Knowledge (XXG)

Mitochondrial unfolded protein response

Source 📝

182:
targeting sequence (MTS) that allows for import into the mitochondria.  In healthy cells, ATFS-1 is preferentially targeted to the mitochondrial matrix where it is degraded by the Lon protease. The MTS on ATFS-1 is predicted by Mitofates to be substantially weaker than most MTSs which would allow it to be sensitive to subtle mitochondrial dysfunction. Following mitochondrial stress, ATFS-1 mitochondrial import efficiency is decreased resulting in a cytoplasmic accumulation of ATFS-1. Subsequently, ATFS-1 will enter the nucleus via its nuclear transport signal.  In the nucleus, ATFS-1 has a broad transcriptional regulation as it will: attenuate OXPHOS gene expression in both the nucleus and mitochondria, upregulate chaperones and proteases to re-establish mitochondrial proteostasis, increase ROS detoxification, and increase mitochondrial import machinery.
146:
proteins and restore homeostasis.  Despite their names, the two pathways possess distinct initiating stimuli and signaling mechanisms that regulate the responses. The ER UPR is induced by a variety of cellular stressors that inhibit protein folding or exit of the ER. Within the ER GRP78, an ER lumen chaperone, is bound to ER membrane proteins. When unfolded proteins build up, it dissociates to from the membrane to aid in protein folding. GRP78 dissociation triggers the UPR that restores protein homeostasis via three pathways (IRE1, PERK, and
169:; ATF5 in mammals). AFTS-1 is usually imported into the mitochondria where it is degraded by the LON protease. Mitochondrial dysfunction inhibits this process and allows ATFS-1 to accumulate in the cytosol and enter the nucleus where it can act as a transcription factor. This responses restores proteostasis by upregulating chaperones and proteases, increasing reactive oxygen species (ROS) detoxification, and increasing mitochondrial import machinery. 181:
The appropriately named activating transcription factor associated with stress (ATFS-1) is one of the primary transcription factors required for UPR activation in worms. ATFS-1 has a nuclear localization sequence that allows it to be imported into the nucleus as well as an N-terminal mitochondrial
145:
In organelles like the ER and mitochondria, the response is slightly more complex. Both UPR mechanisms are conceptually similar in that they are activated by the accumulation of misfolded/ unfolded proteins and induce the translational upregulation of molecular chaperones and proteases to process
177:
In mammals, UPR has mostly been studied using transfection with a truncated, dysfunctional mitochondrial enzyme (OTCΔ) that does not fold correctly after translocation into the mitochondrial matrix. Using this approach, several components of the mammalian UPR have been identified including the
211:
Inflammatory bowel diseases (Crohn´s disease and ulcerative colitis) have been associated with mitochondrial dysfunction in the intestinal epithelium. In mouse models of intestinal inflammation and in IBD patients, signs of UPR -activation have been demonstrated. In particular, mitochondrial
194:
axis of UPR as a marker to differentiate between metastatic and non-metastatic breast cancer. As many cancers exhibit a metabolic shift from oxidative phosporylation-depentent energy production to aerobic glycolysis dependent energy production, also known as the
457:
Bar-Ziv, Raz; Dutta, Naibedya; Hruby, Adam; Sukarto, Edward; Averbukh, Maxim; Alcala, Athena; Henderson, Hope R.; Durieux, Jenni; Tronnes, Sarah U.; Ahmad, Qazi; Bolas, Theodore; Perez, Joel; Dishart, Julian G.; Vega, Matthew; Garcia, Gilberto (2023-10-13).
178:
mitochondrial chaperone heat shock protein 60 (Hsp60), the mitochondrial caseinolytic peptidase ClpP, the transcription factor Chop and the kinases c-Jun N-terminal kinase (JNK) and the interferon-induced, double-stranded RNA-activated protein kinase (Pkr).
128:
also must be folded to function. Consequently, specific cellular mechanisms exist that aim to detect cellular stress (causing misfolded/unfolded proteins to accumulate), transduce the signal to the nucleus, and mediate the restoration of protein homeostasis
523:
Shen, Koning; Durieux, Jenni; Mena, Cesar G.; Webster, Brant M.; Kimberly Tsui, C.; Zhang, Hanlin; Joe, Lawrence; Berendzen, Kristen; Dillin, Andrew (2023-08-22). The germline coordinates mitokine signaling (Report). Genetics.
110:
mitochondria has been found to play a significant role in the signalling and regulation of UPR have been shown to play a central role Nicotinamide riboside supplementation in mice has also been shown to activate the UPR.
137:
is a transcription factor that, upon increases in unfolded cytosolic proteins, will trimerize and enter the nucleus to upregulate the expression of heat shock proteins (HSPs) that will act as protein folding
119:
A majority of cellular proteins are translated and folded in the cytosol with the help of molecular chaperones. Just as proteins must be folded to function in the cytosol, proteins in organelles like the
150:). The UPR restores proteostasis by selectively attenuation protein translation, upregulating protein folding chaperones, and degrading excess misfolded proteins via ER associated protein degradation ( 1214:
Hu M, Wang B, Qian D, Li L, Zhang L, Song X, Liu DX (October 2012). "Interference with ATF5 function enhances the sensitivity of human pancreatic cancer cells to paclitaxel-induced apoptosis".
151: 199:, researchers suggest that cancer cells rely on the UPR to maintain the mitochondrial integrity. Furthermore, multiple studies have shown that inhibition of UPR, specifically 1113:"The Mitochondrial Unfolded Protein Response as a Non-Oncogene Addiction to Support Adaptation to Stress during Transformation in Cancer and Beyond" 964:"Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation" 1287:"Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn's disease recurrence" 91: 562: 793:
Shpilka T, Haynes CM (February 2018). "The mitochondrial UPR: mechanisms, physiological functions and implications in ageing".
49: 190:
Recent research has implicated the UPR in the transformation of cells in to cancer cells. Researchers have identified the
636:"The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease" 45: 1404: 841:"Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements" 133:). In the cytosol, the heat shock response (HSR) manages the unfolded proteins through heat shock factor 1 (HSF1). 737:
Walter P, Ron D (November 2011). "The unfolded protein response: from stress pathway to homeostatic regulation".
221: 196: 75: 25: 900:"The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response" 410:"The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling" 83: 212:
dysfunction and UPR -activation have been linked to intestinal stemness and Paneth cell (dys-)function.
1399: 121: 99: 1349: 1243:"Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5" 911: 852: 746: 593: 471: 41: 139: 37: 1285:
Khaloian S, Rath E, Hammoudi N, Gleisinger E, Blutke A, Giesbertz P, et al. (February 2020).
818: 770: 1409: 1375: 1318: 1264: 1223: 1196: 1144: 1093: 1044: 1013:"MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites" 993: 939: 880: 810: 762: 719: 665: 611: 543: 505: 487: 439: 390: 341: 292: 226: 79: 1336:
Berger E, Rath E, Yuan D, Waldschmitt N, Khaloian S, Allgäuer M, et al. (October 2016).
1064:"mt regulation and output: a stress response mediated by mitochondrial-nuclear communication" 582:"NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice" 408:
Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, et al. (July 2013).
1365: 1357: 1308: 1298: 1254: 1186: 1178: 1134: 1124: 1083: 1075: 1034: 1024: 983: 975: 929: 919: 870: 860: 802: 754: 709: 699: 655: 647: 601: 533: 525: 495: 479: 429: 421: 380: 372: 331: 323: 282: 274: 1241:
Angelastro JM, Canoll PD, Kuo J, Weicker M, Costa A, Bruce JN, Greene LA (February 2006).
33: 1353: 1167:"Mitochondrial dysfunction in cancer: Potential roles of ATF5 and the mitochondrial UPR" 915: 856: 750: 597: 538: 500: 475: 459: 1370: 1337: 1313: 1286: 1191: 1166: 1139: 1112: 1088: 1063: 1039: 1012: 988: 963: 934: 899: 875: 840: 714: 687: 660: 635: 434: 409: 385: 360: 336: 311: 287: 262: 1393: 125: 1182: 822: 90:
worms) also activate the UPR. Activation of the UPR in nematode worms by increasing
962:
Rath E, Berger E, Messlik A, Nunes T, Liu B, Kim SC, et al. (September 2012).
130: 95: 29: 1338:"Mitochondrial function controls intestinal epithelial stemness and proliferation" 774: 924: 865: 278: 162: 64: 1303: 979: 425: 376: 361:"The cell-non-autonomous nature of electron transport chain-mediated longevity" 529: 491: 203:, selectively kills human and rat cancer cells rather than non-cancer cells. 1129: 1029: 758: 704: 688:"The mitochondrial unfolded protein response: Signaling from the powerhouse" 606: 581: 460:"Glial-derived mitochondrial signals affect neuronal proteostasis and aging" 191: 155: 107: 68: 1379: 1322: 1268: 1259: 1242: 1227: 1200: 1148: 1097: 1048: 997: 943: 884: 814: 766: 723: 669: 615: 547: 509: 483: 443: 394: 345: 296: 580:
Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, et al. (June 2016).
806: 327: 87: 53: 1361: 1079: 651: 57: 1011:
Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K (April 2015).
236: 231: 60: 200: 147: 134: 103: 56:
to degrade proteins that fail to fold properly. UPR causes the
312:"SirT3 regulates the mitochondrial unfolded protein response" 267:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
36:
or misfolded proteins in mitochondria beyond the capacity of
839:
Aldridge JE, Horibe T, Hoogenraad NJ (September 2007).
263:"Signaling the mitochondrial unfolded protein response" 563:"Cells Across the Body Talk to Each Other About Aging" 261:
Pellegrino MW, Nargund AM, Haynes CM (February 2013).
634:
Jovaisaite V, Mouchiroud L, Auwerx J (January 2014).
686:
Qureshi MA, Haynes CM, Pellegrino MW (August 2017).
154:). Prolonged activation of the UPR can result in 834: 832: 40:to handle them. The UPR can occur either in the 1111:Kenny TC, Manfredi G, Germain D (2017-07-26). 256: 254: 252: 359:Durieux J, Wolff S, Dillin A (January 2011). 8: 48:. In the UPR, the mitochondrion will either 898:Horibe T, Hoogenraad NJ (September 2007). 207:Relationship to inflammatory bowel disease 1369: 1312: 1302: 1258: 1190: 1138: 1128: 1087: 1038: 1028: 987: 933: 923: 874: 864: 713: 703: 659: 605: 537: 499: 433: 384: 335: 286: 248: 18:mitochondrial unfolded protein response 795:Nature Reviews. Molecular Cell Biology 1280: 1278: 1160: 1158: 957: 955: 953: 788: 786: 784: 681: 679: 7: 629: 627: 625: 1165:Deng P, Haynes CM (December 2017). 1017:Molecular & Cellular Proteomics 692:The Journal of Biological Chemistry 640:The Journal of Experimental Biology 310:Papa L, Germain D (February 2014). 115:Cellular unfolded protein responses 102:has been shown to extend lifespan. 1062:Melber A, Haynes CM (March 2018). 14: 165:transcription factor ATFS-1 (in 1183:10.1016/j.semcancer.2017.05.002 561:Callier, Viviane (2024-01-08). 161:The UPR progresses through the 316:Molecular and Cellular Biology 1: 52:chaperone proteins or invoke 925:10.1371/journal.pone.0000835 866:10.1371/journal.pone.0000874 279:10.1016/j.bbamcr.2012.02.019 46:mitochondrial inner membrane 1426: 1304:10.1136/gutjnl-2019-319514 1171:Seminars in Cancer Biology 980:10.1136/gutjnl-2011-300767 426:10.1016/j.cell.2013.06.016 377:10.1016/j.cell.2010.12.016 78:mutations that extend the 530:10.1101/2023.08.21.554217 222:Unfolded protein response 94:by supplementation with 76:electron transport chain 26:cellular stress response 1130:10.3389/fonc.2017.00159 1030:10.1074/mcp.M114.043083 759:10.1126/science.1209038 705:10.1074/jbc.R117.791061 607:10.1126/science.aaf2693 32:. The UPR results from 1260:10.1038/sj.onc.1209116 484:10.1126/sciadv.adi1411 186:Relationship to cancer 84:Caenorhabditis elegans 1342:Nature Communications 1117:Frontiers in Oncology 122:endoplasmic reticulum 100:nicotinamide riboside 807:10.1038/nrm.2017.110 328:10.1128/MCB.01337-13 42:mitochondrial matrix 1362:10.1038/ncomms13171 1354:2016NatCo...713171B 1216:Anticancer Research 916:2007PLoSO...2..835H 857:2007PLoSO...2..874A 751:2011Sci...334.1081W 698:(33): 13500–13506. 598:2016Sci...352.1436Z 476:2023SciA....9I1411B 65:antioxidant enzymes 1080:10.1038/cr.2018.16 652:10.1242/jeb.090738 38:chaperone proteins 1405:Molecular biology 1297:(11): 1939–1951. 592:(6292): 1436–43. 227:Genetics of aging 1417: 1384: 1383: 1373: 1333: 1327: 1326: 1316: 1306: 1282: 1273: 1272: 1262: 1238: 1232: 1231: 1211: 1205: 1204: 1194: 1162: 1153: 1152: 1142: 1132: 1108: 1102: 1101: 1091: 1059: 1053: 1052: 1042: 1032: 1008: 1002: 1001: 991: 974:(9): 1269–1278. 959: 948: 947: 937: 927: 895: 889: 888: 878: 868: 836: 827: 826: 790: 779: 778: 745:(6059): 1081–6. 734: 728: 727: 717: 707: 683: 674: 673: 663: 646:(Pt 1): 137–43. 631: 620: 619: 609: 577: 571: 570: 558: 552: 551: 541: 520: 514: 513: 503: 470:(41): eadi1411. 464:Science Advances 454: 448: 447: 437: 405: 399: 398: 388: 356: 350: 349: 339: 307: 301: 300: 290: 258: 1425: 1424: 1420: 1419: 1418: 1416: 1415: 1414: 1390: 1389: 1388: 1387: 1335: 1334: 1330: 1284: 1283: 1276: 1240: 1239: 1235: 1222:(10): 4385–94. 1213: 1212: 1208: 1164: 1163: 1156: 1110: 1109: 1105: 1061: 1060: 1056: 1010: 1009: 1005: 961: 960: 951: 897: 896: 892: 838: 837: 830: 792: 791: 782: 736: 735: 731: 685: 684: 677: 633: 632: 623: 579: 578: 574: 567:Quanta Magazine 560: 559: 555: 522: 521: 517: 456: 455: 451: 407: 406: 402: 358: 357: 353: 309: 308: 304: 260: 259: 250: 245: 218: 209: 188: 175: 117: 28:related to the 12: 11: 5: 1423: 1421: 1413: 1412: 1407: 1402: 1392: 1391: 1386: 1385: 1328: 1274: 1233: 1206: 1154: 1103: 1074:(3): 281–295. 1054: 1023:(4): 1113–26. 1003: 949: 890: 828: 801:(2): 109–120. 780: 729: 675: 621: 572: 553: 515: 449: 400: 351: 322:(4): 699–710. 302: 247: 246: 244: 241: 240: 239: 234: 229: 224: 217: 214: 208: 205: 197:Warburg effect 187: 184: 174: 171: 116: 113: 74:Mitochondrial 13: 10: 9: 6: 4: 3: 2: 1422: 1411: 1408: 1406: 1403: 1401: 1398: 1397: 1395: 1381: 1377: 1372: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1329: 1324: 1320: 1315: 1310: 1305: 1300: 1296: 1292: 1288: 1281: 1279: 1275: 1270: 1266: 1261: 1256: 1253:(6): 907–16. 1252: 1248: 1244: 1237: 1234: 1229: 1225: 1221: 1217: 1210: 1207: 1202: 1198: 1193: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1159: 1155: 1150: 1146: 1141: 1136: 1131: 1126: 1122: 1118: 1114: 1107: 1104: 1099: 1095: 1090: 1085: 1081: 1077: 1073: 1069: 1068:Cell Research 1065: 1058: 1055: 1050: 1046: 1041: 1036: 1031: 1026: 1022: 1018: 1014: 1007: 1004: 999: 995: 990: 985: 981: 977: 973: 969: 965: 958: 956: 954: 950: 945: 941: 936: 931: 926: 921: 917: 913: 909: 905: 901: 894: 891: 886: 882: 877: 872: 867: 862: 858: 854: 850: 846: 842: 835: 833: 829: 824: 820: 816: 812: 808: 804: 800: 796: 789: 787: 785: 781: 776: 772: 768: 764: 760: 756: 752: 748: 744: 740: 733: 730: 725: 721: 716: 711: 706: 701: 697: 693: 689: 682: 680: 676: 671: 667: 662: 657: 653: 649: 645: 641: 637: 630: 628: 626: 622: 617: 613: 608: 603: 599: 595: 591: 587: 583: 576: 573: 568: 564: 557: 554: 549: 545: 540: 535: 531: 527: 519: 516: 511: 507: 502: 497: 493: 489: 485: 481: 477: 473: 469: 465: 461: 453: 450: 445: 441: 436: 431: 427: 423: 420:(2): 430–41. 419: 415: 411: 404: 401: 396: 392: 387: 382: 378: 374: 370: 366: 362: 355: 352: 347: 343: 338: 333: 329: 325: 321: 317: 313: 306: 303: 298: 294: 289: 284: 280: 276: 272: 268: 264: 257: 255: 253: 249: 242: 238: 235: 233: 230: 228: 225: 223: 220: 219: 215: 213: 206: 204: 202: 198: 193: 185: 183: 179: 172: 170: 168: 164: 159: 157: 153: 149: 143: 141: 136: 132: 127: 123: 114: 112: 109: 105: 101: 97: 93: 89: 85: 81: 77: 72: 70: 66: 62: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 1400:Mitochondria 1348:(1): 13171. 1345: 1341: 1331: 1294: 1290: 1250: 1246: 1236: 1219: 1215: 1209: 1174: 1170: 1120: 1116: 1106: 1071: 1067: 1057: 1020: 1016: 1006: 971: 967: 907: 903: 893: 848: 844: 798: 794: 742: 738: 732: 695: 691: 643: 639: 589: 585: 575: 566: 556: 518: 467: 463: 452: 417: 413: 403: 371:(1): 79–91. 368: 364: 354: 319: 315: 305: 273:(2): 410–6. 270: 266: 210: 189: 180: 176: 166: 160: 144: 131:proteostasis 126:mitochondria 118: 96:nicotinamide 73: 63:to activate 30:mitochondria 21: 17: 15: 910:(9): e835. 851:(9): e874. 1394:Categories 243:References 167:C. elegans 140:chaperones 50:upregulate 44:or in the 1177:: 43–49. 492:2375-2548 173:Molecular 156:apoptosis 124:(ER) and 80:life span 69:mitophagy 54:proteases 1410:Proteins 1380:27786175 1323:32111634 1269:16170340 1247:Oncogene 1228:23060563 1201:28499833 1149:28798902 1098:29424373 1049:25670805 998:21997551 944:17848986 904:PLOS ONE 885:17849004 845:PLOS ONE 823:20063954 815:29165426 767:22116877 724:28687630 670:24353213 616:27127236 548:37873079 539:10592821 510:37831769 501:10575585 444:23870130 395:21215371 346:24324009 297:22445420 216:See also 108:germline 88:nematode 34:unfolded 1371:5080445 1350:Bibcode 1314:7569388 1192:5681445 1140:5526845 1123:: 159. 1089:5835775 1040:4390256 989:4514769 935:1950685 912:Bibcode 876:1964532 853:Bibcode 747:Bibcode 739:Science 715:5566509 661:3867496 594:Bibcode 586:Science 472:Bibcode 435:3062502 386:3753670 337:3911493 288:3393825 58:sirtuin 24:) is a 1378:  1368:  1321:  1311:  1267:  1226:  1199:  1189:  1147:  1137:  1096:  1086:  1047:  1037:  996:  986:  942:  932:  883:  873:  821:  813:  775:691563 773:  765:  722:  712:  668:  658:  614:  546:  536:  508:  498:  490:  442:  432:  393:  383:  344:  334:  295:  285:  819:S2CID 771:S2CID 237:Age-1 232:Daf-2 192:SIRT3 135:HSF-1 104:Glial 61:SIRT3 1376:PMID 1319:PMID 1265:PMID 1224:PMID 1197:PMID 1145:PMID 1094:PMID 1045:PMID 994:PMID 940:PMID 881:PMID 811:PMID 763:PMID 720:PMID 666:PMID 612:PMID 544:PMID 506:PMID 488:ISSN 440:PMID 414:Cell 391:PMID 365:Cell 342:PMID 293:PMID 271:1833 201:ATF5 163:bZIP 152:ERAD 148:ATF6 106:and 92:NAD+ 67:and 16:The 1366:PMC 1358:doi 1309:PMC 1299:doi 1291:Gut 1255:doi 1187:PMC 1179:doi 1135:PMC 1125:doi 1084:PMC 1076:doi 1035:PMC 1025:doi 984:PMC 976:doi 968:Gut 930:PMC 920:doi 871:PMC 861:doi 803:doi 755:doi 743:334 710:PMC 700:doi 696:292 656:PMC 648:doi 644:217 602:doi 590:352 534:PMC 526:doi 496:PMC 480:doi 430:PMC 422:doi 418:154 381:PMC 373:doi 369:144 332:PMC 324:doi 283:PMC 275:doi 98:or 82:of 22:UPR 1396:: 1374:. 1364:. 1356:. 1344:. 1340:. 1317:. 1307:. 1295:69 1293:. 1289:. 1277:^ 1263:. 1251:25 1249:. 1245:. 1220:32 1218:. 1195:. 1185:. 1175:47 1173:. 1169:. 1157:^ 1143:. 1133:. 1119:. 1115:. 1092:. 1082:. 1072:28 1070:. 1066:. 1043:. 1033:. 1021:14 1019:. 1015:. 992:. 982:. 972:61 970:. 966:. 952:^ 938:. 928:. 918:. 906:. 902:. 879:. 869:. 859:. 847:. 843:. 831:^ 817:. 809:. 799:19 797:. 783:^ 769:. 761:. 753:. 741:. 718:. 708:. 694:. 690:. 678:^ 664:. 654:. 642:. 638:. 624:^ 610:. 600:. 588:. 584:. 565:. 542:. 532:. 504:. 494:. 486:. 478:. 466:. 462:. 438:. 428:. 416:. 412:. 389:. 379:. 367:. 363:. 340:. 330:. 320:34 318:. 314:. 291:. 281:. 269:. 265:. 251:^ 158:. 142:. 71:. 1382:. 1360:: 1352:: 1346:7 1325:. 1301:: 1271:. 1257:: 1230:. 1203:. 1181:: 1151:. 1127:: 1121:7 1100:. 1078:: 1051:. 1027:: 1000:. 978:: 946:. 922:: 914:: 908:2 887:. 863:: 855:: 849:2 825:. 805:: 777:. 757:: 749:: 726:. 702:: 672:. 650:: 618:. 604:: 596:: 569:. 550:. 528:: 512:. 482:: 474:: 468:9 446:. 424:: 397:. 375:: 348:. 326:: 299:. 277:: 129:( 86:( 20:(

Index

cellular stress response
mitochondria
unfolded
chaperone proteins
mitochondrial matrix
mitochondrial inner membrane
upregulate
proteases
sirtuin
SIRT3
antioxidant enzymes
mitophagy
electron transport chain
life span
Caenorhabditis elegans
nematode
NAD+
nicotinamide
nicotinamide riboside
Glial
germline
endoplasmic reticulum
mitochondria
proteostasis
HSF-1
chaperones
ATF6
ERAD
apoptosis
bZIP

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.