: 4729: 4725: 4721: 4717: 4713: 4709: 4704: 4699: 4696:(3): 167–95. 4695: 4691: 4684: 4682: 4680: 4676: 4668: 4664: 4660: 4656: 4652: 4648: 4644: 4637: 4630: 4627: 4616: 4612: 4606: 4603: 4598: 4594: 4590: 4586: 4582: 4578: 4571: 4568: 4562: 4557: 4553: 4546: 4539: 4536: 4531: 4527: 4522: 4517: 4512: 4507: 4503: 4499: 4495: 4491: 4487: 4480: 4477: 4472: 4468: 4463: 4458: 4454: 4450: 4446: 4442: 4438: 4434: 4430: 4423: 4420: 4415: 4411: 4406: 4401: 4397: 4393: 4390:(11): 860–9. 4389: 4385: 4381: 4374: 4371: 4366: 4362: 4358: 4354: 4351:(1): 660–76. 4350: 4346: 4339: 4336: 4331: 4327: 4323: 4319: 4315: 4311: 4308:(3): 207–12. 4307: 4303: 4296: 4293: 4288: 4284: 4279: 4274: 4269: 4264: 4260: 4256: 4252: 4248: 4244: 4237: 4234: 4229: 4225: 4221: 4217: 4214:(4): 865–73. 4213: 4209: 4202: 4199: 4194: 4188: 4184: 4180: 4176: 4169: 4166: 4161: 4157: 4152: 4147: 4142: 4137: 4133: 4129: 4125: 4121: 4117: 4110: 4108: 4104: 4099: 4095: 4090: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4050: 4048: 4044: 4039: 4035: 4031: 4027: 4023: 4019: 4012: 4010: 4008: 4004: 3999: 3995: 3991: 3989:9780124116368 3985: 3981: 3977: 3973: 3966: 3964: 3960: 3955: 3951: 3947: 3943: 3939: 3935: 3931: 3924: 3922: 3920: 3918: 3916: 3912: 3907: 3903: 3898: 3893: 3889: 3885: 3881: 3874: 3872: 3870: 3868: 3864: 3859: 3855: 3851: 3847: 3843: 3839: 3832: 3829: 3824: 3820: 3816: 3812: 3808: 3804: 3796: 3793: 3788: 3784: 3779: 3774: 3770: 3766: 3762: 3755: 3752: 3747: 3743: 3738: 3733: 3730:(9): 445–56. 3729: 3725: 3721: 3714: 3711: 3706: 3702: 3698: 3694: 3690: 3686: 3679: 3677: 3675: 3671: 3666: 3662: 3657: 3652: 3648: 3644: 3640: 3636: 3632: 3625: 3622: 3617: 3611: 3607: 3606: 3598: 3595: 3582: 3575: 3568: 3566: 3562: 3557: 3553: 3549: 3545: 3541: 3537: 3529: 3526: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3493: 3486: 3483: 3478: 3474: 3470: 3466: 3462: 3458: 3454: 3450: 3446: 3442: 3435: 3432: 3427: 3423: 3419: 3415: 3411: 3407: 3400: 3398: 3394: 3389: 3385: 3381: 3377: 3372: 3367: 3363: 3359: 3355: 3348: 3346: 3344: 3342: 3338: 3333: 3329: 3324: 3319: 3314: 3309: 3305: 3301: 3297: 3293: 3289: 3282: 3279: 3274: 3270: 3266: 3262: 3258: 3251: 3249: 3245: 3240: 3236: 3231: 3226: 3221: 3216: 3212: 3208: 3204: 3200: 3196: 3189: 3186: 3181: 3177: 3173: 3169: 3165: 3161: 3154: 3151: 3146: 3142: 3137: 3132: 3128: 3124: 3120: 3116: 3112: 3105: 3102: 3097: 3093: 3088: 3083: 3079: 3075: 3071: 3067: 3063: 3059: 3055: 3048: 3045: 3040: 3036: 3031: 3026: 3023:(3): 259–65. 3022: 3018: 3014: 3007: 3004: 2999: 2995: 2991: 2987: 2982: 2977: 2973: 2969: 2968:FASEB Journal 2965: 2958: 2955: 2950: 2946: 2942: 2938: 2934: 2930: 2923: 2920: 2915: 2911: 2907: 2903: 2899: 2895: 2891: 2887: 2880: 2878: 2874: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2826: 2824: 2822: 2818: 2813: 2809: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2777: 2770: 2768: 2766: 2764: 2762: 2760: 2756: 2751: 2747: 2742: 2737: 2733: 2729: 2725: 2721: 2717: 2710: 2707: 2702: 2698: 2693: 2688: 2684: 2680: 2676: 2672: 2668: 2661: 2658: 2653: 2649: 2644: 2639: 2635: 2631: 2627: 2623: 2619: 2612: 2609: 2604: 2600: 2595: 2590: 2585: 2580: 2576: 2572: 2567: 2562: 2558: 2554: 2550: 2543: 2540: 2535: 2531: 2526: 2521: 2517: 2513: 2509: 2505: 2500: 2495: 2492:(5): 2252–8. 2491: 2487: 2483: 2476: 2473: 2468: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2425: 2422: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2389: 2382: 2379: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2339: 2336: 2331: 2327: 2323: 2319: 2314: 2309: 2305: 2301: 2300:FASEB Journal 2297: 2290: 2287: 2276: 2272: 2265: 2262: 2257: 2253: 2248: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2213: 2208: 2204: 2200: 2196: 2192: 2188: 2181: 2178: 2167: 2161: 2156: 2155: 2149: 2142: 2139: 2127: 2123: 2117: 2114: 2109: 2103: 2100:. Macmillan. 2099: 2098: 2090: 2088: 2086: 2082: 2077: 2073: 2068: 2063: 2058: 2053: 2048: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2013: 2008: 2004: 1999: 1994: 1989: 1984: 1980: 1976: 1972: 1968: 1964: 1957: 1954: 1949: 1943: 1939: 1932: 1930: 1928: 1926: 1924: 1922: 1920: 1918: 1914: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1874: 1871: 1866: 1862: 1858: 1854: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1809: 1806: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1770: 1767: 1762: 1758: 1754: 1750: 1747:(4): R81-91. 1746: 1742: 1735: 1732: 1727: 1723: 1719: 1715: 1711: 1707: 1700: 1697: 1692: 1688: 1683: 1678: 1674: 1670: 1666: 1662: 1658: 1651: 1648: 1643: 1637: 1633: 1626: 1623: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1575: 1573: 1569: 1564: 1558: 1554: 1550: 1546: 1539: 1536: 1531: 1527: 1522: 1517: 1513: 1509: 1506:(4): 737–49. 1505: 1501: 1497: 1490: 1487: 1482: 1476: 1472: 1468: 1464: 1458: 1455: 1448: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1384: 1379: 1377: 1375: 1371: 1365: 1363: 1359: 1355: 1351: 1347: 1342: 1340: 1336: 1332: 1327: 1325: 1321: 1317: 1312: 1310: 1306: 1302: 1298: 1294: 1290: 1289: 1284: 1283: 1275: 1270: 1263: 1261: 1258: 1253: 1249: 1247: 1243: 1239: 1235: 1231: 1226: 1224: 1220: 1216: 1215:Peter Wolynes 1212: 1208: 1199: 1192: 1190: 1188: 1183: 1179: 1174: 1163: 1156: 1154: 1152: 1144: 1142: 1140: 1136: 1131: 1123: 1121: 1119: 1115: 1108: 1106: 1104: 1103:Bengt Nölting 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1063: 1061: 1059: 1055: 1050: 1046: 1041: 1033: 1031: 1029: 1025: 1020: 1018: 1013: 1010: 1005: 995: 991: 989: 985: 981: 977: 973: 969: 963: 955: 953: 951: 943: 939: 935: 931: 923: 921: 919: 918:chevron plots 915: 911: 907: 903: 899: 895: 891: 887: 886:alpha helices 883: 879: 874: 866: 864: 862: 859:and derive a 858: 854: 849: 844: 841: 836: 829: 827: 825: 821: 820:phase problem 817: 812: 806: 801: 794: 792: 790: 786: 778: 776: 774: 770: 766: 762: 758: 754: 749: 745: 741: 738: 734: 730: 726: 722: 718: 714: 710: 706: 701: 699: 694: 689: 683: 675: 673: 671: 667: 659: 657: 655: 651: 647: 643: 638: 633: 629: 628: 622: 620: 616: 612: 607: 605: 601: 596: 592: 591:precipitation 587: 583: 579: 575: 571: 566: 564: 560: 556: 555: 549: 545: 541: 537: 533: 529: 528: 523: 517: 512: 505: 503: 501: 497: 491: 488: 484: 480: 476: 454: 452: 448: 444: 435: 431: 424: 422: 420: 414: 412: 408: 404: 400: 396: 395:lipid bilayer 392: 388: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 337:Folding is a 331: 324: 322: 317: 309: 307: 304: 300: 296: 292: 285: 277: 275: 273: 268: 264: 263:Linus Pauling 260: 257: 253: 249: 248:alpha helices 245: 237: 232: 225: 220: 215: 207: 205: 200: 192: 187: 185: 183: 178: 176: 172: 171:contact order 167: 163: 159: 154: 152: 148: 144: 140: 136: 132: 130: 126: 125:immune system 122: 118: 114: 111: 107: 103: 99: 95: 90: 88: 84: 78: 76: 72: 68: 64: 60: 56: 52: 48: 40: 32: 19: 6941:SUMO protein 6278: 6204:Nucleic acid 6125:Nucleic acid 5900: 5725:All-β folds: 5696:Helix bundle 5689:All-α folds: 5674: 5602: 5592: 5569: 5528: 5524: 5505: 5481:. Retrieved 5459: 5449: 5438:. Retrieved 5434: 5425: 5403:(1): 43–48. 5400: 5397:J. Mol. Biol 5396: 5390: 5349: 5345: 5339: 5327:. Retrieved 5323: 5314: 5302:. Retrieved 5293: 5281:. Retrieved 5277: 5268: 5223: 5219: 5209: 5164: 5160: 5150: 5123: 5119: 5109: 5092: 5077: 5052: 5048: 5042: 5007: 5003: 4993: 4948: 4944: 4890: 4886: 4840: 4834: 4809: 4805: 4799: 4754: 4750: 4736: 4693: 4689: 4667:the original 4646: 4642: 4629: 4618:. Retrieved 4614: 4605: 4580: 4577:Biochemistry 4576: 4570: 4551: 4538: 4493: 4489: 4479: 4436: 4432: 4422: 4387: 4383: 4373: 4348: 4344: 4338: 4305: 4301: 4295: 4250: 4246: 4236: 4211: 4207: 4201: 4174: 4168: 4123: 4119: 4063: 4059: 4021: 4017: 3971: 3937: 3933: 3887: 3883: 3841: 3837: 3831: 3806: 3803:Biochemistry 3802: 3795: 3768: 3764: 3754: 3727: 3723: 3713: 3688: 3684: 3638: 3634: 3624: 3604: 3597: 3585:. Retrieved 3580: 3539: 3535: 3528: 3495: 3491: 3485: 3444: 3440: 3434: 3412:(3): 150–5. 3409: 3405: 3361: 3357: 3295: 3291: 3281: 3264: 3260: 3202: 3198: 3188: 3163: 3159: 3153: 3118: 3114: 3104: 3064:(2): 595–9. 3061: 3057: 3047: 3020: 3016: 3006: 2974:(1): 27–34. 2971: 2967: 2957: 2932: 2928: 2922: 2889: 2885: 2835: 2831: 2779: 2775: 2723: 2719: 2709: 2674: 2670: 2660: 2625: 2621: 2611: 2556: 2552: 2542: 2489: 2485: 2475: 2434: 2430: 2424: 2391: 2387: 2381: 2348: 2344: 2338: 2306:(1): 75–83. 2303: 2299: 2289: 2278:. Retrieved 2274: 2264: 2229: 2225: 2215: 2193:(1): 25–31. 2190: 2186: 2180: 2169:. Retrieved 2153: 2141: 2130:. Retrieved 2125: 2116: 2096: 2029: 2025: 2015: 1970: 1966: 1956: 1937: 1883: 1879: 1873: 1848:1887/3277889 1822: 1818: 1808: 1786:(1): 76–88. 1783: 1779: 1769: 1744: 1740: 1734: 1709: 1705: 1699: 1664: 1660: 1650: 1631: 1625: 1584: 1580: 1553:Biochemistry 1552: 1538: 1503: 1499: 1489: 1470: 1457: 1392:Chevron plot 1366: 1343: 1328: 1320:Folding@home 1316:Rosetta@home 1313: 1286: 1280: 1279: 1254: 1250: 1230:José Onuchic 1227: 1222: 1218: 1204: 1169: 1160: 1148: 1127: 1112: 1095:Chris Dobson 1067: 1049:conformation 1043: 1021: 1014: 1001: 965: 927: 910:stopped flow 876: 857:chevron plot 853:stopped flow 845: 833: 809: 782: 759:-associated 729:Huntington's 702: 685: 663: 641: 625: 623: 608: 567: 558: 552: 547: 525: 520: 492: 471: 439: 415: 375:biosynthesis 336: 319: 287: 272:peptide bond 241: 202: 179: 155: 135:Denaturation 133: 91: 83:native state 79: 46: 45: 7035:neddylation 6301:Hsp10/GroES 6293:Chaperonins 6015:Phytochrome 6005:Biliprotein 5737:Beta barrel 5701:Globin fold 4384:Biopolymers 3587:November 3, 1437:Proteopathy 1223:frustration 1114:Proteolysis 1109:Proteolysis 1099:Alan Fersht 1058:temperature 962:Protein NMR 902:free energy 898:temperature 890:beta sheets 757:antitrypsin 753:proteopathy 682:Proteopathy 570:random coil 487:amphiphilic 407:temperature 367:synthesized 303:topological 252:beta sheets 224:alpha helix 71:random coil 67:amino acids 53:by which a 7092:Categories 6327:Hsp40/DnaJ 6274:Chaperones 6199:Proteasome 6158:Prediction 6148:Quaternary 6105:Prediction 6095:Quaternary 5942:Proteasome 5925:Structures 5797:α+β folds: 5763:TIM barrel 5756:α/β folds: 5747:Beta helix 5716:Death fold 5440:2020-11-30 4743:Onuchic JN 4620:2016-11-05 3498:: 333–66. 2935:: 323–55. 2280:2016-11-26 2171:2016-11-26 2132:2016-11-26 1712:: 631–60. 1449:References 1182:picosecond 1178:nanosecond 1139:SH3 domain 1083:Harry Gray 998:timescale. 506:Chaperones 411:chaperones 363:C-terminal 359:N-terminus 129:antibodies 104:and other 6613:Ubiquitin 6559:Clusterin 6138:Secondary 6085:Secondary 6020:Lipocalin 5884:Processes 5835:Conotoxin 5804:DNA clamp 5561:227243204 5478:247206999 5082:Jones D. 4649:: 44–45. 3940:: 52–77. 3691:: 29–37. 3685:Biochimie 2158:. Wiley. 2042:CiteSeerX 1865:237583577 1463:Alberts B 1346:AlphaFold 1301:in silico 1288:ab initio 1009:spin echo 803:Steps of 761:emphysema 748:Tafamidis 688:misfolded 615:egg white 595:insoluble 576:known as 121:allergies 59:synthesis 18:Misfolded 6893:Ataxin 3 6177:See also 6143:Tertiary 6090:Tertiary 5973:Globulin 5911:Proteome 5877:Proteins 5553:33257889 5483:25 March 5417:20974152 5382:27988268 5374:22034434 5329:14 March 5320:"Foldit" 5304:14 March 5283:14 March 5260:23045636 5201:17636132 5142:27333362 5034:23266569 4985:10677494 4915:23180855 4867:19121702 4728:13838095 4690:Proteins 4597:24187909 4530:22949695 4471:21750539 4414:23784721 4365:24001118 4330:21364478 4322:15782190 4287:23056252 4247:PLOS ONE 4228:11575938 4160:27791136 4098:19289032 4038:22554188 3998:23954103 3954:28552172 3858:16683754 3823:22640394 3746:16087653 3705:26607240 3665:14573942 3556:16359163 3520:23797549 3512:16756495 3477:30829998 3469:12560553 3426:16473510 3388:23370420 3380:16689923 3332:29784778 3239:18664583 3180:16716593 3145:10601015 3096:20643079 3039:15943899 2998:24066207 2949:23746257 2906:21776078 2804:14685248 2750:30692195 2720:Genetics 2701:30026186 2671:Genetics 2652:28642936 2534:11053106 2459:15229605 2373:27113763 2365:25204743 2345:Proteins 2330:20021399 2256:10921869 2207:21111607 2126:Scitable 2076:17075053 2007:17609385 1857:34545868 1800:15102453 1691:33142107 1609:14685251 1547:(2002). 1545:Stryer L 1380:See also 1354:DeepMind 1071:dynamics 966:Protein 914:kinetics 767:and the 693:β-sheets 586:bacteria 559:in vivo. 554:in vitro 532:catalyst 447:enthalpy 371:ribosome 299:cysteine 267:backbone 106:diseases 63:ribosome 57:, after 6816:(CDC34) 6184:Protein 6133:Primary 6080:Primary 6072:Protein 5983:Albumin 5978:Edestin 5663:General 5584:Twitter 5533:Bibcode 5507:Science 5354:Bibcode 5346:Science 5324:fold.it 5251:3491489 5228:Bibcode 5192:1941469 5169:Bibcode 5069:9826519 5025:4084838 4953:Bibcode 4923:5756068 4895:Bibcode 4887:Science 4814:Bibcode 4791:1528885 4759:Bibcode 4720:7784423 4651:Bibcode 4552:bioRxiv 4521:3497811 4498:Bibcode 4462:3144584 4441:Bibcode 4439:: 385. 4405:4065244 4278:3463568 4255:Bibcode 4151:5111666 4128:Bibcode 4089:2717354 4068:Bibcode 3906:2266107 3787:9660761 3643:Bibcode 3449:Bibcode 3441:Science 3323:6003340 3300:Bibcode 3273:9556522 3230:2490668 3207:Bibcode 3136:1171756 3087:2905109 3066:Bibcode 2990:8566543 2914:4337671 2868:4347271 2860:8637592 2840:Bibcode 2812:1036192 2784:Bibcode 2741:6456324 2692:6116962 2643:5476217 2603:8790365 2571:Bibcode 2525:1301114 2504:Bibcode 2467:4315026 2439:Bibcode 2396:Bibcode 2388:Science 2322:8566551 2067:1636505 2034:Bibcode 1998:1906725 1975:Bibcode 1908:4124164 1888:Bibcode 1880:Science 1827:Bibcode 1761:9710577 1726:2197986 1682:7732725 1617:6451881 1589:Bibcode 1530:4565129 1521:1173893 1282:De novo 978:,  948:O), or 818:, the " 740:fibrils 737:amyloid 698:amyloid 642:E. coli 627:E. coli 600:solutes 574:enzymes 548:in vivo 527:in vivo 496:de novo 481:). The 451:entropy 387:solvent 369:by the 143:cooking 119:. Many 113:fibrils 110:amyloid 55:protein 49:is the 6860:Cullin 6163:Design 6110:Design 5559:  5551:  5525:Nature 5476:  5415:  5380:  5372:  5258:  5248:  5199:  5189:  5140:  5067:  5032:  5022:  4983:  4973:  4921:  4913:  4865:  4855:  4789:  4779:  4726:  4718:  4595:  4528:  4518:  4469:  4459:  4412:  4402:  4363:  4328:  4320:  4285:  4275:  4226:  4189:  4158:  4148:  4096:  4086:  4036:  3996:  3986:  3952:  3904:  3856:  3821:  3785:  3744:  3703:  3663:  3612:  3554:  3518:  3510:  3475:  3467:  3424:  3386:  3378:  3330:  3320:  3271:  3237:  3227:  3178:  3143:  3133:  3094:  3084:  3037:  2996:  2988:  2947:  2912:  2904:  2886:Nature 2866:  2858:  2832:Nature 2810:  2802:  2776:Nature 2748:  2738:  2699:  2689:  2650:  2640:  2601:  2591:  2532:  2522:  2465:  2457:  2431:Nature 2416:653353 2414:  2371:  2363:  2328:  2320:  2254:  2247:306593 2244:  2205:  2162:  2104:  2074:  2064:  2044:  2005:  1995:  1944:  1906:  1863:  1855:  1798:  1759:  1724:  1689:  1679:  1638:  1615:  1607:  1581:Nature 1559:  1528:  1518:  1477:  1324:Foldit 1246:design 637:P17313 405:, the 401:, the 173:, and 166:domain 117:prions 7051:ATG12 7041:FAT10 7031:NEDD8 7016:ISG15 7009:Other 6998:PIAS4 6993:PIAS3 6988:PIAS2 6983:PIAS1 6933:(UBL) 6915:BIRC6 6875:FANCL 6547:Other 6536:TRAP1 6505:Hsp90 6431:Hsp70 6320:GroEL 6316:HSP60 6311:Hsp47 6306:Hsp27 5951:Types 5580:Tweet 5557:S2CID 5474:S2CID 5378:S2CID 4976:26468 4919:S2CID 4782:49992 4724:S2CID 4698:arXiv 4670:(PDF) 4639:(PDF) 4548:(PDF) 4326:S2CID 3577:(PDF) 3516:S2CID 3473:S2CID 3384:S2CID 2994:S2CID 2910:S2CID 2864:S2CID 2808:S2CID 2594:38463 2561:arXiv 2494:arXiv 2463:S2CID 2369:S2CID 2326:S2CID 1861:S2CID 1613:S2CID 1348:, an 1335:ASICs 1331:Anton 976:TOCSY 942:FT-IR 705:prion 654:GroEL 650:virus 646:GroES 593:into 399:salts 391:water 147:burns 61:by a 7066:UBL5 7056:FUB1 7046:ATG8 7026:UFM1 7021:URM1 6971:UBC9 6959:SAE2 6954:SAE1 6920:UFC1 6910:ATG3 6903:CYLD 6898:USP6 6880:UBR1 6870:MDM2 6669:SAE1 6664:NAE1 6659:ATG7 6654:UBA7 6649:UBA6 6644:UBA5 6639:UBA3 6634:UBA2 6629:UBA1 6574:SMN2 6569:SMN1 5549:PMID 5485:2022 5435:CNBC 5413:PMID 5370:PMID 5331:2023 5306:2023 5285:2023 5256:PMID 5197:PMID 5138:PMID 5065:PMID 5030:PMID 4981:PMID 4911:PMID 4863:PMID 4853:ISBN 4787:PMID 4716:PMID 4593:PMID 4526:PMID 4467:PMID 4410:PMID 4361:PMID 4318:PMID 4283:PMID 4224:PMID 4187:ISBN 4156:PMID 4094:PMID 4034:PMID 3994:PMID 3984:ISBN 3950:PMID 3902:PMID 3854:PMID 3819:PMID 3783:PMID 3742:PMID 3701:PMID 3661:PMID 3610:ISBN 3589:2016 3552:PMID 3508:PMID 3465:PMID 3422:PMID 3376:PMID 3328:PMID 3269:PMID 3235:PMID 3176:PMID 3141:PMID 3092:PMID 3035:PMID 2986:PMID 2945:PMID 2902:PMID 2856:PMID 2800:PMID 2746:PMID 2697:PMID 2648:PMID 2599:PMID 2530:PMID 2455:PMID 2412:PMID 2361:PMID 2318:PMID 2252:PMID 2203:PMID 2160:ISBN 2102:ISBN 2072:PMID 2003:PMID 1942:ISBN 1904:PMID 1853:PMID 1796:PMID 1757:PMID 1722:PMID 1687:PMID 1636:ISBN 1605:PMID 1557:ISBN 1526:PMID 1475:ISBN 1358:CASP 1322:and 1244:and 1205:The 1028:SOD1 980:HSQC 972:COSY 888:and 731:and 719:and 538:and 449:and 250:and 222:The 7061:MUB 6865:CBL 6855:VHL 6848:E3 6677:E2 6622:E1 6491:12A 6422:C19 6417:C14 6412:C13 6407:C11 6402:C10 6357:B11 6214:RNA 6209:DNA 5541:doi 5529:588 5464:doi 5405:doi 5401:405 5362:doi 5350:334 5246:PMC 5236:doi 5224:109 5187:PMC 5177:doi 5165:104 5128:doi 5124:116 5057:doi 5053:284 5020:PMC 5012:doi 5008:531 4971:PMC 4961:doi 4903:doi 4891:338 4845:doi 4822:doi 4810:388 4777:PMC 4767:doi 4708:doi 4659:doi 4585:doi 4556:doi 4516:PMC 4506:doi 4494:109 4457:PMC 4449:doi 4400:PMC 4392:doi 4353:doi 4349:114 4310:doi 4273:PMC 4263:doi 4216:doi 4212:312 4179:doi 4146:PMC 4136:doi 4124:113 4084:PMC 4076:doi 4026:doi 4022:134 3976:doi 3942:doi 3938:100 3892:doi 3888:265 3846:doi 3842:106 3811:doi 3773:doi 3769:273 3732:doi 3693:doi 3689:121 3651:doi 3544:doi 3500:doi 3457:doi 3445:299 3414:doi 3366:doi 3362:273 3318:PMC 3308:doi 3296:115 3225:PMC 3215:doi 3203:105 3168:doi 3131:PMC 3123:doi 3082:PMC 3074:doi 3025:doi 2976:doi 2937:doi 2894:doi 2890:475 2848:doi 2836:381 2792:doi 2780:426 2736:PMC 2728:doi 2724:211 2687:PMC 2679:doi 2675:210 2638:PMC 2630:doi 2589:PMC 2579:doi 2520:PMC 2512:doi 2447:doi 2435:430 2404:doi 2392:200 2353:doi 2308:doi 2242:PMC 2234:doi 2195:doi 2062:PMC 2052:doi 2030:103 1993:PMC 1983:doi 1971:104 1896:doi 1884:181 1843:hdl 1835:doi 1788:doi 1749:doi 1714:doi 1677:PMC 1669:doi 1665:119 1597:doi 1585:426 1516:PMC 1508:doi 1504:128 1285:or 1180:or 988:NOE 723:or 393:or 7094:: 6891:: 6835:V2 6830:V1 6820:R2 6814:R1 6809:Q2 6804:Q1 6784:L6 6779:L4 6774:L3 6769:L2 6764:L1 6754:J2 6749:J1 6734:G2 6729:G1 6724:E3 6719:E2 6714:E1 6709:D3 6704:D2 6699:D1 6531:ER 6496:14 6461:4L 6446:1L 6441:1B 6436:1A 6397:C7 6392:C6 6387:C5 6382:C3 6377:C1 6372:B9 6367:B6 6362:B4 6352:B2 6347:B1 6342:A3 6337:A2 6332:A1 5601:. 5555:. 5547:. 5539:. 5527:. 5515:^ 5504:, 5493:^ 5472:. 5462:. 5458:. 5411:. 5399:. 5376:. 5368:. 5360:. 5348:. 5322:. 5276:. 5254:. 5244:. 5234:. 5222:. 5218:. 5195:. 5185:. 5175:. 5163:. 5159:. 5136:. 5122:. 5118:. 5063:. 5051:. 5028:. 5018:. 5006:. 5002:. 4979:. 4969:. 4959:. 4949:97 4947:. 4943:. 4931:^ 4917:. 4909:. 4901:. 4889:. 4875:^ 4861:. 4851:. 4820:. 4808:. 4785:. 4775:. 4765:. 4755:89 4753:. 4749:. 4722:. 4714:. 4706:. 4694:21 4692:. 4678:^ 4657:. 4647:65 4645:. 4641:. 4613:. 4591:. 4581:52 4579:. 4554:. 4550:. 4524:. 4514:. 4504:. 4492:. 4488:. 4465:. 4455:. 4447:. 4435:. 4431:. 4408:. 4398:. 4388:99 4386:. 4382:. 4359:. 4347:. 4324:. 4316:. 4304:. 4281:. 4271:. 4261:. 4249:. 4245:. 4222:. 4210:. 4185:. 4177:. 4154:. 4144:. 4134:. 4122:. 4118:. 4106:^ 4092:. 4082:. 4074:. 4064:96 4062:. 4058:. 4046:^ 4032:. 4020:. 4006:^ 3992:. 3982:. 3962:^ 3948:. 3936:. 3932:. 3914:^ 3900:. 3886:. 3882:. 3866:^ 3852:. 3840:. 3817:. 3807:51 3805:. 3781:. 3767:. 3763:. 3740:. 3728:18 3726:. 3722:. 3699:. 3687:. 3673:^ 3659:. 3649:. 3639:59 3637:. 3633:. 3579:. 3564:^ 3550:. 3540:38 3538:. 3514:. 3506:. 3496:75 3494:. 3471:. 3463:. 3455:. 3443:. 3420:. 3410:31 3408:. 3396:^ 3382:. 3374:. 3360:. 3356:. 3340:^ 3326:. 3316:. 3306:. 3294:. 3290:. 3265:63 3263:. 3259:. 3247:^ 3233:. 3223:. 3213:. 3201:. 3197:. 3174:. 3164:31 3162:. 3139:. 3129:. 3119:18 3117:. 3113:. 3090:. 3080:. 3072:. 3062:99 3060:. 3056:. 3033:. 3021:38 3019:. 3015:. 2992:. 2984:. 2972:10 2970:. 2966:. 2943:. 2933:82 2931:. 2908:. 2900:. 2888:. 2876:^ 2862:. 2854:. 2846:. 2834:. 2820:^ 2806:. 2798:. 2790:. 2778:. 2758:^ 2744:. 2734:. 2722:. 2718:. 2695:. 2685:. 2673:. 2669:. 2646:. 2636:. 2624:. 2620:. 2597:. 2587:. 2577:. 2569:. 2557:93 2555:. 2551:. 2528:. 2518:. 2510:. 2502:. 2490:79 2488:. 2484:. 2461:. 2453:. 2445:. 2433:. 2410:. 2402:. 2390:. 2367:. 2359:. 2349:82 2347:. 2324:. 2316:. 2304:10 2302:. 2298:. 2273:. 2250:. 2240:. 2230:19 2228:. 2224:. 2201:. 2191:21 2189:. 2150:. 2124:. 2084:^ 2070:. 2060:. 2050:. 2040:. 2028:. 2024:. 2001:. 1991:. 1981:. 1969:. 1965:. 1916:^ 1902:. 1894:. 1882:. 1859:. 1851:. 1841:. 1833:. 1823:23 1821:. 1817:. 1794:. 1784:14 1782:. 1778:. 1755:. 1743:. 1720:. 1710:59 1708:. 1685:. 1675:. 1663:. 1659:. 1611:. 1603:. 1595:. 1583:. 1571:^ 1551:. 1524:. 1514:. 1502:. 1498:. 1469:. 1318:, 1311:. 1189:. 1153:. 1120:. 1101:, 1097:, 1093:, 1085:, 1060:. 982:, 974:, 952:. 920:. 863:. 763:, 711:, 604:pH 413:. 403:pH 345:, 177:. 149:, 145:, 89:. 7037:) 7033:( 6840:Z 6825:S 6799:O 6794:N 6789:M 6759:K 6744:I 6739:H 6694:C 6689:B 6684:A 6526:β 6520:2 6518:α 6512:1 6510:α 6486:9 6481:8 6476:7 6471:6 6466:5 6456:4 6451:2 6318:/ 6290:/ 6276:/ 6258:e 6251:t 6244:v 6056:e 6049:t 6042:v 5869:e 5862:t 5855:v 5648:e 5641:t 5634:v 5605:. 5586:. 5578:( 5563:. 5543:: 5535:: 5487:. 5466:: 5443:. 5419:. 5407:: 5384:. 5364:: 5356:: 5333:. 5308:. 5287:. 5262:. 5238:: 5230:: 5203:. 5179:: 5171:: 5144:. 5130:: 5103:. 5071:. 5059:: 5036:. 5014:: 4987:. 4963:: 4955:: 4925:. 4905:: 4897:: 4869:. 4847:: 4828:. 4824:: 4816:: 4793:. 4769:: 4761:: 4730:. 4710:: 4700:: 4661:: 4653:: 4623:. 4599:. 4587:: 4564:. 4558:: 4532:. 4508:: 4500:: 4473:. 4451:: 4443:: 4437:2 4416:. 4394:: 4367:. 4355:: 4332:. 4312:: 4306:2 4289:. 4265:: 4257:: 4251:7 4230:. 4218:: 4195:. 4181:: 4162:. 4138:: 4130:: 4100:. 4078:: 4070:: 4040:. 4028:: 4000:. 3978:: 3956:. 3944:: 3908:. 3894:: 3860:. 3848:: 3825:. 3813:: 3789:. 3775:: 3748:. 3734:: 3707:. 3695:: 3667:. 3653:: 3645:: 3618:. 3591:. 3558:. 3546:: 3522:. 3502:: 3479:. 3459:: 3451:: 3428:. 3416:: 3390:. 3368:: 3334:. 3310:: 3302:: 3275:. 3241:. 3217:: 3209:: 3182:. 3170:: 3147:. 3125:: 3098:. 3076:: 3068:: 3041:. 3027:: 3000:. 2978:: 2951:. 2939:: 2916:. 2896:: 2870:. 2850:: 2842:: 2814:. 2794:: 2786:: 2752:. 2730:: 2703:. 2681:: 2654:. 2632:: 2626:1 2605:. 2581:: 2573:: 2563:: 2536:. 2514:: 2506:: 2496:: 2469:. 2449:: 2441:: 2418:. 2406:: 2398:: 2375:. 2355:: 2332:. 2310:: 2283:. 2258:. 2236:: 2209:. 2197:: 2174:. 2135:. 2110:. 2078:. 2054:: 2036:: 2009:. 1985:: 1977:: 1950:. 1910:. 1898:: 1890:: 1867:. 1845:: 1837:: 1829:: 1802:. 1790:: 1763:. 1751:: 1745:3 1728:. 1716:: 1693:. 1671:: 1644:. 1619:. 1599:: 1591:: 1565:. 1532:. 1510:: 1483:. 946:2 389:( 20:)

Index

Misfolded


physical process
protein
synthesis
ribosome
amino acids
random coil
three-dimensional structure
native state
primary structure
may remain unfolded
protein dynamics
neurodegenerative
diseases
amyloid
fibrils
prions
allergies
immune system
antibodies
Denaturation
unfolded state
cooking
burns
proteinopathies
outside the cell
proline isomerization
domain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.