Knowledge

Bogomolov–Miyaoka–Yau inequality

Source 📝

508: 415: 266: 572: 80: 142:
showed that the inequality is best possible by finding infinitely many cases where equality holds. The inequality is false in positive characteristic: William E. Lang (
699: 660: 331: 581:
the Bogomolov–Miyaoka–Yau inequality sets boundaries in the search for complex surfaces. Mapping out the topological types that are realized as complex surfaces is called
444: 1058: 1465: 1391: 1539: 450:
on the second cohomology, the Bogomolov–Miyaoka–Yau inequality can also be written as a restriction on the topological type of the surface of general type:
275:
is a quotient of a ball. The latter statement is a consequence of Yau's differential geometric approach which is based on his resolution of the
100:. Its major interest is the way it restricts the possible topological types of the underlying real 4-manifold. It was proved independently by 945: 915: 1233: 1594: 447: 1537:
Yau, Shing Tung (1978), "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I",
456: 338: 1584: 155: 343: 1589: 1335: 1279: 1168: 97: 586: 220: 516: 37: 1599: 733: 673: 582: 617: 1474: 1400: 1389:
Van de Ven, Antonius (1966), "On the Chern numbers of certain complex and almost complex manifolds",
1354: 1298: 1177: 933: 910:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, 334: 139: 285: 1500: 1426: 1378: 1344: 1322: 1288: 1258: 1209: 1101: 1067: 1056:
Easton, Robert W. (2008), "Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic",
998: 578: 701:
by an infinite discrete group. Examples of surfaces satisfying this equality are hard to find.
420: 1556: 1526: 1492: 1452: 1418: 1250: 1193: 1131: 1085: 1017: 974: 941: 911: 276: 93: 1548: 1516: 1482: 1442: 1408: 1362: 1306: 1242: 1185: 1121: 1112:
Ishida, Masa-Nori (1988), "An elliptic surface covered by Mumford's fake projective plane",
1077: 1045: 1007: 1568: 1512: 1438: 1374: 1318: 1270: 1205: 1159: 1143: 1097: 1036:
Cartwright, Donald I.; Steger, Tim (2010), "Enumeration of the 50 fake projective planes",
1029: 986: 955: 925: 1564: 1508: 1463:
Yau, Shing Tung (1977), "Calabi's conjecture and some new results in algebraic geometry",
1434: 1370: 1314: 1266: 1201: 1155: 1139: 1093: 1025: 982: 962: 951: 921: 125: 1478: 1404: 1358: 1302: 1181: 166:
The conventional formulation of the Bogomolov–Miyaoka–Yau inequality is as follows. Let
113: 101: 1521: 1447: 17: 1578: 1224: 1220: 1213: 1012: 725: 90: 1382: 1150:
Lang, William E. (1983), "Examples of surfaces of general type with vector fields",
1105: 1326: 993: 171: 135: 86: 1081: 211: 1466:
Proceedings of the National Academy of Sciences of the United States of America
1392:
Proceedings of the National Academy of Sciences of the United States of America
1154:, Progr. Math., vol. 36, Boston, MA: Birkhäuser Boston, pp. 167–173, 1049: 906:
Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004),
1366: 1333:
Prasad, Gopal; Yeung, Sai-Kee (2010), "Addendum to "Fake projective planes"",
1310: 1560: 1496: 1422: 1254: 1197: 1135: 1126: 1089: 1021: 978: 1166:
Miyaoka, Yoichi (1977), "On the Chern numbers of surfaces of general type",
1552: 1530: 1487: 1456: 1413: 838:= 45, and taking unbranched coverings of this quotient gives examples with 792:
gave a method for finding examples, which in particular produced a surface
965:(1978), "Holomorphic tensors and vector bundles on projective manifolds", 662:, so that equality holds in the Bogomolov–Miyaoka–Yau inequality, then 1262: 1189: 940:, Aspects of Mathematics, D4, Braunschweig: Friedr. Vieweg & Sohn, 1504: 1430: 1293: 1072: 1246: 1349: 132:) proved weaker versions with the constant 3 replaced by 8 and 4. 1277:
Prasad, Gopal; Yeung, Sai-Kee (2007), "Fake projective planes",
996:(1963), "Compact Clifford-Klein forms of symmetric spaces", 786:) showed that there are exactly 50 fake projective planes. 865:. Donald I. Cartwright and Tim Steger ( 782:, Donald I. Cartwright and Tim Steger ( 789: 967:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
676: 620: 519: 459: 423: 346: 288: 223: 40: 214:
of the complex tangent bundle of the surface. Then
1241:(1), The Johns Hopkins University Press: 233–244, 693: 654: 566: 503:{\displaystyle \sigma (X)\leq {\frac {1}{3}}e(X),} 502: 438: 409: 325: 260: 74: 755:= 9, which is the minimum possible value because 1059:Proceedings of the American Mathematical Society 866: 783: 705:showed that there are infinitely many values of 670:is isomorphic to a quotient of the unit ball in 938:Geradenkonfigurationen und Algebraische Flächen 1540:Communications on Pure and Applied Mathematics 1473:(5), National Academy of Sciences: 1798–1799, 1399:(6), National Academy of Sciences: 1624–1627, 410:{\displaystyle c_{1}^{2}(X)=2e(X)+3\sigma (X)} 150:) gave examples of surfaces in characteristic 8: 1225:"An algebraic surface with K ample, (K)=9, p 779: 775: 121: 1520: 1486: 1446: 1412: 1348: 1292: 1125: 1071: 1011: 685: 680: 679: 678: 675: 646: 630: 625: 619: 541: 518: 475: 458: 422: 356: 351: 345: 293: 287: 249: 233: 228: 222: 129: 66: 50: 45: 39: 729: 574:then the universal covering is a ball. 120:), after Antonius Van de Ven ( 117: 819:found a quotient of this surface with 816: 790:Barthel, Hirzebruch & Höfer (1987) 147: 702: 261:{\displaystyle c_{1}^{2}\leq 3c_{2}.} 7: 567:{\displaystyle \sigma (X)=(1/3)e(X)} 143: 75:{\displaystyle c_{1}^{2}\leq 3c_{2}} 663: 109: 105: 694:{\displaystyle {\mathbb {C} }^{2}} 614:is a surface of general type with 25: 1044:(1), Elsevier Masson SAS: 11–13, 339:Thom–Hirzebruch signature theorem 146:) and Robert W. Easton ( 1152:Arithmetic and geometry, Vol. II 655:{\displaystyle c_{1}^{2}=3c_{2}} 271:Moreover if equality holds then 170:be a compact complex surface of 29:Bogomolov–Miyaoka–Yau inequality 1234:American Journal of Mathematics 1114:The Tohoku Mathematical Journal 774:is always divisible by 12, and 561: 555: 549: 535: 529: 523: 494: 488: 469: 463: 433: 427: 404: 398: 386: 380: 368: 362: 320: 314: 305: 299: 1: 1082:10.1090/S0002-9939-08-09466-5 326:{\displaystyle c_{2}(X)=e(X)} 162:Formulation of the inequality 1013:10.1016/0040-9383(63)90026-0 724:for which a surface exists. 156:generalized Raynaud surfaces 1038:Comptes Rendus Mathématique 892:for every positive integer 1616: 1050:10.1016/j.crma.2009.11.016 439:{\displaystyle \sigma (X)} 210:) be the first and second 1367:10.1007/s00222-010-0259-6 1311:10.1007/s00222-007-0034-5 861:for any positive integer 780:Prasad & Yeung (2010) 776:Prasad & Yeung (2007) 1336:Inventiones Mathematicae 1280:Inventiones Mathematicae 1169:Inventiones Mathematicae 936:; Höfer, Thomas (1987), 908:Compact Complex Surfaces 587:surfaces of general type 446:is the signature of the 1553:10.1002/cpa.3160310304 1488:10.1073/pnas.74.5.1798 1414:10.1073/pnas.55.6.1624 1127:10.2748/tmj/1178227980 869:) found examples with 695: 656: 568: 504: 440: 411: 327: 262: 158:, for which it fails. 76: 18:Miyaoka–Yau inequality 1595:Differential geometry 934:Hirzebruch, Friedrich 734:fake projective plane 696: 657: 583:geography of surfaces 569: 505: 441: 412: 328: 263: 77: 932:Barthel, Gottfried; 674: 618: 517: 457: 421: 344: 335:Euler characteristic 286: 221: 140:Friedrich Hirzebruch 38: 27:In mathematics, the 1479:1977PNAS...74.1798Y 1405:1966PNAS...55.1624V 1359:2010InMat.182..213P 1303:2007InMat.168..321P 1182:1977InMat..42..225M 963:Bogomolov, Fedor A. 635: 361: 333:is the topological 238: 126:Fedor Bogomolov 55: 1585:Algebraic surfaces 1190:10.1007/BF01389789 691: 652: 621: 579:Noether inequality 577:Together with the 564: 500: 436: 407: 347: 323: 258: 224: 114:Yoichi Miyaoka 102:Shing-Tung Yau 72: 41: 31:is the inequality 1116:, Second Series, 947:978-3-528-08907-8 917:978-3-540-00832-3 726:David Mumford 483: 448:intersection form 277:Calabi conjecture 16:(Redirected from 1607: 1590:Complex surfaces 1571: 1533: 1524: 1490: 1459: 1450: 1416: 1385: 1352: 1329: 1296: 1273: 1216: 1162: 1146: 1129: 1108: 1075: 1066:(7): 2271–2278, 1052: 1032: 1015: 1006:(1–2): 111–122, 989: 973:(6): 1227–1287, 958: 928: 880: 879: 849: 848: 830: 829: 807: 806: 766: 765: 747: 746: 716: 715: 700: 698: 697: 692: 690: 689: 684: 683: 661: 659: 658: 653: 651: 650: 634: 629: 573: 571: 570: 565: 545: 509: 507: 506: 501: 484: 476: 445: 443: 442: 437: 416: 414: 413: 408: 360: 355: 332: 330: 329: 324: 298: 297: 267: 265: 264: 259: 254: 253: 237: 232: 94:complex surfaces 81: 79: 78: 73: 71: 70: 54: 49: 21: 1615: 1614: 1610: 1609: 1608: 1606: 1605: 1604: 1575: 1574: 1536: 1462: 1388: 1332: 1276: 1247:10.2307/2373947 1228: 1219: 1165: 1149: 1111: 1055: 1035: 992: 961: 948: 931: 918: 905: 902: 887: 878: 875: 874: 873: 856: 847: 844: 843: 842: 837: 828: 825: 824: 823: 814: 805: 802: 801: 800: 773: 764: 761: 760: 759: 754: 745: 742: 741: 740: 723: 714: 711: 710: 709: 677: 672: 671: 642: 616: 615: 608: 606: 599: 515: 514: 455: 454: 419: 418: 342: 341: 289: 284: 283: 245: 219: 218: 205: 198: 187: 180: 164: 62: 36: 35: 23: 22: 15: 12: 11: 5: 1613: 1611: 1603: 1602: 1597: 1592: 1587: 1577: 1576: 1573: 1572: 1547:(3): 339–411, 1534: 1460: 1386: 1343:(1): 213–227, 1330: 1287:(2): 321–370, 1274: 1226: 1221:Mumford, David 1217: 1176:(1): 225–237, 1163: 1147: 1120:(3): 367–396, 1109: 1053: 1033: 990: 959: 946: 929: 916: 901: 898: 885: 876: 854: 845: 835: 826: 812: 803: 771: 762: 752: 743: 721: 712: 688: 682: 649: 645: 641: 638: 633: 628: 624: 607: 604: 597: 593:Surfaces with 591: 563: 560: 557: 554: 551: 548: 544: 540: 537: 534: 531: 528: 525: 522: 511: 510: 499: 496: 493: 490: 487: 482: 479: 474: 471: 468: 465: 462: 435: 432: 429: 426: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 376: 373: 370: 367: 364: 359: 354: 350: 322: 319: 316: 313: 310: 307: 304: 301: 296: 292: 269: 268: 257: 252: 248: 244: 241: 236: 231: 227: 203: 196: 185: 178: 163: 160: 83: 82: 69: 65: 61: 58: 53: 48: 44: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1612: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1582: 1580: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1541: 1535: 1532: 1528: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1489: 1484: 1480: 1476: 1472: 1468: 1467: 1461: 1458: 1454: 1449: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1415: 1410: 1406: 1402: 1398: 1394: 1393: 1387: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1351: 1346: 1342: 1338: 1337: 1331: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1295: 1290: 1286: 1282: 1281: 1275: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1235: 1230: 1222: 1218: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1170: 1164: 1161: 1157: 1153: 1148: 1145: 1141: 1137: 1133: 1128: 1123: 1119: 1115: 1110: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1074: 1069: 1065: 1061: 1060: 1054: 1051: 1047: 1043: 1039: 1034: 1031: 1027: 1023: 1019: 1014: 1009: 1005: 1001: 1000: 995: 994:Borel, Armand 991: 988: 984: 980: 976: 972: 968: 964: 960: 957: 953: 949: 943: 939: 935: 930: 927: 923: 919: 913: 909: 904: 903: 899: 897: 895: 891: 884: 872: 868: 864: 860: 853: 841: 834: 822: 818: 817:Ishida (1988) 811: 799: 795: 791: 787: 785: 781: 777: 770: 758: 751: 739: 735: 731: 727: 720: 708: 704: 686: 669: 665: 647: 643: 639: 636: 631: 626: 622: 613: 603: 596: 592: 590: 588: 584: 580: 575: 558: 552: 546: 542: 538: 532: 526: 520: 497: 491: 485: 480: 477: 472: 466: 460: 453: 452: 451: 449: 430: 424: 401: 395: 392: 389: 383: 377: 374: 371: 365: 357: 352: 348: 340: 336: 317: 311: 308: 302: 294: 290: 280: 278: 274: 255: 250: 246: 242: 239: 234: 229: 225: 217: 216: 215: 213: 209: 202: 195: 191: 184: 177: 173: 169: 161: 159: 157: 153: 149: 145: 141: 137: 133: 131: 127: 123: 119: 115: 111: 107: 103: 99: 95: 92: 88: 87:Chern numbers 67: 63: 59: 56: 51: 46: 42: 34: 33: 32: 30: 19: 1600:Inequalities 1544: 1538: 1470: 1464: 1396: 1390: 1340: 1334: 1294:math/0512115 1284: 1278: 1238: 1232: 1173: 1167: 1151: 1117: 1113: 1073:math/0511455 1063: 1057: 1041: 1037: 1003: 997: 970: 966: 937: 907: 893: 889: 882: 870: 862: 858: 851: 839: 832: 820: 809: 797: 793: 788: 768: 756: 749: 737: 718: 706: 703:Borel (1963) 667: 666:proved that 611: 609: 601: 594: 576: 513:moreover if 512: 281: 272: 270: 207: 200: 193: 189: 182: 175: 172:general type 167: 165: 151: 136:Armand Borel 134: 98:general type 84: 28: 26: 337:and by the 212:Chern class 1579:Categories 900:References 732:) found a 664:Yau (1977) 174:, and let 154:, such as 1561:0010-3640 1497:0027-8424 1423:0027-8424 1350:0906.4932 1255:0002-9327 1214:120699065 1198:0020-9910 1136:0040-8735 1090:0002-9939 1022:0040-9383 979:0373-2436 521:σ 473:≤ 461:σ 425:σ 396:σ 240:≤ 57:≤ 1531:16592394 1457:16578639 1383:17216453 1223:(1979), 1106:35276117 999:Topology 85:between 1569:0480350 1513:0451180 1475:Bibcode 1439:0198496 1401:Bibcode 1375:2672284 1355:Bibcode 1327:1990160 1319:2289867 1299:Bibcode 1271:0527834 1263:2373947 1206:0460343 1178:Bibcode 1160:0717611 1144:0957050 1098:2390492 1030:0146301 987:0522939 956:0912097 926:2030225 815:= 35. 728: ( 199:=  181:=  128: ( 116: ( 104: ( 91:compact 1567:  1559:  1529:  1522:431004 1519:  1511:  1503:  1495:  1455:  1448:224368 1445:  1437:  1429:  1421:  1381:  1373:  1325:  1317:  1269:  1261:  1253:  1212:  1204:  1196:  1158:  1142:  1134:  1104:  1096:  1088:  1028:  1020:  985:  977:  954:  944:  924:  914:  585:. see 417:where 282:Since 192:) and 124:) and 112:) and 1505:67110 1501:JSTOR 1431:57245 1427:JSTOR 1379:S2CID 1345:arXiv 1323:S2CID 1289:arXiv 1259:JSTOR 1229:=q=0" 1210:S2CID 1102:S2CID 1068:arXiv 796:with 736:with 1557:ISSN 1527:PMID 1493:ISSN 1453:PMID 1419:ISSN 1251:ISSN 1194:ISSN 1132:ISSN 1086:ISSN 1018:ISSN 975:ISSN 942:ISBN 912:ISBN 867:2010 857:= 45 784:2010 730:1979 148:2008 144:1983 138:and 130:1978 122:1966 118:1977 110:1978 106:1977 1549:doi 1517:PMC 1483:doi 1443:PMC 1409:doi 1363:doi 1341:182 1307:doi 1285:168 1243:doi 1239:101 1186:doi 1122:doi 1078:doi 1064:136 1046:doi 1042:348 1008:doi 888:= 9 881:= 3 850:= 3 831:= 3 808:= 3 748:= 3 717:= 3 610:If 600:= 3 96:of 89:of 1581:: 1565:MR 1563:, 1555:, 1545:31 1543:, 1525:, 1515:, 1509:MR 1507:, 1499:, 1491:, 1481:, 1471:74 1469:, 1451:, 1441:, 1435:MR 1433:, 1425:, 1417:, 1407:, 1397:55 1395:, 1377:, 1371:MR 1369:, 1361:, 1353:, 1339:, 1321:, 1315:MR 1313:, 1305:, 1297:, 1283:, 1267:MR 1265:, 1257:, 1249:, 1237:, 1231:, 1208:, 1202:MR 1200:, 1192:, 1184:, 1174:42 1172:, 1156:MR 1140:MR 1138:, 1130:, 1118:40 1100:, 1094:MR 1092:, 1084:, 1076:, 1062:, 1040:, 1026:MR 1024:, 1016:, 1002:, 983:MR 981:, 971:42 969:, 952:MR 950:, 922:MR 920:, 896:. 778:, 767:+ 589:. 279:. 108:, 1551:: 1485:: 1477:: 1411:: 1403:: 1365:: 1357:: 1347:: 1309:: 1301:: 1291:: 1245:: 1227:g 1188:: 1180:: 1124:: 1080:: 1070:: 1048:: 1010:: 1004:2 894:n 890:n 886:2 883:c 877:1 871:c 863:k 859:k 855:2 852:c 846:1 840:c 836:2 833:c 827:1 821:c 813:2 810:c 804:1 798:c 794:X 772:2 769:c 763:1 757:c 753:2 750:c 744:1 738:c 722:2 719:c 713:1 707:c 687:2 681:C 668:X 648:2 644:c 640:3 637:= 632:2 627:1 623:c 612:X 605:2 602:c 598:1 595:c 562:) 559:X 556:( 553:e 550:) 547:3 543:/ 539:1 536:( 533:= 530:) 527:X 524:( 498:, 495:) 492:X 489:( 486:e 481:3 478:1 470:) 467:X 464:( 434:) 431:X 428:( 405:) 402:X 399:( 393:3 390:+ 387:) 384:X 381:( 378:e 375:2 372:= 369:) 366:X 363:( 358:2 353:1 349:c 321:) 318:X 315:( 312:e 309:= 306:) 303:X 300:( 295:2 291:c 273:X 256:. 251:2 247:c 243:3 235:2 230:1 226:c 208:X 206:( 204:2 201:c 197:2 194:c 190:X 188:( 186:1 183:c 179:1 176:c 168:X 152:p 68:2 64:c 60:3 52:2 47:1 43:c 20:)

Index

Miyaoka–Yau inequality
Chern numbers
compact
complex surfaces
general type
Shing-Tung Yau
1977
1978
Yoichi Miyaoka
1977
1966
Fedor Bogomolov
1978
Armand Borel
Friedrich Hirzebruch
1983
2008
generalized Raynaud surfaces
general type
Chern class
Calabi conjecture
Euler characteristic
Thom–Hirzebruch signature theorem
intersection form
Noether inequality
geography of surfaces
surfaces of general type
Yau (1977)
Borel (1963)
David Mumford

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.