Knowledge (XXG)

Electron transport chain

Source 📝

571:) to Q. Complex II consists of four protein subunits: succinate dehydrogenase (SDHA); succinate dehydrogenase iron–sulfur subunit mitochondrial (SDHB); succinate dehydrogenase complex subunit C (SDHC); and succinate dehydrogenase complex subunit D (SDHD). Other electron donors (e.g., fatty acids and glycerol 3-phosphate) also direct electrons into Q (via FAD). Complex II is a parallel electron transport pathway to Complex I, but unlike Complex I, no protons are transported to the intermembrane space in this pathway. Therefore, the pathway through Complex II contributes less energy to the overall electron transport chain process. 201: 1835: 1207: 1072: 1059:) and four protons, producing two molecules of water. The complex contains coordinated copper ions and several heme groups. At the same time, eight protons are removed from the mitochondrial matrix (although only four are translocated across the membrane), contributing to the proton gradient. The exact details of proton pumping in Complex IV are still under study. 1703: 1796:
Bacterial terminal oxidases can be split into classes according to the molecules act as terminal electron acceptors. Class I oxidases are cytochrome oxidases and use oxygen as the terminal electron acceptor. Class II oxidases are quinol oxidases and can use a variety of terminal electron acceptors.
1688:
Electrons may enter an electron transport chain at the level of a mobile cytochrome or quinone carrier. For example, electrons from inorganic electron donors (nitrite, ferrous iron, electron transport chain) enter the electron transport chain at the cytochrome level. When electrons enter at a redox
1427:
electron carrier. These levels correspond to successively more positive redox potentials, or to successively decreased potential differences relative to the terminal electron acceptor. In other words, they correspond to successively smaller Gibbs free energy changes for the overall redox reaction.
1184:
is the transfer of electrons through the electron transport chain through the reverse redox reactions. Usually requiring a significant amount of energy to be used, this can reduce the oxidized forms of electron donors. For example, NAD can be reduced to NADH by Complex I. There are several factors
283:
of higher redox potential, which in turn donates these electrons to another acceptor, a process that continues down the series until electrons are passed to oxygen, the terminal electron acceptor in the chain. Each reaction releases energy because a higher-energy donor and acceptor convert to
1549:), electron transport chain. Some dehydrogenases are also proton pumps, while others funnel electrons into the quinone pool. Most dehydrogenases show induced expression in the bacterial cell in response to metabolic needs triggered by the environment in which the cells grow. In the case of 1588:
use caldariellaquinone. The use of different quinones is due to slight changes in redox potentials caused by changes in structure. The change in redox potentials of these quinones may be suited to changes in the electron acceptors or variations of redox potentials in bacterial complexes.
1431:
Individual bacteria use multiple electron transport chains, often simultaneously. Bacteria can use a number of different electron donors, a number of different dehydrogenases, a number of different oxidases and reductases, and a number of different electron acceptors. For example,
1758:
As there are a number of different electron donors (organic matter in organotrophs, inorganic matter in lithotrophs), there are a number of different electron acceptors, both organic and inorganic. As with other steps of the ETC, an enzyme is required to help with the process.
1439:
A common feature of all electron transport chains is the presence of a proton pump to create an electrochemical gradient over a membrane. Bacterial electron transport chains may contain as many as three proton pumps, like mitochondria, or they may contain two or at least one.
192:, the electron transport chain can vary between species but it always constitutes a set of redox reactions that are coupled to the synthesis of ATP through the generation of an electrochemical gradient and oxidative phosphorylation through ATP synthase. 1436:(when growing aerobically using glucose and oxygen as an energy source) uses two different NADH dehydrogenases and two different quinol oxidases, for a total of four different electron transport chains operating simultaneously. 1532:
Bacteria can use several different electron donors. When organic matter is the electron source, the donor may be NADH or succinate, in which case electrons enter the electron transport chain via NADH dehydrogenase (similar to
1669:
Some cytochromes are water-soluble carriers that shuttle electrons to and from large, immobile macromolecular structures imbedded in the membrane. The mobile cytochrome electron carrier in mitochondria is cytochrome
1615:. The same effect can be produced by moving electrons in the opposite direction. The result is the disappearance of a proton from the cytoplasm and the appearance of a proton in the periplasm. Mitochondrial 1130:
that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c subunits. Protons in the inter-membrane space of mitochondria first enter the ATP synthase complex through an
1800:
Mostly in anaerobic environments different electron acceptors are used, including nitrate, nitrite, ferric iron, sulfate, carbon dioxide, and small organic molecules such as fumarate. When bacteria grow in
1185:
that have been shown to induce reverse electron flow. However, more work needs to be done to confirm this. One example is blockage of ATP synthase, resulting in a build-up of protons and therefore a higher
1797:
Both of these classes can be subdivided into categories based on what redox-active components they contain. E.g. Heme aa3 Class 1 terminal oxidases are much more efficient than Class 2 terminal oxidases.
1010:
When electron transfer is reduced (by a high membrane potential or respiratory inhibitors such as antimycin A), Complex III may leak electrons to molecular oxygen, resulting in superoxide formation.
532:. During this process, four protons are translocated from the mitochondrial matrix to the intermembrane space. As the electrons move through the complex an electron current is produced along the 180 296:
since ADP is phosphorylated to ATP by using the electrochemical gradient that the redox reactions of the electron transport chain have established driven by energy-releasing reactions of oxygen.
483:), freely diffuses within the membrane, and Complex I translocates four protons (H) across the membrane, thus producing a proton gradient. Complex I is one of the main sites at which premature 123:, is used by the complexes in the electron transport chain to create an electrochemical gradient of ions. It is this electrochemical gradient that drives the synthesis of ATP via coupling with 3643: 119:
of reactants and products. The free energy released when a higher-energy electron donor and acceptor convert to lower-energy products, while electrons are transferred from a lower to a higher
1809:
can use fumarate reductase, nitrate reductase, nitrite reductase, DMSO reductase, or trimethylamine-N-oxide reductase, depending on the availability of these acceptors in the environment.
1370:) the situation is more complicated, because there are several different electron donors and several different electron acceptors. The generalized electron transport chain in bacteria is: 1865:
Photosynthetic electron transport chains, like the mitochondrial chain, can be considered as a special case of the bacterial systems. They use mobile, lipid-soluble quinone carriers (
1862:
is used to create a high-energy electron donor which can subsequently reduce oxidized components and couple to ATP synthesis via proton translocation by the electron transport chain.
1161:
Coupling with oxidative phosphorylation is a key step for ATP production. However, in specific cases, uncoupling the two processes may be biologically useful. The uncoupling protein,
845: 975: 1501:. Lithotrophs have been found growing in rock formations thousands of meters below the surface of Earth. Because of their volume of distribution, lithotrophs may actually outnumber 929: 799: 905: 1005: 875: 775: 730: 678: 1570:
are mobile, lipid-soluble carriers that shuttle electrons (and protons) between large, relatively immobile macromolecular complexes embedded in the membrane. Bacteria use
1559:, the enzyme is used aerobically and in combination with other dehydrogenases. It is inducible and is expressed when the concentration of DL-lactate in the cell is high. 271:
pass through the electron transport chain to oxygen, which provides the energy driving the process as it is reduced to water. The electron transport chain comprises an
3982: 3636: 1541:). Other dehydrogenases may be used to process different energy sources: formate dehydrogenase, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, H 3916: 3171: 1169:—provides for an alternative flow of protons back to the inner mitochondrial matrix. Thyroxine is also a natural uncoupler. This alternative flow results in 3629: 1448:
In the current biosphere, the most common electron donors are organic molecules. Organisms that use organic molecules as an electron source are called
1727: 1224: 3887: 736:
site. (In total, four protons are translocated: two protons reduce quinone to quinol and two protons are released from two ubiquinol molecules.)
628:, a water-soluble electron carrier located within the intermembrane space. The two other electrons sequentially pass across the protein to the Q 2788: 2751: 2683: 2660: 2641: 2620: 2601: 2456: 2299: 2196: 1963: 3035: 1099:
are coupled by a proton gradient across the inner mitochondrial membrane. The efflux of protons from the mitochondrial matrix creates an
4012: 1626:
Some dehydrogenases are proton pumps, while others are not. Most oxidases and reductases are proton pumps, but some are not. Cytochrome
1271: 292:
into the intermembrane space, producing a state of higher free energy that has the potential to do work. This entire process is called
3769: 3688: 2828:"SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress" 1243: 1135:
subunit channel. Then protons move to the c subunits. The number of c subunits determines how many protons are required to make the F
479:), two electrons are removed from NADH and transferred to a lipid-soluble carrier, ubiquinone (Q). The reduced product, ubiquinol (QH 1745: 1290: 341: 261: 154: 1762:
If oxygen is available, it is most often used as the terminal electron acceptor in aerobic bacteria and facultative anaerobes. An
1793:
complex. Under aerobic conditions, it uses two different terminal quinol oxidases (both proton pumps) to reduce oxygen to water.
1689:
level greater than NADH, the electron transport chain must operate in reverse to produce this necessary, higher-energy molecule.
316:) across the inner mitochondrial membrane. This proton gradient is largely but not exclusively responsible for the mitochondrial 1250: 3166: 200: 3926: 3756: 3744: 3693: 1829: 1228: 4007: 3765: 3569: 1257: 402:
electron carriers and water-soluble electron carriers. The overall electron transport chain can be summarized as follows:
3752: 1723:
We talk as if oxidases are not also reductases, and as if reductases are not also oxidizing something. That's messed up.
257: 143: 1718: 568: 265: 158: 2985: 1239: 1524:. This type of metabolism must logically have preceded the use of organic molecules and oxygen as an energy source. 613:
contributes to the proton gradient by an asymmetric absorption/release of protons. Two electrons are removed from QH
304:
Energy associated with the transfer of electrons down the electron transport chain is used to pump protons from the
3076: 1151:
produced during the generation of the oxidized forms of the electron carriers (NAD and Q) with energy provided by O
1217: 3853: 3440: 3362: 3117: 2019:"Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems" 1847: 1096: 313: 293: 209: 139: 124: 3808: 3683: 3460: 3181: 3028: 2989: 2522: 1825: 1100: 1088: 1042: 603: 557: 473: 309: 169: 89: 2995: 521: 3455: 1685:. They also function as electron carriers, but in a very different, intramolecular, solid-state environment. 1139:
turn one full revolution. For example, in humans, there are 8 c subunits, thus 8 protons are required. After
803: 3873: 3789: 3700: 3554: 3303: 3298: 3284: 3259: 2743: 1902: 1802: 933: 909: 779: 553: 353: 632:
site where the quinone part of ubiquinone is reduced to quinol. A proton gradient is formed by one quinol (
3832: 3781: 3748: 3589: 3523: 3409: 3404: 3109: 2474:"Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages" 584: 549: 357: 173: 93: 3726: 3594: 3559: 3515: 3279: 3138: 2373: 1550: 1190: 1181: 879: 501: 469: 463: 391: 329: 253: 249: 105: 2826:
Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, et al. (January 2010).
1148: 979: 528:) form of Q, and transfer of the second electron reduces the semiquinone form to the ubiquinol form, QH 524:, from the Fe-S cluster to ubiquinone (Q). Transfer of the first electron results in the free-radical ( 1264: 849: 484: 17: 3897: 3827: 3715: 3533: 3238: 3214: 3176: 2925: 2768: 2675: 2120:
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. (July 2018).
1855: 1783: 1775: 1303:
In eukaryotes, NADH is the most important electron donor. The associated electron transport chain is
1166: 1034: 380: 305: 97: 1816:. They are synthesized by the organism as needed, in response to specific environmental conditions. 1713: 742: 3977: 3478: 3097: 3021: 1917: 1912: 1186: 687: 635: 333: 165: 70: 3868: 3601: 3274: 3243: 3219: 3206: 2806: 2346: 1839: 390:
Four membrane-bound complexes have been identified in mitochondria. Each is an extremely complex
317: 1834: 1607:
across a membrane. Protons can be physically moved across a membrane, as seen in mitochondrial
3656: 3473: 3269: 3113: 3071: 3066: 2953: 2900: 2857: 2794: 2784: 2747: 2724: 2679: 2656: 2637: 2616: 2597: 2570: 2505: 2452: 2421: 2338: 2295: 2269: 2220: 2192: 2151: 2102: 2050: 1999: 1959: 1927: 1463:
Some prokaryotes can use inorganic matter as an electron source. Such an organism is called a
1092: 280: 245: 225: 116: 85: 54: 43: 3951: 3946: 3819: 3673: 3496: 2943: 2933: 2890: 2882: 2847: 2839: 2776: 2772: 2762: 2714: 2706: 2560: 2550: 2495: 2485: 2444: 2413: 2328: 2259: 2251: 2141: 2133: 2094: 2040: 2030: 1991: 1951: 537: 3450: 3332: 2818: 2386: 1907: 1604: 1494: 1474: 1355:
are mobile electron carriers. The electron acceptor for this process is molecular oxygen.
1114:
complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as
285: 120: 39: 1805:
environments, the terminal electron acceptor is reduced by an enzyme called a reductase.
1770:
to water while oxidizing something else. In mitochondria, the terminal membrane complex (
3621: 2929: 1995: 1850:, electrons are transferred from an electron donor such as NADH to an acceptor such as O 472:(NADH ubiquinone oxidoreductase, Type I NADH dehydrogenase, or mitochondrial complex I; 284:
lower-energy products. Via the transferred electrons, this energy is used to generate a
115:
In an electron transport chain, the redox reactions are driven by the difference in the
3527: 3445: 3435: 3384: 3372: 3345: 2967: 2948: 2913: 2895: 2870: 2852: 2827: 2631: 2500: 2473: 2264: 2239: 2146: 2121: 2098: 2045: 2018: 1955: 1517: 1018: 276: 177: 50: 2780: 2719: 2694: 2565: 2538: 2472:
Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE, et al. (October 2016).
2333: 2316: 1048:), sometimes called cytochrome AA3, four electrons are removed from four molecules of 4001: 3399: 3086: 2737: 1890: 1870: 1866: 1420: 1170: 399: 221: 205: 3013: 2350: 3892: 3878: 3800: 3379: 3349: 3154: 3126: 2710: 2555: 1666:
are proteins that contain iron. They are found in two very different environments.
1498: 1123: 1111: 1084: 1076: 1049: 622: 365: 325: 241: 229: 128: 1574:(Coenzyme Q, the same quinone that mitochondria use) and related quinones such as 328:
to use the flow of H through the enzyme back into the matrix to generate ATP from
2448: 2401: 3505: 3367: 1922: 1878: 1663: 1599: 1575: 1546: 1502: 1456: 1450: 1359: 1206: 1162: 1127: 1014: 580: 395: 337: 289: 185: 2490: 2439:
Kim BH, Gadd GM (2008). "Introduction to bacterial physiology and metabolism".
2417: 2365: 1147:
subunit channel that opens into the mitochondrial matrix. This reflux releases
3736: 3652: 3606: 3328: 3249: 3230: 3162: 3105: 3048: 3044: 2886: 2843: 2255: 1874: 1584: 1571: 1506: 1465: 1424: 1030: 525: 513: 488: 349: 345: 336:. Complex I (NADH coenzyme Q reductase; labeled I) accepts electrons from the 237: 147: 135: 2224: 2137: 2106: 2035: 3678: 3501: 3308: 3052: 2938: 1521: 1510: 1460:(plants and algae) constitute the vast majority of all familiar life forms. 272: 213: 181: 2957: 2904: 2861: 2798: 2509: 2425: 2342: 2317:"Mechanics of coupling proton movements to c-ring rotation in ATP synthase" 2273: 2155: 2054: 146:. The energy released by reactions of oxygen and reduced compounds such as 2574: 2003: 1674:. Bacteria use a number of different mobile cytochrome electron carriers. 1071: 3710: 3003: 2871:"Oncogenic pathways and the electron transport chain: a dangeROS liaison" 2728: 1859: 1470: 1363: 533: 189: 188:
and the resulting proton gradient causes subsequent synthesis of ATP. In
78: 46: 1619:
is this second type of proton pump, which is mediated by a quinone (the
606: 540:
of four protons to the intermembrane space per two electrons from NADH.
3564: 3549: 2525: 1763: 1620: 1567: 1555: 1490: 1482: 1478: 1367: 1231: in this section. Unsourced material may be challenged and removed. 1060: 1045: 610: 564: 560: 476: 109: 3659: 1486: 101: 74: 66: 1155:. The free energy is used to drive ATP synthesis, catalyzed by the F 487:
to oxygen occurs, thus being one of the main sites of production of
394:
structure that is embedded in the inner membrane. Three of them are
3961: 3956: 2962:– Editorial commentary mentioning two unusual ETCs: that of 2240:"Mitochondrial ATP synthase: architecture, function and pathology" 2177:
Garrett & Grisham, Biochemistry, Brooks/Cole, 2010, pp 598-611
1833: 1778:
bacteria use a number of differet terminal oxidases. For example,
536:
width of the complex within the membrane. This current powers the
244:, which produce ATP from reactions of oxygen with products of the 62: 58: 3004:
pathway: Oxidative phosphorylation, overlaid with genes found in
1419:
Electrons can enter the chain at three levels: at the level of a
184:
membrane. Here, light energy drives electron transport through a
164:
is used by the electron transport chain to pump protons into the
84:
The flow of electrons through the electron transport chain is an
3941: 3936: 3931: 3921: 3911: 3704: 3000: 1423:, at the level of the quinone pool, or at the level of a mobile 1410:↓ ↓ 497: 217: 3625: 3017: 2594:
Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling
2402:"Brown adipose tissue: function and physiological significance" 2085:
Waldenström JG (2009-04-24). "Biochemistry. By Lubert Stryer".
1696: 1633:
is a proton pump found in many, but not all, bacteria (not in
1200: 1982:
Anraku Y (June 1988). "Bacterial electron transport chains".
1382:↓ ↓ ↓ 352:; labeled Q), which also receives electrons from Complex II ( 1403:↓ ↓ 1854:
through an electron transport chain, releasing energy. In
1677:
Other cytochromes are found within macromolecules such as
65:) and couples this electron transfer with the transfer of 2611:
Lengeler JW (January 1999). Drews G; Schlegel HG (eds.).
2315:
Fillingame RH, Angevine CM, Dmitriev OY (November 2003).
757: 567:
pool (Q) originating from succinate and transferred (via
180:
eukaryotes, the electron transport chain is found on the
2695:"Energy conservation in chemotrophic anaerobic bacteria" 1774:) is cytochrome oxidase, which oxidizes the cytochrome. 1537:
in mitochondria) or succinate dehydrogenase (similar to
1079:, the site of oxidative phosphorylation to generate ATP. 516:
intermediate. Each electron thus transfers from the FMNH
77:
in the electron transport chain are embedded within the
2238:
Jonckheere AI, Smeitink JA, Rodenburg RJ (March 2012).
1893:
proposes that both organelles descended from bacteria.
3246:(amino acid→pyruvate, acetyl CoA, or TCA intermediate) 1143:
subunits, protons finally enter the matrix through an
621:
site and sequentially transferred to two molecules of
512:
is then oxidized in two one-electron steps, through a
982: 936: 912: 882: 852: 806: 782: 745: 690: 638: 2869:
Raimondi V, Ciccarese F, Ciminale V (January 2020).
2168:
Lauren, Biochemistry, Johnson/Cole, 2010, pp 598-611
3970: 3861: 3845: 3817: 3798: 3779: 3734: 3725: 3666: 3582: 3542: 3514: 3495: 3424: 3317: 3297: 3258: 3229: 3205: 3196: 3153: 3137: 3096: 3085: 3059: 2914:"Biological electron transport goes the extra mile" 2592:Fenchel T, King GM, Blackburn TH (September 2006). 1454:. Chemoorganotrophs (animals, fungi, protists) and 1786:anaerobe) does not have a cytochrome oxidase or a 1469:("rock-eater"). Inorganic electron donors include 999: 969: 923: 899: 869: 839: 793: 769: 724: 672: 356:; labeled II). Q passes electrons to Complex III ( 100:, the flow of electrons terminates with molecular 1693:Electron acceptors and terminal oxidase/reductase 1528:Dehydrogenases: equivalants to complexes I and II 1103:(proton gradient). This gradient is used by the F 88:. The energy from the redox reactions creates an 3983:Electron-transferring-flavoprotein dehydrogenase 2693:Thauer RK, Jungermann K, Decker K (March 1977). 1977: 1975: 1165:—present in the inner mitochondrial membrane of 63:reduction and oxidation occurring simultaneously 3888:Complex III/Coenzyme Q - cytochrome c reductase 2918:Proceedings of the National Academy of Sciences 2366:"A Proton Gradient Powers the Synthesis of ATP" 2294:(5th ed.). Cengage learning. p. 664. 1838:Photosynthetic electron transport chain of the 398:. The structures are electrically connected by 2739:The Physiology and Biochemistry of Prokaryotes 1885:photosynthetic chains resembles mitochondrial 563:) additional electrons are delivered into the 275:series of electron donors and acceptors. Each 3637: 3029: 2364:Berg JM, Tymoczko JL, Stryer L (2002-01-01). 1516:The use of inorganic electron donors such as 108:, other electron acceptors are used, such as 8: 2539:"The respiratory chains of Escherichia coli" 2443:. Cambridge University Press. pp. 1–6. 138:, the electron transport chain, and site of 1948:Basic Science in Obstetrics and Gynaecology 3858: 3731: 3644: 3630: 3622: 3511: 3428: 3321: 3314: 3226: 3202: 3093: 3036: 3022: 3014: 1812:Most terminal oxidases and reductases are 1520:is of particular interest in the study of 308:into the intermembrane space, creating an 2988:at the U.S. National Library of Medicine 2986:Electron+Transport+Chain+Complex+Proteins 2947: 2937: 2894: 2851: 2718: 2564: 2554: 2499: 2489: 2332: 2263: 2145: 2044: 2034: 1746:Learn how and when to remove this message 1351:are proton pumps, while Q and cytochrome 1291:Learn how and when to remove this message 991: 986: 981: 962: 946: 938: 937: 935: 913: 911: 883: 881: 861: 856: 851: 832: 816: 808: 807: 805: 783: 781: 756: 751: 746: 744: 715: 705: 700: 695: 691: 689: 663: 653: 648: 643: 639: 637: 2537:Ingledew WJ, Poole RK (September 1984). 2017:Kracke F, Vassilev I, Krömer JO (2015). 1070: 840:{\displaystyle {\ce {(Fe^{III}) + 2 H}}} 494:The pathway of electrons is as follows: 342:nicotinamide adenine dinucleotide (NADH) 199: 2400:Cannon B, Nedergaard J (January 2004). 1938: 1067:Coupling with oxidative phosphorylation 970:{\displaystyle {\ce {(Fe^{II}) + 4 H}}} 196:Mitochondrial electron transport chains 2814: 2804: 2651:Nicholls DG, Ferguson SJ (July 2002). 2382: 2371: 2244:Journal of Inherited Metabolic Disease 1873:) and mobile, water-soluble carriers ( 1118:of the electron transport chain. The F 1055:and transferred to molecular oxygen (O 924:{\displaystyle {\text{ cytochrome }}c} 794:{\displaystyle {\text{ cytochrome }}c} 18:Mitochondrial electron transport chain 2285: 2283: 2059:– This source shows four ETCs ( 1946:Lyall, Fiona (2010). "Biochemistry". 1197:Prokaryotic electron transport chains 364:; labeled III), which passes them to 288:across the mitochondrial membrane by 7: 3146:Electron acceptors other than oxygen 2633:Lehninger Principles of Biochemistry 2210: 2208: 1229:adding citations to reliable sources 204:The electron transport chain in the 2441:Bacterial Physiology and Metabolism 1996:10.1146/annurev.bi.57.070188.000533 1095:, the electron transport chain and 900:{\displaystyle {\ce {-> Q + 2}}} 216:. It mediates the reaction between 104:as the final electron acceptor. In 3874:Complex II/Succinate dehydrogenase 3770:Pyruvate dehydrogenase phosphatase 2122:"Mitochondrial membrane potential" 2099:10.1111/j.0954-6820.1975.tb19571.x 1956:10.1016/B978-0-443-10281-3.00013-0 1637:). As the name implies, bacterial 27:Energy-producing metabolic pathway 25: 1000:{\displaystyle _{\text{out}}^{+}} 569:flavin adenine dinucleotide (FAD) 2630:Nelson DL, Cox MM (April 2005). 2191:. Boston: Cengage. p. 687. 1701: 1205: 1085:chemiosmotic coupling hypothesis 870:{\displaystyle _{\text{in}}^{+}} 500:is oxidized to NAD, by reducing 379:passes electrons to Complex IV ( 3898:Complex IV/Cytochrome c oxidase 3167:Substrate-level phosphorylation 2767:. Vol. 28 (3rd ed.). 2636:(4th ed.). W. H. Freeman. 2290:Garrett RH, Grisham CM (2012). 1216:needs additional citations for 1063:is an inhibitor of Complex IV. 770:{\displaystyle {\ce {QH2 + 2}}} 310:electrochemical proton gradient 90:electrochemical proton gradient 3745:Pyruvate dehydrogenase complex 2912:Reguera, Gemma (29 May 2018). 2761:Voet D, Voet JG (March 2004). 2711:10.1128/MMBR.41.1.100-180.1977 2556:10.1128/mmbr.48.3.222-271.1984 2187:Garrett R, Grisham CM (2016). 1889:. The commonly-held theory of 1830:Photosynthetic reaction center 1603:is any process that creates a 1017:(British Anti-Lewisite, BAL), 952: 939: 884: 822: 809: 725:{\displaystyle {\ce {2H+2e-}}} 673:{\displaystyle {\ce {2H+2e-}}} 508:in one two-electron step. FMNH 1: 3766:Pyruvate dehydrogenase kinase 3570:Reverse cholesterol transport 2781:10.1016/s0307-4412(00)00032-7 2334:10.1016/S0014-5793(03)01101-3 1984:Annual Review of Biochemistry 1013:This complex is inhibited by 92:that drives the synthesis of 3869:Complex I/NADH dehydrogenase 3222:(protein→peptide→amino acid) 2449:10.1017/cbo9780511790461.002 1659:Cytochrome electron carriers 1644:is similar to mitochondrial 1518:hydrogen as an energy source 1173:rather than ATP production. 556:or succinate-CoQ reductase; 300:Mitochondrial redox carriers 258:inner mitochondrial membrane 144:inner mitochondrial membrane 2996:Khan Academy, video lecture 2670:Stumm W; Morgan JJ (1996). 1721:. The specific problem is: 4029: 4013:Integral membrane proteins 3689:Oxoglutarate dehydrogenase 3607:Phospagen system (ATP-PCr) 3077:Primary nutritional groups 3010:Click "help" for a how-to. 2736:White D (September 1999). 2613:Biology of the Prokaryotes 2596:(2nd ed.). Elsevier. 2491:10.1016/j.cell.2016.08.064 2418:10.1152/physrev.00015.2003 1823: 1717:to meet Knowledge (XXG)'s 1240:"Electron transport chain" 684:site to form one quinone ( 461: 279:will pass electrons to an 42:and other molecules which 3854:oxidative phosphorylation 3469: 3441:Anoxygenic photosynthesis 3431: 3395: 3363:Pentose phosphate pathway 3358: 3341: 3324: 3118:Oxidative phosphorylation 2887:10.1038/s41416-019-0651-y 2844:10.1016/j.ccr.2009.11.023 2256:10.1007/s10545-011-9382-9 2023:Frontiers in Microbiology 1848:oxidative phosphorylation 1159:component of the complex. 1097:oxidative phosphorylation 294:oxidative phosphorylation 210:oxidative phosphorylation 140:oxidative phosphorylation 125:oxidative phosphorylation 3849:electron transport chain 3809:Methylmalonyl-CoA mutase 3684:Isocitrate dehydrogenase 3461:Entner-Doudoroff pathway 3123:electron transport chain 3110:Pyruvate decarboxylation 2990:Medical Subject Headings 2970:. Also has schematic of 2964:Geobacter sulfurreducens 2138:10.1016/j.ab.2017.07.009 2087:Acta Medica Scandinavica 2036:10.3389/fmicb.2015.00575 1826:Light-dependent reaction 1582:). Archaea in the genus 1101:electrochemical gradient 1089:Nobel Prize in Chemistry 170:electrochemical gradient 32:electron transport chain 3790:Glutamate dehydrogenase 3701:Succinate dehydrogenase 3694:Succinyl CoA synthetase 3555:Sphingolipid metabolism 3456:DeLey-Doudoroff pathway 3304:carbohydrate catabolism 3299:Carbohydrate metabolism 3285:Purine nucleotide cycle 3006:Pseudomonas fluorescens 2939:10.1073/pnas.1806580115 2744:Oxford University Press 2699:Bacteriological Reviews 2543:Microbiological Reviews 2126:Analytical Biochemistry 1903:Charge-transfer complex 1877:). They also contain a 554:succinate dehydrogenase 354:succinate dehydrogenase 3833:Aspartate transaminase 3524:Fatty acid degradation 3244:Amino acid degradation 2381:Cite journal requires 1843: 1080: 1001: 971: 925: 915: cytochrome  901: 871: 841: 795: 785: cytochrome  771: 726: 674: 233: 174:mitochondrial membrane 94:adenosine triphosphate 3560:Eicosanoid metabolism 3516:Fatty acid metabolism 3280:Pyrimidine metabolism 3139:Anaerobic respiration 2769:John Wiley & Sons 2676:John Wiley & Sons 2615:. Blackwell Science. 2406:Physiological Reviews 2075:) in figures 1 and 2. 1881:. The proton pump in 1837: 1824:Further information: 1551:lactate dehydrogenase 1191:reverse electron flow 1182:Reverse electron flow 1177:Reverse electron flow 1074: 1002: 972: 926: 902: 872: 842: 796: 772: 727: 680:) oxidations at the Q 675: 502:flavin mononucleotide 464:Respiratory complex I 462:Further information: 451:↑ 445:↑ 344:, and passes them to 330:adenosine diphosphate 254:amino acid metabolism 250:fatty acid metabolism 203: 106:anaerobic respiration 4008:Cellular respiration 3828:Pyruvate carboxylase 3716:Malate dehydrogenase 3534:Fatty acid synthesis 3239:Amino acid synthesis 1950:. pp. 143–171. 1856:photophosphorylation 1728:improve this section 1225:improve this article 1167:brown adipose tissue 980: 934: 910: 880: 850: 804: 780: 743: 688: 636: 306:mitochondrial matrix 228:and oxygen to power 136:eukaryotic organisms 3978:Alternative oxidase 3782:α-ketoglutaric acid 3098:Aerobic respiration 2930:2018PNAS..115.5632R 1918:Hydrogen hypothesis 1913:Electron equivalent 1187:proton-motive force 996: 866: 759: 710: 658: 334:inorganic phosphate 166:intermembrane space 98:aerobic respiration 3602:Ethanol metabolism 3550:Steroid metabolism 3275:Nucleotide salvage 3207:Protein metabolism 2655:. Academic Press. 2484:(2): 457–470.e13. 1844: 1840:thylakoid membrane 1408:oxidase(reductase) 1405:oxidase(reductase) 1081: 997: 983: 967: 921: 897: 867: 853: 837: 791: 767: 747: 722: 696: 670: 644: 318:membrane potential 234: 142:, is found on the 69:(H ions) across a 55:electron acceptors 3995: 3994: 3991: 3990: 3841: 3840: 3657:Citric acid cycle 3619: 3618: 3615: 3614: 3578: 3577: 3491: 3490: 3487: 3486: 3474:Xylose metabolism 3420: 3419: 3293: 3292: 3270:Purine metabolism 3215:Protein synthesis 3192: 3191: 3114:Citric acid cycle 3072:Metabolic network 3067:Metabolic pathway 2924:(22): 5632–5634. 2790:978-0-471-58651-7 2753:978-0-19-512579-5 2685:978-0-471-51185-4 2672:Aquatic Chemistry 2662:978-0-12-518121-1 2643:978-0-7167-4339-2 2622:978-0-632-05357-5 2603:978-0-12-103455-9 2458:978-0-511-79046-1 2301:978-1-133-10629-6 2198:978-1-305-57720-6 1965:978-0-443-10281-3 1928:Electric bacteria 1756: 1755: 1748: 1719:quality standards 1710:This section may 1466:(chemo)lithotroph 1301: 1300: 1293: 1275: 1093:Peter D. Mitchell 1083:According to the 989: 965: 949: 945: 916: 889: 859: 835: 819: 815: 786: 750: 714: 699: 662: 647: 340:electron carrier 290:"pumping" protons 260:, electrons from 246:citric acid cycle 226:citric acid cycle 224:generated in the 168:, generating the 153:and (indirectly) 117:Gibbs free energy 86:exergonic process 40:protein complexes 38:) is a series of 16:(Redirected from 4020: 3859: 3820:oxaloacetic acid 3732: 3674:Citrate synthase 3646: 3639: 3632: 3623: 3590:Metal metabolism 3512: 3497:Lipid metabolism 3429: 3322: 3315: 3227: 3203: 3129: 3094: 3038: 3031: 3024: 3015: 2961: 2951: 2941: 2908: 2898: 2865: 2855: 2822: 2816: 2812: 2810: 2802: 2757: 2742:(2nd ed.). 2732: 2722: 2689: 2674:(3rd ed.). 2666: 2647: 2626: 2607: 2579: 2578: 2568: 2558: 2534: 2528: 2520: 2514: 2513: 2503: 2493: 2469: 2463: 2462: 2436: 2430: 2429: 2397: 2391: 2390: 2384: 2379: 2377: 2369: 2361: 2355: 2354: 2336: 2312: 2306: 2305: 2287: 2278: 2277: 2267: 2235: 2229: 2228: 2212: 2203: 2202: 2184: 2178: 2175: 2169: 2166: 2160: 2159: 2149: 2117: 2111: 2110: 2082: 2076: 2058: 2048: 2038: 2014: 2008: 2007: 1979: 1970: 1969: 1943: 1858:, the energy of 1751: 1744: 1740: 1737: 1731: 1705: 1704: 1697: 1563:Quinone carriers 1457:photolithotrophs 1345:Complexes I, III 1296: 1289: 1285: 1282: 1276: 1274: 1233: 1209: 1201: 1006: 1004: 1003: 998: 995: 990: 987: 976: 974: 973: 968: 966: 963: 955: 951: 950: 947: 943: 930: 928: 927: 922: 917: 914: 906: 904: 903: 898: 896: 887: 876: 874: 873: 868: 865: 860: 857: 846: 844: 843: 838: 836: 833: 825: 821: 820: 817: 813: 800: 798: 797: 792: 787: 784: 776: 774: 773: 768: 766: 758: 755: 748: 731: 729: 728: 723: 721: 720: 719: 712: 709: 704: 697: 679: 677: 676: 671: 669: 668: 667: 660: 657: 652: 645: 538:active transport 485:electron leakage 61:reactions (both 21: 4028: 4027: 4023: 4022: 4021: 4019: 4018: 4017: 3998: 3997: 3996: 3987: 3966: 3908: 3882: 3852: 3847: 3837: 3813: 3794: 3775: 3721: 3662: 3650: 3620: 3611: 3595:Iron metabolism 3574: 3538: 3499: 3483: 3465: 3451:Carbon fixation 3416: 3391: 3354: 3337: 3333:Gluconeogenesis 3306: 3301: 3289: 3261: 3254: 3225: 3198: 3188: 3149: 3133: 3121: 3088: 3081: 3055: 3042: 2982: 2977: 2911: 2868: 2825: 2813: 2803: 2791: 2760: 2754: 2735: 2692: 2686: 2669: 2663: 2653:Bioenergetics 3 2650: 2644: 2629: 2623: 2610: 2604: 2591: 2587: 2585:Further reading 2582: 2536: 2535: 2531: 2521: 2517: 2471: 2470: 2466: 2459: 2438: 2437: 2433: 2399: 2398: 2394: 2380: 2370: 2363: 2362: 2358: 2314: 2313: 2309: 2302: 2289: 2288: 2281: 2237: 2236: 2232: 2214: 2213: 2206: 2199: 2186: 2185: 2181: 2176: 2172: 2167: 2163: 2119: 2118: 2114: 2084: 2083: 2079: 2016: 2015: 2011: 1981: 1980: 1973: 1966: 1945: 1944: 1940: 1936: 1908:CoRR hypothesis 1899: 1853: 1832: 1822: 1791: 1769: 1752: 1741: 1735: 1732: 1725: 1706: 1702: 1695: 1661: 1649: 1642: 1631: 1605:proton gradient 1595: 1581: 1565: 1545:dehydrogenase ( 1544: 1530: 1495:manganese oxide 1475:carbon monoxide 1446: 1444:Electron donors 1417: 1396: 1341: 1297: 1286: 1280: 1277: 1234: 1232: 1222: 1210: 1199: 1179: 1160: 1158: 1154: 1138: 1121: 1110: 1106: 1069: 1058: 1027: 1021:and antimycin. 978: 977: 942: 932: 931: 908: 907: 878: 877: 848: 847: 812: 802: 801: 778: 777: 741: 740: 735: 711: 686: 685: 683: 659: 634: 633: 631: 620: 616: 597: 590: 577: 546: 531: 519: 511: 507: 482: 466: 460: 455: 442: 387:; labeled IV). 361: 323: 302: 286:proton gradient 269: 208:is the site of 198: 172:over the inner 162: 121:redox potential 51:electron donors 28: 23: 22: 15: 12: 11: 5: 4026: 4024: 4016: 4015: 4010: 4000: 3999: 3993: 3992: 3989: 3988: 3986: 3985: 3980: 3974: 3972: 3968: 3967: 3965: 3964: 3959: 3954: 3949: 3944: 3939: 3934: 3929: 3924: 3919: 3914: 3906: 3901: 3900: 3895: 3890: 3885: 3880: 3876: 3871: 3865: 3863: 3856: 3843: 3842: 3839: 3838: 3836: 3835: 3830: 3824: 3822: 3815: 3814: 3812: 3811: 3805: 3803: 3796: 3795: 3793: 3792: 3786: 3784: 3777: 3776: 3774: 3773: 3764:(regulated by 3761: 3760: 3741: 3739: 3729: 3723: 3722: 3720: 3719: 3713: 3708: 3697: 3696: 3691: 3686: 3681: 3676: 3670: 3668: 3664: 3663: 3651: 3649: 3648: 3641: 3634: 3626: 3617: 3616: 3613: 3612: 3610: 3609: 3604: 3599: 3598: 3597: 3586: 3584: 3580: 3579: 3576: 3575: 3573: 3572: 3567: 3562: 3557: 3552: 3546: 3544: 3540: 3539: 3537: 3536: 3531: 3528:Beta oxidation 3520: 3518: 3509: 3493: 3492: 3489: 3488: 3485: 3484: 3482: 3481: 3476: 3470: 3467: 3466: 3464: 3463: 3458: 3453: 3448: 3446:Chemosynthesis 3443: 3438: 3436:Photosynthesis 3432: 3426: 3422: 3421: 3418: 3417: 3415: 3414: 3413: 3412: 3407: 3396: 3393: 3392: 3390: 3389: 3388: 3387: 3385:Leloir pathway 3377: 3376: 3375: 3373:Polyol pathway 3365: 3359: 3356: 3355: 3353: 3352: 3346:Glycogenolysis 3342: 3339: 3338: 3336: 3335: 3325: 3319: 3312: 3295: 3294: 3291: 3290: 3288: 3287: 3282: 3277: 3272: 3266: 3264: 3256: 3255: 3253: 3252: 3247: 3241: 3235: 3233: 3224: 3223: 3217: 3211: 3209: 3200: 3194: 3193: 3190: 3189: 3187: 3186: 3185: 3184: 3179: 3174: 3159: 3157: 3151: 3150: 3148: 3147: 3143: 3141: 3135: 3134: 3132: 3131: 3102: 3100: 3091: 3083: 3082: 3080: 3079: 3074: 3069: 3063: 3061: 3057: 3056: 3043: 3041: 3040: 3033: 3026: 3018: 3012: 3011: 2998: 2993: 2981: 2980:External links 2978: 2976: 2975: 2968:cable bacteria 2909: 2881:(2): 168–181. 2866: 2823: 2815:|journal= 2789: 2758: 2752: 2733: 2690: 2684: 2667: 2661: 2648: 2642: 2627: 2621: 2608: 2602: 2588: 2586: 2583: 2581: 2580: 2529: 2515: 2464: 2457: 2431: 2412:(1): 277–359. 2392: 2383:|journal= 2356: 2307: 2300: 2279: 2230: 2204: 2197: 2179: 2170: 2161: 2112: 2077: 2073:Acetobacterium 2009: 1971: 1964: 1937: 1935: 1932: 1931: 1930: 1925: 1920: 1915: 1910: 1905: 1898: 1895: 1851: 1821: 1820:Photosynthetic 1818: 1789: 1767: 1754: 1753: 1709: 1707: 1700: 1694: 1691: 1660: 1657: 1647: 1640: 1629: 1594: 1591: 1579: 1564: 1561: 1542: 1529: 1526: 1445: 1442: 1394: 1372: 1339: 1299: 1298: 1213: 1211: 1204: 1198: 1195: 1178: 1175: 1156: 1152: 1136: 1119: 1108: 1104: 1087:, proposed by 1068: 1065: 1056: 1026: 1023: 1019:naphthoquinone 1008: 1007: 994: 985: 961: 958: 954: 941: 920: 895: 892: 886: 864: 855: 831: 828: 824: 811: 790: 765: 762: 754: 733: 718: 708: 703: 694: 681: 666: 656: 651: 642: 629: 618: 614: 595: 588: 576: 573: 545: 542: 529: 517: 509: 505: 480: 459: 456: 440: 404: 359: 321: 301: 298: 277:electron donor 267: 197: 194: 178:photosynthetic 160: 73:. Many of the 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4025: 4014: 4011: 4009: 4006: 4005: 4003: 3984: 3981: 3979: 3976: 3975: 3973: 3969: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3909: 3903: 3902: 3899: 3896: 3894: 3891: 3889: 3886: 3884: 3877: 3875: 3872: 3870: 3867: 3866: 3864: 3860: 3857: 3855: 3850: 3846:Mitochondrial 3844: 3834: 3831: 3829: 3826: 3825: 3823: 3821: 3816: 3810: 3807: 3806: 3804: 3802: 3797: 3791: 3788: 3787: 3785: 3783: 3778: 3771: 3767: 3763: 3762: 3758: 3754: 3750: 3746: 3743: 3742: 3740: 3738: 3733: 3730: 3728: 3724: 3717: 3714: 3712: 3709: 3706: 3702: 3699: 3698: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3671: 3669: 3665: 3661: 3658: 3654: 3647: 3642: 3640: 3635: 3633: 3628: 3627: 3624: 3608: 3605: 3603: 3600: 3596: 3593: 3592: 3591: 3588: 3587: 3585: 3581: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3547: 3545: 3541: 3535: 3532: 3529: 3525: 3522: 3521: 3519: 3517: 3513: 3510: 3507: 3503: 3498: 3494: 3480: 3479:Radiotrophism 3477: 3475: 3472: 3471: 3468: 3462: 3459: 3457: 3454: 3452: 3449: 3447: 3444: 3442: 3439: 3437: 3434: 3433: 3430: 3427: 3423: 3411: 3408: 3406: 3403: 3402: 3401: 3400:Glycosylation 3398: 3397: 3394: 3386: 3383: 3382: 3381: 3378: 3374: 3371: 3370: 3369: 3366: 3364: 3361: 3360: 3357: 3351: 3347: 3344: 3343: 3340: 3334: 3330: 3327: 3326: 3323: 3320: 3316: 3313: 3310: 3305: 3300: 3296: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3267: 3265: 3263: 3257: 3251: 3248: 3245: 3242: 3240: 3237: 3236: 3234: 3232: 3228: 3221: 3218: 3216: 3213: 3212: 3210: 3208: 3204: 3201: 3195: 3183: 3180: 3178: 3175: 3173: 3170: 3169: 3168: 3164: 3161: 3160: 3158: 3156: 3152: 3145: 3144: 3142: 3140: 3136: 3128: 3124: 3119: 3115: 3111: 3107: 3104: 3103: 3101: 3099: 3095: 3092: 3090: 3084: 3078: 3075: 3073: 3070: 3068: 3065: 3064: 3062: 3058: 3054: 3050: 3046: 3039: 3034: 3032: 3027: 3025: 3020: 3019: 3016: 3009: 3007: 3002: 2999: 2997: 2994: 2991: 2987: 2984: 2983: 2979: 2973: 2969: 2965: 2959: 2955: 2950: 2945: 2940: 2935: 2931: 2927: 2923: 2919: 2915: 2910: 2906: 2902: 2897: 2892: 2888: 2884: 2880: 2876: 2872: 2867: 2863: 2859: 2854: 2849: 2845: 2841: 2837: 2833: 2829: 2824: 2820: 2808: 2800: 2796: 2792: 2786: 2782: 2778: 2774: 2770: 2766: 2765: 2759: 2755: 2749: 2745: 2741: 2740: 2734: 2730: 2726: 2721: 2716: 2712: 2708: 2705:(1): 100–80. 2704: 2700: 2696: 2691: 2687: 2681: 2677: 2673: 2668: 2664: 2658: 2654: 2649: 2645: 2639: 2635: 2634: 2628: 2624: 2618: 2614: 2609: 2605: 2599: 2595: 2590: 2589: 2584: 2576: 2572: 2567: 2562: 2557: 2552: 2549:(3): 222–71. 2548: 2544: 2540: 2533: 2530: 2527: 2524: 2519: 2516: 2511: 2507: 2502: 2497: 2492: 2487: 2483: 2479: 2475: 2468: 2465: 2460: 2454: 2450: 2446: 2442: 2435: 2432: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2396: 2393: 2388: 2375: 2367: 2360: 2357: 2352: 2348: 2344: 2340: 2335: 2330: 2326: 2322: 2318: 2311: 2308: 2303: 2297: 2293: 2286: 2284: 2280: 2275: 2271: 2266: 2261: 2257: 2253: 2250:(2): 211–25. 2249: 2245: 2241: 2234: 2231: 2226: 2222: 2218: 2211: 2209: 2205: 2200: 2194: 2190: 2183: 2180: 2174: 2171: 2165: 2162: 2157: 2153: 2148: 2143: 2139: 2135: 2131: 2127: 2123: 2116: 2113: 2108: 2104: 2100: 2096: 2092: 2088: 2081: 2078: 2074: 2070: 2066: 2062: 2056: 2052: 2047: 2042: 2037: 2032: 2028: 2024: 2020: 2013: 2010: 2005: 2001: 1997: 1993: 1990:(1): 101–32. 1989: 1985: 1978: 1976: 1972: 1967: 1961: 1957: 1953: 1949: 1942: 1939: 1933: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1900: 1896: 1894: 1892: 1891:symbiogenesis 1888: 1884: 1880: 1876: 1872: 1871:plastoquinone 1868: 1867:phylloquinone 1863: 1861: 1857: 1849: 1841: 1836: 1831: 1827: 1819: 1817: 1815: 1810: 1808: 1804: 1798: 1794: 1792: 1785: 1781: 1777: 1773: 1766:reduces the O 1765: 1760: 1750: 1747: 1739: 1736:December 2023 1729: 1724: 1720: 1716: 1715: 1708: 1699: 1698: 1692: 1690: 1686: 1684: 1680: 1675: 1673: 1667: 1665: 1658: 1656: 1654: 1650: 1643: 1636: 1632: 1624: 1622: 1618: 1614: 1610: 1606: 1602: 1601: 1592: 1590: 1587: 1586: 1577: 1573: 1569: 1562: 1560: 1558: 1557: 1552: 1548: 1540: 1536: 1527: 1525: 1523: 1519: 1514: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1467: 1461: 1459: 1458: 1453: 1452: 1443: 1441: 1437: 1435: 1429: 1426: 1422: 1421:dehydrogenase 1416: 1413: 1409: 1406: 1402: 1398: 1397: 1389: 1385: 1384:dehydrogenase 1381: 1378: 1375: 1371: 1369: 1365: 1361: 1356: 1354: 1350: 1346: 1342: 1335: 1334: 1329: 1328: 1322: 1321: 1316: 1312: 1311: 1306: 1295: 1292: 1284: 1281:December 2023 1273: 1270: 1266: 1263: 1259: 1256: 1252: 1249: 1245: 1242: –  1241: 1237: 1236:Find sources: 1230: 1226: 1220: 1219: 1214:This section 1212: 1208: 1203: 1202: 1196: 1194: 1192: 1188: 1183: 1176: 1174: 1172: 1171:thermogenesis 1168: 1164: 1150: 1146: 1142: 1134: 1129: 1125: 1122:component of 1117: 1113: 1102: 1098: 1094: 1090: 1086: 1078: 1075:Depiction of 1073: 1066: 1064: 1062: 1054: 1053: 1047: 1044: 1040: 1038: 1032: 1024: 1022: 1020: 1016: 1011: 992: 984: 959: 956: 918: 893: 890: 862: 854: 829: 826: 788: 763: 760: 752: 739: 738: 737: 716: 706: 701: 692: 664: 654: 649: 640: 627: 626: 612: 608: 605: 601: 593: 591: 582: 574: 572: 570: 566: 562: 559: 555: 551: 543: 541: 539: 535: 527: 523: 515: 503: 499: 495: 492: 490: 486: 478: 475: 471: 465: 457: 454: 450: 449: 444: 436: 435: 430: 429: 423: 422: 417: 413: 412: 407: 403: 401: 400:lipid-soluble 397: 393: 392:transmembrane 388: 386: 384: 378: 374: 370: 369: 363: 358:cytochrome bc 355: 351: 347: 343: 339: 335: 331: 327: 324:). It allows 319: 315: 311: 307: 299: 297: 295: 291: 287: 282: 278: 274: 270: 263: 259: 255: 251: 247: 243: 239: 231: 227: 223: 219: 215: 211: 207: 206:mitochondrion 202: 195: 193: 191: 187: 183: 179: 175: 171: 167: 163: 156: 152: 149: 145: 141: 137: 132: 130: 126: 122: 118: 113: 111: 107: 103: 99: 95: 91: 87: 82: 80: 76: 72: 68: 64: 60: 56: 52: 48: 45: 41: 37: 33: 19: 3904: 3893:Cytochrome c 3848: 3801:succinyl-CoA 3380:Galactolysis 3350:Glycogenesis 3155:Fermentation 3127:ATP synthase 3122: 3005: 2971: 2966:and that of 2963: 2921: 2917: 2878: 2874: 2838:(1): 41–52. 2835: 2831: 2764:Biochemistry 2763: 2738: 2702: 2698: 2671: 2652: 2632: 2612: 2593: 2546: 2542: 2532: 2518: 2481: 2477: 2467: 2440: 2434: 2409: 2405: 2395: 2374:cite journal 2359: 2327:(1): 29–34. 2324: 2321:FEBS Letters 2320: 2310: 2292:Biochemistry 2291: 2247: 2243: 2233: 2217:Biochemistry 2216: 2189:biochemistry 2188: 2182: 2173: 2164: 2129: 2125: 2115: 2093:(1–6): 436. 2090: 2086: 2080: 2072: 2068: 2064: 2060: 2026: 2022: 2012: 1987: 1983: 1947: 1941: 1886: 1882: 1864: 1845: 1813: 1811: 1806: 1799: 1795: 1787: 1779: 1771: 1761: 1757: 1742: 1733: 1726:Please help 1722: 1711: 1687: 1682: 1678: 1676: 1671: 1668: 1662: 1652: 1645: 1638: 1634: 1627: 1625: 1616: 1612: 1608: 1598: 1596: 1593:Proton pumps 1583: 1566: 1554: 1538: 1534: 1531: 1515: 1503:organotrophs 1499:ferrous iron 1464: 1462: 1455: 1451:organotrophs 1449: 1447: 1438: 1433: 1430: 1418: 1414: 1411: 1407: 1404: 1400: 1392: 1391: 1387: 1383: 1379: 1376: 1373: 1357: 1352: 1348: 1344: 1337: 1332: 1331: 1326: 1324: 1319: 1318: 1314: 1309: 1308: 1304: 1302: 1287: 1278: 1268: 1261: 1254: 1247: 1235: 1223:Please help 1218:verification 1215: 1180: 1144: 1140: 1132: 1124:ATP synthase 1115: 1112:ATP synthase 1082: 1077:ATP synthase 1051: 1036: 1028: 1012: 1009: 624: 599: 598:-cytochrome 586: 578: 547: 522:Fe–S cluster 496: 493: 467: 452: 447: 446: 438: 433: 432: 427: 425: 420: 419: 415: 410: 409: 405: 396:proton pumps 389: 382: 376: 372: 367: 326:ATP synthase 303: 242:mitochondria 235: 230:ATP synthase 150: 133: 129:ATP synthase 114: 83: 35: 31: 29: 3910:synthesis: 3727:Anaplerotic 3506:lipogenesis 3368:Fructolysis 3182:Lactic acid 2875:Br J Cancer 2832:Cancer Cell 2771:. pp.  1923:Respirasome 1887:Complex III 1879:proton pump 1875:cytochromes 1784:facultative 1730:if you can. 1679:Complex III 1664:Cytochromes 1653:Complex III 1617:Complex III 1609:Complexes I 1600:proton pump 1576:menaquinone 1547:hydrogenase 1507:phototrophs 1360:prokaryotes 1325:cytochrome 1320:Complex III 1189:, inducing 1163:thermogenin 1149:free energy 1128:ion channel 1126:acts as an 1050:cytochrome 1035:cytochrome 1015:dimercaprol 623:cytochrome 602:reductase; 585:cytochrome 581:Complex III 575:Complex III 526:semiquinone 514:semiquinone 426:cytochrome 421:Complex III 381:cytochrome 366:cytochrome 338:Krebs cycle 240:cells have 186:proton pump 4002:Categories 3905:Coenzyme Q 3879:Coenzyme Q 3737:acetyl-CoA 3653:Metabolism 3329:Glycolysis 3262:metabolism 3260:Nucleotide 3250:Urea cycle 3231:Amino acid 3220:Catabolism 3163:Glycolysis 3106:Glycolysis 3089:metabolism 3049:catabolism 3045:Metabolism 2219:. toppan. 2065:Shewanella 1934:References 1772:Complex IV 1683:Complex IV 1585:Sulfolobus 1578:(Vitamin K 1572:ubiquinone 1539:Complex II 1425:cytochrome 1401:cytochrome 1333:Complex IV 1251:newspapers 1031:Complex IV 1025:Complex IV 732:) at the Q 550:Complex II 544:Complex II 489:superoxide 448:Complex II 434:Complex IV 350:ubiquinone 346:coenzyme Q 332:(ADP) and 238:eukaryotic 214:eukaryotes 148:cytochrome 96:(ATP). In 3679:Aconitase 3502:lipolysis 3309:anabolism 3053:anabolism 2817:ignored ( 2807:cite book 2225:785100491 2132:: 50–59. 2107:0001-6101 2069:Moorella 2061:Geobacter 1814:inducible 1803:anaerobic 1535:Complex I 1522:evolution 1511:biosphere 1310:Complex I 1116:Complex V 885:⟶ 717:− 665:− 470:Complex I 458:Complex I 453:Succinate 411:Complex I 273:enzymatic 256:. At the 222:succinate 182:thylakoid 47:electrons 3711:Fumarase 3425:Nonhuman 3410:O-linked 3405:N-linked 3197:Specific 2958:29769327 2905:31819197 2862:20129246 2799:10878303 2510:27667687 2426:14715917 2351:38896804 2343:14630314 2274:21874297 2215:Stryer. 2156:28711444 2055:26124754 1897:See also 1860:sunlight 1712:require 1568:Quinones 1471:hydrogen 1415:Acceptor 1412:Acceptor 1364:bacteria 617:at the Q 607:1.10.2.2 534:Angstrom 281:acceptor 190:bacteria 79:membrane 71:membrane 44:transfer 3883:(CoQ10) 3862:Primary 3718:and ETC 3660:enzymes 3565:Ketosis 3177:Ethanol 3060:General 2972:E. coli 2949:5984551 2926:Bibcode 2896:7052168 2853:3711519 2575:6387427 2526:1.3.5.1 2501:5863951 2265:3278611 2147:5792320 2046:4463002 2029:: 575. 2004:3052268 1807:E. coli 1780:E. coli 1776:Aerobic 1764:oxidase 1714:cleanup 1635:E. coli 1621:Q cycle 1556:E. coli 1509:in our 1491:sulfide 1483:nitrite 1479:ammonia 1434:E. coli 1388:quinone 1368:archaea 1265:scholar 1091:winner 1061:Cyanide 1046:1.9.3.1 1039:oxidase 611:Q-cycle 609:), the 594:or CoQH 592:complex 565:quinone 561:1.3.5.1 504:to FMNH 477:1.6.5.3 406:NADH, H 385:oxidase 375:). Cyt 362:complex 110:sulfate 75:enzymes 67:protons 3952:COQ10B 3947:COQ10A 3087:Energy 3008:Pf0-1. 2992:(MeSH) 2956:  2946:  2903:  2893:  2860:  2850:  2797:  2787:  2750:  2729:860983 2727:  2720:413997 2717:  2682:  2659:  2640:  2619:  2600:  2573:  2566:373010 2563:  2508:  2498:  2455:  2424:  2349:  2341:  2298:  2272:  2262:  2223:  2195:  2154:  2144:  2105:  2053:  2043:  2002:  1962:  1497:, and 1487:sulfur 1343:where 1267:  1260:  1253:  1246:  1238:  520:to an 252:, and 102:oxygen 3971:Other 3962:PDSS2 3957:PDSS1 3667:Cycle 3583:Other 3543:Other 3318:Human 3199:paths 2347:S2CID 1380:Donor 1377:Donor 1374:Donor 1272:JSTOR 1258:books 371:(cyt 236:Most 176:. In 127:with 59:redox 49:from 3942:COQ9 3937:COQ7 3932:COQ6 3927:COQ5 3922:COQ4 3917:COQ3 3912:COQ2 3768:and 3705:SDHA 3307:and 3001:KEGG 2974:ETC. 2954:PMID 2901:PMID 2858:PMID 2819:help 2795:PMID 2785:ISBN 2748:ISBN 2725:PMID 2680:ISBN 2657:ISBN 2638:ISBN 2617:ISBN 2598:ISBN 2571:PMID 2506:PMID 2478:Cell 2453:ISBN 2422:PMID 2387:help 2339:PMID 2296:ISBN 2270:PMID 2221:OCLC 2193:ISBN 2152:PMID 2103:ISSN 2051:PMID 2000:PMID 1960:ISBN 1869:and 1828:and 1681:and 1611:and 1505:and 1399:→ 1386:→ 1366:and 1305:NADH 1244:news 498:NADH 266:FADH 264:and 262:NADH 218:NADH 159:FADH 157:and 155:NADH 57:via 3818:to 3799:to 3780:to 3735:to 3331:⇄ 3172:ABE 2944:PMC 2934:doi 2922:115 2891:PMC 2883:doi 2879:122 2848:PMC 2840:doi 2777:doi 2773:124 2715:PMC 2707:doi 2561:PMC 2551:doi 2496:PMC 2486:doi 2482:167 2445:doi 2414:doi 2329:doi 2325:555 2260:PMC 2252:doi 2142:PMC 2134:doi 2130:552 2095:doi 2091:198 2041:PMC 2031:doi 1992:doi 1952:doi 1883:all 1846:In 1782:(a 1655:). 1623:). 1553:in 1390:→ 1358:In 1347:and 1227:by 1029:In 988:out 818:III 579:In 548:In 468:In 320:(ΔΨ 314:ΔpH 220:or 212:in 134:In 53:to 36:ETC 30:An 4004:: 3907:10 3881:10 3757:E3 3755:, 3753:E2 3751:, 3749:E1 3655:: 3504:, 3348:⇄ 3165:→ 3125:+ 3116:→ 3112:→ 3108:→ 3051:, 3047:, 2952:. 2942:. 2932:. 2920:. 2916:. 2899:. 2889:. 2877:. 2873:. 2856:. 2846:. 2836:17 2834:. 2830:. 2811:: 2809:}} 2805:{{ 2793:. 2783:. 2775:. 2746:. 2723:. 2713:. 2703:41 2701:. 2697:. 2678:. 2569:. 2559:. 2547:48 2545:. 2541:. 2523:EC 2504:. 2494:. 2480:. 2476:. 2451:. 2420:. 2410:84 2408:. 2404:. 2378:: 2376:}} 2372:{{ 2345:. 2337:. 2323:. 2319:. 2282:^ 2268:. 2258:. 2248:35 2246:. 2242:. 2207:^ 2150:. 2140:. 2128:. 2124:. 2101:. 2089:. 2071:, 2067:, 2063:, 2049:. 2039:. 2025:. 2021:. 1998:. 1988:57 1986:. 1974:^ 1958:. 1788:bc 1646:bc 1639:bc 1628:bc 1613:IV 1597:A 1513:. 1493:, 1489:, 1485:, 1481:, 1477:, 1473:, 1393:bc 1349:IV 1336:→ 1323:→ 1313:→ 1193:. 1043:EC 1041:; 948:II 944:Fe 858:in 814:Fe 749:QH 604:EC 587:bc 558:EC 491:. 474:EC 437:→ 431:→ 424:→ 418:→ 414:→ 408:→ 248:, 131:. 112:. 81:. 3851:/ 3772:) 3759:) 3747:( 3707:) 3703:( 3645:e 3638:t 3631:v 3530:) 3526:( 3508:) 3500:( 3311:) 3302:( 3130:) 3120:( 3037:e 3030:t 3023:v 2960:. 2936:: 2928:: 2907:. 2885:: 2864:. 2842:: 2821:) 2801:. 2779:: 2756:. 2731:. 2709:: 2688:. 2665:. 2646:. 2625:. 2606:. 2577:. 2553:: 2512:. 2488:: 2461:. 2447:: 2428:. 2416:: 2389:) 2385:( 2368:. 2353:. 2331:: 2304:. 2276:. 2254:: 2227:. 2201:. 2158:. 2136:: 2109:. 2097:: 2057:. 2033:: 2027:6 2006:. 1994:: 1968:. 1954:: 1852:2 1842:. 1790:1 1768:2 1749:) 1743:( 1738:) 1734:( 1672:c 1651:( 1648:1 1641:1 1630:1 1580:2 1543:2 1395:1 1362:( 1353:c 1340:2 1338:O 1330:→ 1327:c 1317:→ 1315:Q 1307:→ 1294:) 1288:( 1283:) 1279:( 1269:· 1262:· 1255:· 1248:· 1221:. 1157:1 1153:2 1145:a 1141:c 1137:O 1133:a 1120:O 1109:1 1107:F 1105:O 1057:2 1052:c 1037:c 1033:( 993:+ 964:H 960:4 957:+ 953:) 940:( 919:c 894:2 891:+ 888:Q 863:+ 834:H 830:2 827:+ 823:) 810:( 789:c 764:2 761:+ 753:2 734:i 713:e 707:+ 702:2 698:H 693:2 682:o 661:e 655:+ 650:2 646:H 641:2 630:i 625:c 619:O 615:2 600:c 596:2 589:1 583:( 552:( 530:2 518:2 510:2 506:2 481:2 443:O 441:2 439:H 428:c 416:Q 383:c 377:c 373:c 368:c 360:1 348:( 322:M 312:( 268:2 232:. 161:2 151:c 34:( 20:)

Index

Mitochondrial electron transport chain
protein complexes
transfer
electrons
electron donors
electron acceptors
redox
reduction and oxidation occurring simultaneously
protons
membrane
enzymes
membrane
exergonic process
electrochemical proton gradient
adenosine triphosphate
aerobic respiration
oxygen
anaerobic respiration
sulfate
Gibbs free energy
redox potential
oxidative phosphorylation
ATP synthase
eukaryotic organisms
oxidative phosphorylation
inner mitochondrial membrane
cytochrome
NADH
FADH2
intermembrane space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.