Knowledge

Intersection form of a 4-manifold

Source đź“ť

1114:
The definition of a cup product is dual (and so is analogous) to the above definition of the intersection form on homology of a manifold, but is more abstract. However, the definition of a cup product generalizes to complexes and topological manifolds. This is an advantage for mathematicians who
373: 590: 1028: 1377:
simply-connected 4-manifold with positive definite intersection form has the diagonal (scalar 1) intersection form. So Freedman's classification implies there are many non-smoothable 4-manifolds, for example the
238: 666: 191: 1109: 1228: 453: 744: 808: 471: 884: 1260:
The definition using cup product has a simpler analogue modulo 2 (which works for non-orientable manifolds). Of course one does not have this in de Rham cohomology.
1251: 1148: 922: 842: 1312: 1168: 230: 118: 938: 458:
This is well-defined because the intersection of a cycle and a boundary consists of an even number of points (by definition of a cycle and a boundary).
1339:
used the intersection form to classify simply-connected topological 4-manifolds. Given any unimodular symmetric bilinear form over the integers,
595:
Using the notion of transversality, one can state the following results (which constitute an equivalent definition of the intersection form).
1461: 1325:
The signature of the intersection form is an important invariant. A 4-manifold bounds a 5-manifold if and only if it has zero signature.
368:{\displaystyle \cap _{M,2}:H_{2}(M;\mathbb {Z} /2\mathbb {Z} )\times H_{2}(M;\mathbb {Z} /2\mathbb {Z} )\to \mathbb {Z} /2\mathbb {Z} } 1441: 602: 127: 1364: 465:
is oriented, analogously (i.e. counting intersections with signs) one defines the intersection form on the 2nd homology group
1363:
4-manifolds with the same intersection form are homeomorphic. In the odd case, the two manifolds are distinguished by their
1039: 1433: 1176: 384: 1359:
is odd, there are two, with at least one (possibly both) having no smooth structure. Thus two simply-connected closed
1484: 54:
of the 4-manifold. It reflects much of the topology of the 4-manifolds, including information on the existence of a
679: 1322:
smooth 4-manifold (or more generally one with no 2-torsion residing in the first homology), the converse holds.
757: 83: 1326: 585:{\displaystyle Q_{M}=\cap _{M}=\cdot _{M}:H_{2}(M;\mathbb {Z} )\times H_{2}(M;\mathbb {Z} )\to \mathbb {Z} .} 47: 1370: 1319: 932:
be a closed oriented 4-manifold (PL or smooth). Define the intersection form on the 2nd cohomology group
1479: 1330: 1401: 925: 896: 1119: 847: 1115:
are interested in complexes and topological manifolds (not only in PL and smooth manifolds).
1457: 1437: 17: 1236: 1133: 1023:{\displaystyle Q_{M}\colon H^{2}(M;\mathbb {Z} )\times H^{2}(M;\mathbb {Z} )\to \mathbb {Z} } 907: 821: 1336: 1282: 1254: 1153: 121: 55: 1451: 208: 96: 1269: 79: 71: 1276: 51: 1473: 1392: 1379: 902: 75: 31: 1419: 27:
A special symmetric bilinear form on the 2nd (co)homology group of a 4-manifold
1333:
implies that a smooth compact spin 4-manifold has signature a multiple of 16.
43: 1329:
implies that a spin 4-manifold has signature a multiple of eight. In fact,
39: 844:
has the sign +1 or −1 depending on the orientations, and
1170:, then the intersection form can be expressed by the integral 433: 810:
are represented by closed oriented surfaces (or 2-cycles)
668:
are represented by closed surfaces (or 2-cycles modulo 2)
661:{\displaystyle a,b\in H_{2}(M;\mathbb {Z} /2\mathbb {Z} )} 186:{\displaystyle a,b\in H_{2}(M;\mathbb {Z} /2\mathbb {Z} )} 1453:
Algebraic Topology From Geometric Viewpoint (in Russian)
1412:
The topology of 4-manifolds, Lecture Notes in Math. 1374
818:
meeting transversely, then every intersection point in
232:, respectively. Define the intersection form modulo 2 1268:
Poincare duality states that the intersection form is
1104:{\displaystyle Q_{M}(a,b)=\langle a\smile b,\rangle .} 1285: 1239: 1179: 1156: 1136: 1042: 941: 910: 850: 824: 760: 682: 605: 474: 387: 241: 211: 130: 99: 1223:{\displaystyle Q(a,b)=\int _{M}\alpha \wedge \beta } 1279:4-manifold must have even intersection form, i.e., 928:(and so an equivalent) definition as follows. Let 448:{\displaystyle a\cap _{M,2}b=|A\cap B|{\bmod {2}}.} 1306: 1245: 1222: 1162: 1142: 1103: 1022: 916: 878: 836: 802: 738: 660: 584: 447: 367: 224: 185: 112: 1343:, there is a simply-connected closed 4-manifold 1355:is even, there is only one such manifold. If 739:{\displaystyle a\cap _{M,2}b=|A\cap B|\mod 2.} 8: 1095: 1071: 803:{\displaystyle a,b\in H_{2}(M;\mathbb {Z} )} 201:modulo 2 viewed as unions of 2-simplices of 1284: 1238: 1205: 1178: 1155: 1135: 1047: 1041: 1016: 1015: 1005: 1004: 989: 975: 974: 959: 946: 940: 909: 855: 849: 823: 793: 792: 777: 759: 732: 731: 722: 708: 690: 681: 651: 650: 642: 638: 637: 622: 604: 575: 574: 564: 563: 548: 534: 533: 518: 505: 492: 479: 473: 436: 432: 427: 413: 395: 386: 361: 360: 352: 348: 347: 337: 336: 328: 324: 323: 308: 294: 293: 285: 281: 280: 265: 246: 240: 216: 210: 176: 175: 167: 163: 162: 147: 129: 104: 98: 1118:When the 4-manifold is smooth, then in 7: 25: 1403:Intersection_number_of_immersions 727: 1301: 1289: 1195: 1183: 1092: 1086: 1065: 1053: 1012: 1009: 995: 979: 965: 873: 861: 797: 783: 723: 709: 655: 628: 571: 568: 554: 538: 524: 428: 414: 344: 341: 314: 298: 271: 180: 153: 18:Intersection form (4-manifold) 1: 1434:American Mathematical Society 1430:The wild world of 4-manifolds 676:meeting transversely, then 62:Definition using intersection 891:Definition using cup product 1450:Skopenkov, Arkadiy (2015), 1428:Scorpan, Alexandru (2005), 1264:Properties and applications 1130:are represented by 2-forms 1501: 1365:Kirby–Siebenmann invariant 894: 886:is the sum of these signs. 879:{\displaystyle Q_{M}(a,b)} 901:Using the notion of the 754:is oriented and classes 1347:with intersection form 1246:{\displaystyle \wedge } 1143:{\displaystyle \alpha } 917:{\displaystyle \smile } 837:{\displaystyle A\cap B} 48:symmetric bilinear form 1410:Kirby, Robion (1989), 1308: 1307:{\displaystyle Q(x,x)} 1247: 1224: 1164: 1163:{\displaystyle \beta } 1144: 1105: 1024: 918: 880: 838: 804: 740: 662: 586: 449: 369: 226: 187: 114: 1309: 1248: 1225: 1165: 1145: 1106: 1025: 919: 895:Further information: 881: 839: 805: 741: 663: 587: 450: 370: 227: 225:{\displaystyle T^{*}} 188: 124:. Represent classes 122:dual cell subdivision 115: 113:{\displaystyle T^{*}} 1327:Van der Blij's lemma 1283: 1237: 1177: 1154: 1134: 1040: 939: 908: 848: 822: 758: 680: 603: 472: 385: 239: 209: 128: 97: 1371:Donaldson's theorem 1275:By Wu's formula, a 897:Intersection theory 1485:Geometric topology 1314:is even for every 1304: 1243: 1220: 1160: 1140: 1120:de Rham cohomology 1101: 1020: 914: 876: 834: 800: 736: 658: 582: 445: 365: 222: 183: 110: 1463:978-5-4439-0293-7 1414:, Springer-Verlag 1394:Intersection form 1331:Rokhlin's theorem 1272:(up to torsion). 924:, one can give a 36:intersection form 16:(Redirected from 1492: 1466: 1446: 1424: 1415: 1406: 1397: 1337:Michael Freedman 1320:simply-connected 1313: 1311: 1310: 1305: 1252: 1250: 1249: 1244: 1229: 1227: 1226: 1221: 1210: 1209: 1169: 1167: 1166: 1161: 1149: 1147: 1146: 1141: 1110: 1108: 1107: 1102: 1052: 1051: 1029: 1027: 1026: 1021: 1019: 1008: 994: 993: 978: 964: 963: 951: 950: 923: 921: 920: 915: 885: 883: 882: 877: 860: 859: 843: 841: 840: 835: 809: 807: 806: 801: 796: 782: 781: 745: 743: 742: 737: 726: 712: 701: 700: 667: 665: 664: 659: 654: 646: 641: 627: 626: 591: 589: 588: 583: 578: 567: 553: 552: 537: 523: 522: 510: 509: 497: 496: 484: 483: 454: 452: 451: 446: 441: 440: 431: 417: 406: 405: 374: 372: 371: 366: 364: 356: 351: 340: 332: 327: 313: 312: 297: 289: 284: 270: 269: 257: 256: 231: 229: 228: 223: 221: 220: 192: 190: 189: 184: 179: 171: 166: 152: 151: 119: 117: 116: 111: 109: 108: 56:smooth structure 21: 1500: 1499: 1495: 1494: 1493: 1491: 1490: 1489: 1470: 1469: 1464: 1449: 1444: 1427: 1418: 1409: 1400: 1391: 1388: 1281: 1280: 1266: 1235: 1234: 1201: 1175: 1174: 1152: 1151: 1132: 1131: 1043: 1038: 1037: 1033:by the formula 985: 955: 942: 937: 936: 906: 905: 899: 893: 851: 846: 845: 820: 819: 773: 756: 755: 686: 678: 677: 618: 601: 600: 544: 514: 501: 488: 475: 470: 469: 391: 383: 382: 378:by the formula 304: 261: 242: 237: 236: 212: 207: 206: 143: 126: 125: 100: 95: 94: 64: 50:on the 2nd (co) 28: 23: 22: 15: 12: 11: 5: 1498: 1496: 1488: 1487: 1482: 1472: 1471: 1468: 1467: 1462: 1447: 1442: 1425: 1416: 1407: 1398: 1387: 1384: 1303: 1300: 1297: 1294: 1291: 1288: 1265: 1262: 1242: 1231: 1230: 1219: 1216: 1213: 1208: 1204: 1200: 1197: 1194: 1191: 1188: 1185: 1182: 1159: 1139: 1112: 1111: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1050: 1046: 1031: 1030: 1018: 1014: 1011: 1007: 1003: 1000: 997: 992: 988: 984: 981: 977: 973: 970: 967: 962: 958: 954: 949: 945: 913: 892: 889: 888: 887: 875: 872: 869: 866: 863: 858: 854: 833: 830: 827: 799: 795: 791: 788: 785: 780: 776: 772: 769: 766: 763: 747: 746: 735: 730: 725: 721: 718: 715: 711: 707: 704: 699: 696: 693: 689: 685: 657: 653: 649: 645: 640: 636: 633: 630: 625: 621: 617: 614: 611: 608: 593: 592: 581: 577: 573: 570: 566: 562: 559: 556: 551: 547: 543: 540: 536: 532: 529: 526: 521: 517: 513: 508: 504: 500: 495: 491: 487: 482: 478: 456: 455: 444: 439: 435: 430: 426: 423: 420: 416: 412: 409: 404: 401: 398: 394: 390: 376: 375: 363: 359: 355: 350: 346: 343: 339: 335: 331: 326: 322: 319: 316: 311: 307: 303: 300: 296: 292: 288: 283: 279: 276: 273: 268: 264: 260: 255: 252: 249: 245: 219: 215: 182: 178: 174: 170: 165: 161: 158: 155: 150: 146: 142: 139: 136: 133: 107: 103: 63: 60: 52:homology group 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1497: 1486: 1483: 1481: 1478: 1477: 1475: 1465: 1459: 1455: 1454: 1448: 1445: 1443:0-8218-3749-4 1439: 1435: 1431: 1426: 1423: 1422: 1417: 1413: 1408: 1405: 1404: 1399: 1396: 1395: 1390: 1389: 1385: 1383: 1381: 1376: 1372: 1368: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1332: 1328: 1323: 1321: 1317: 1298: 1295: 1292: 1286: 1278: 1273: 1271: 1263: 1261: 1258: 1256: 1255:wedge product 1240: 1217: 1214: 1211: 1206: 1202: 1198: 1192: 1189: 1186: 1180: 1173: 1172: 1171: 1157: 1137: 1129: 1125: 1121: 1116: 1098: 1089: 1083: 1080: 1077: 1074: 1068: 1062: 1059: 1056: 1048: 1044: 1036: 1035: 1034: 1001: 998: 990: 986: 982: 971: 968: 960: 956: 952: 947: 943: 935: 934: 933: 931: 927: 911: 904: 898: 890: 870: 867: 864: 856: 852: 831: 828: 825: 817: 813: 789: 786: 778: 774: 770: 767: 764: 761: 753: 749: 748: 733: 728: 719: 716: 713: 705: 702: 697: 694: 691: 687: 683: 675: 671: 647: 643: 634: 631: 623: 619: 615: 612: 609: 606: 598: 597: 596: 579: 560: 557: 549: 545: 541: 530: 527: 519: 515: 511: 506: 502: 498: 493: 489: 485: 480: 476: 468: 467: 466: 464: 459: 442: 437: 424: 421: 418: 410: 407: 402: 399: 396: 392: 388: 381: 380: 379: 357: 353: 333: 329: 320: 317: 309: 305: 301: 290: 286: 277: 274: 266: 262: 258: 253: 250: 247: 243: 235: 234: 233: 217: 213: 204: 200: 196: 172: 168: 159: 156: 148: 144: 140: 137: 134: 131: 123: 105: 101: 93:. Denote by 92: 88: 85: 84:triangulation 81: 77: 73: 69: 61: 59: 57: 53: 49: 46:is a special 45: 41: 37: 33: 19: 1452: 1429: 1421:Linking_form 1420: 1411: 1402: 1393: 1374: 1369: 1360: 1356: 1352: 1348: 1344: 1340: 1335: 1324: 1315: 1274: 1267: 1259: 1232: 1127: 1123: 1117: 1113: 1032: 929: 900: 815: 811: 751: 673: 669: 594: 462: 460: 457: 377: 202: 198: 194: 193:by 2-cycles 90: 86: 74:4-manifold ( 67: 65: 35: 29: 1480:4-manifolds 1380:E8 manifold 903:cup product 599:If classes 82:). Take a 32:mathematics 1474:Categories 1386:References 1270:unimodular 44:4-manifold 1456:, MCCME, 1373:states a 1318:. For a 1241:∧ 1218:β 1215:∧ 1212:α 1203:∫ 1158:β 1138:α 1096:⟩ 1078:⌣ 1072:⟨ 1013:→ 983:× 953:: 912:⌣ 829:∩ 771:∈ 717:∩ 688:∩ 616:∈ 572:→ 542:× 503:⋅ 490:∩ 422:∩ 393:∩ 345:→ 302:× 244:∩ 218:∗ 141:∈ 106:∗ 42:compact 40:oriented 1253:is the 205:and of 1460:  1440:  1375:smooth 1361:smooth 1351:. If 1233:where 80:smooth 72:closed 38:of an 34:, the 1122:, if 70:be a 1458:ISBN 1438:ISBN 1277:spin 1150:and 1126:and 926:dual 814:and 672:and 197:and 120:the 66:Let 750:If 729:mod 461:If 434:mod 89:of 78:or 30:In 1476:: 1436:, 1432:, 1382:. 1367:. 1257:. 734:2. 76:PL 58:. 1357:Q 1353:Q 1349:Q 1345:M 1341:Q 1316:x 1302:) 1299:x 1296:, 1293:x 1290:( 1287:Q 1207:M 1199:= 1196:) 1193:b 1190:, 1187:a 1184:( 1181:Q 1128:b 1124:a 1099:. 1093:] 1090:M 1087:[ 1084:, 1081:b 1075:a 1069:= 1066:) 1063:b 1060:, 1057:a 1054:( 1049:M 1045:Q 1017:Z 1010:) 1006:Z 1002:; 999:M 996:( 991:2 987:H 980:) 976:Z 972:; 969:M 966:( 961:2 957:H 948:M 944:Q 930:M 874:) 871:b 868:, 865:a 862:( 857:M 853:Q 832:B 826:A 816:B 812:A 798:) 794:Z 790:; 787:M 784:( 779:2 775:H 768:b 765:, 762:a 752:M 724:| 720:B 714:A 710:| 706:= 703:b 698:2 695:, 692:M 684:a 674:B 670:A 656:) 652:Z 648:2 644:/ 639:Z 635:; 632:M 629:( 624:2 620:H 613:b 610:, 607:a 580:. 576:Z 569:) 565:Z 561:; 558:M 555:( 550:2 546:H 539:) 535:Z 531:; 528:M 525:( 520:2 516:H 512:: 507:M 499:= 494:M 486:= 481:M 477:Q 463:M 443:. 438:2 429:| 425:B 419:A 415:| 411:= 408:b 403:2 400:, 397:M 389:a 362:Z 358:2 354:/ 349:Z 342:) 338:Z 334:2 330:/ 325:Z 321:; 318:M 315:( 310:2 306:H 299:) 295:Z 291:2 287:/ 282:Z 278:; 275:M 272:( 267:2 263:H 259:: 254:2 251:, 248:M 214:T 203:T 199:B 195:A 181:) 177:Z 173:2 169:/ 164:Z 160:; 157:M 154:( 149:2 145:H 138:b 135:, 132:a 102:T 91:M 87:T 68:M 20:)

Index

Intersection form (4-manifold)
mathematics
oriented
4-manifold
symmetric bilinear form
homology group
smooth structure
closed
PL
smooth
triangulation
dual cell subdivision
Intersection theory
cup product
dual
de Rham cohomology
wedge product
unimodular
spin
simply-connected
Van der Blij's lemma
Rokhlin's theorem
Michael Freedman
Kirby–Siebenmann invariant
Donaldson's theorem
E8 manifold
Intersection form
Intersection_number_of_immersions
Linking_form
American Mathematical Society

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑