Knowledge (XXG)

Moduli space

Source 📝

79:
giving a universal space of parameters for the problem. For example, consider the problem of finding all circles in the Euclidean plane up to congruence. Any circle can be described uniquely by giving three points, but many different sets of three points give the same circle: the correspondence is many-to-one. However, circles are uniquely parameterized by giving their center and radius: this is two real parameters and one positive real parameter. Since we are only interested in circles "up to congruence", we identify circles having different centers but the same radius, and so the radius alone suffices to parameterize the set of interest. The moduli space is, therefore, the
96: 2490:. Both moduli stacks carry universal families of curves. One can also define coarse moduli spaces representing isomorphism classes of smooth or stable curves. These coarse moduli spaces were actually studied before the notion of moduli stack was invented. In fact, the idea of a moduli stack was invented by Deligne and Mumford in an attempt to prove the projectivity of the coarse moduli spaces. In recent years, it has become apparent that the stack of curves is actually the more fundamental object. 1285: 1083: 62:) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is 2902:
More precisely, the existence of non-trivial automorphisms of the objects being classified makes it impossible to have a fine moduli space. However, it is often possible to consider a modified moduli problem of classifying the original objects together with additional data, chosen in such a way that
2349:
should not be constant, but would have to be constant on any proper open set by triviality), one can still sometimes obtain a coarse moduli space. However, this approach is not ideal, as such spaces are not guaranteed to exist, they are frequently singular when they do exist, and miss details about
78:
Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here different solutions are identified if they are isomorphic (that is, geometrically the same). Moduli spaces can be thought of as
3020:
of this latter ring can then be viewed as giving a kind of coordinate chart on the desired moduli space. By gluing together enough of these charts, we can cover the space, but the map from our union of spectra to the moduli space will, in general, be many to one. We, therefore, define an
2281:
is a space which has a point for every object that could appear in a family, and whose geometry reflects the ways objects can vary in families. Note, however, that a coarse moduli space does not necessarily carry any family of appropriate objects, let alone a universal one.
1280:{\displaystyle \mathbf {P} _{\mathbb {Z} }^{n}(X)=\left\{({\mathcal {L}},s_{0},\ldots ,s_{n}):{\begin{matrix}{\mathcal {L}}\to X{\text{ is a line bundle}}\\s_{0},\ldots ,s_{n}\in \Gamma (X,{\mathcal {L}})\\{\text{ form a basis of global sections}}\end{matrix}}\right\}/\sim } 2505:> 1. In lower genus, one must account for the presence of smooth families of automorphisms, by subtracting their number. There is exactly one complex curve of genus zero, the Riemann sphere, and its group of isomorphisms is PGL(2). Hence, the dimension of 897: 91:
for determining when two circles are "close". The geometric structure of moduli spaces locally tells us when two solutions of a geometric classification problem are "close", but generally moduli spaces also have a complicated global structure as well.
2750:
In higher dimensions, moduli of algebraic varieties are more difficult to construct and study. For instance, the higher-dimensional analogue of the moduli space of elliptic curves discussed above is the moduli space of abelian varieties, such as the
2454:> 1, this stack may be compactified by adding new "boundary" points which correspond to stable nodal curves (together with their isomorphisms). A curve is stable if it has only a finite group of automorphisms. The resulting stack is denoted 2583:> 1 because the curves with genus g > 1 have only a finite group as its automorphism i.e. dim(a group of automorphisms) = 0. Eventually, in genus zero, the coarse moduli space has dimension zero, and in genus one, it has dimension one. 1803: 86:
Moduli spaces often carry natural geometric and topological structures as well. In the example of circles, for instance, the moduli space is not just an abstract set, but the absolute value of the difference of the radii defines a
607: 1052: 1900: 1402: 487: 758: 945: 2970:. Consequently, the moduli space of smooth curves and linear systems (satisfying certain criteria) may be embedded in the Hilbert scheme of a sufficiently high-dimensional projective space. This locus 2203:
Fine moduli spaces are desirable, but they do not always exist and are frequently difficult to construct, so mathematicians sometimes use a weaker notion, the idea of a coarse moduli space. A space
1336: 2732: 2679: 2594:
marked points. Such marked curves are said to be stable if the subgroup of curve automorphisms which fix the marked points is finite. The resulting moduli stacks of smooth (or stable) genus
360: 2488: 1468: 2903:
the identity is the only automorphism respecting also the additional data. With a suitable choice of the rigidifying data, the modified moduli problem will have a (fine) moduli space
997: 533: 3553:
Papadopoulos, Athanase, ed. (2012), Handbook of TeichmĂŒller theory. Vol. III, IRMA Lectures in Mathematics and Theoretical Physics, 17, European Mathematical Society (EMS), ZĂŒrich,
2844:, which like the moduli space of curves, was studied before stacks were invented. When the bundles have rank 1 and degree zero, the study of coarse moduli space is the study of the 3528:
Papadopoulos, Athanase, ed. (2009), Handbook of TeichmĂŒller theory. Vol. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, European Mathematical Society (EMS), ZĂŒrich,
3503:
Papadopoulos, Athanase, ed. (2007), Handbook of TeichmĂŒller theory. Vol. I, IRMA Lectures in Mathematics and Theoretical Physics, 11, European Mathematical Society (EMS), ZĂŒrich,
2637: 1498: 390: 2573: 2534: 2444: 2392:
of a given genus. The language of algebraic stacks essentially provides a systematic way to view the fibred category that constitutes the moduli problem as a "space", and the
1703: 3025:
on the former; essentially, two points are equivalent if the objects over each are isomorphic. This gives a scheme and an equivalence relation, which is enough to define an
1982:
There are several related notions of things we could call moduli spaces. Each of these definitions formalizes a different notion of what it means for the points of space
769: 4149: 3343: 1711: 3359:. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) (Results in Mathematics and Related Areas (2)), 34. Springer-Verlag, Berlin, 1994. xiv+292 pp. 54:
of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth
1932: 3751: 1524: 416: 2891:), and spaces (almost) representing them, dates back to Grothendieck (1960/61), in which he described the general framework, approaches, and main problems using 1972: 1952: 1674: 1075: 324: 2923:, and the problem of constructing the moduli space becomes that of finding a scheme (or more general space) that is (in a suitably strong sense) the quotient 2544:
Likewise, in genus 1, there is a one-dimensional space of curves, but every such curve has a one-dimensional group of automorphisms. Hence, the stack
232:, we capture the ways in which the members (lines in this case) of the family can modulate by continuously varying 0 â‰€ Îž < Ï€. 544: 2388:
Algebraic stacks and their use to analyze moduli problems appeared in Deligne-Mumford (1969) as a tool to prove the irreducibility of the (coarse)
1005: 1814: 1656:, and every closed subscheme is represented by such a point. A simple example of a Hilbert scheme is the Hilbert scheme parameterizing degree 1341: 3720: 3641: 3604: 3566: 3541: 3516: 3479: 3444: 3292: 2895:
in complex analytical geometry as an example. The talks, in particular, describe the general method of constructing moduli spaces by first
2796:
The construction of moduli spaces of Calabi-Yau varieties is an important open problem, and only special cases such as moduli spaces of
3744: 2978:) which mixes the elements of the linear system; consequently, the moduli space of smooth curves is then recovered as the quotient of 421: 4116: 3370: 618: 2777:
Using techniques arising out of differential geometry and birational geometry simultaneously, the construction of moduli spaces of
3013: 2883:
The modern formulation of moduli problems and definition of moduli spaces in terms of the moduli functors (or more generally the
4346: 4081: 3320:"Techniques de construction en gĂ©omĂ©trie analytique. I. Description axiomatique de l'espace de TeichmĂŒller et de ses variantes" 3130: 3431:. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 22. With an appendix by David Mumford. Berlin: Springer-Verlag. 4708: 3009: 905: 2377:
to describe a moduli problem goes back to Grothendieck (1960/61). In general, they cannot be represented by schemes or even
1293: 3684: 2872: 2353:
A more sophisticated approach is to enrich the classification by remembering the isomorphisms. More precisely, on any base
4288: 3794: 3737: 3135: 2782: 2766:
Using techniques arising out of the minimal model program, moduli spaces of varieties of general type were constructed by
4058: 2915:. The rigidifying data is moreover chosen so that it corresponds to a principal bundle with an algebraic structure group 123:
of this family a quantity that can uniquely identify it—a modulus. An example of such a quantity is the positive angle ξ(
4733: 3789: 3012:
provides an object of the desired kind over a base which is a complete local ring. This object can be approximated via
1577: 4313: 3226: 2695: 2642: 3939: 329: 2457: 4234: 3886: 3580: 3471: 3125: 2940: 2410: 2389: 2090: 1407: 3160: 4939: 4573: 4528: 95: 4753: 4673: 4488: 4422: 3784: 3687: 3067: 3052: 2771: 257: 4633: 4255: 4229: 3970: 2812:
Another important moduli problem is to understand the geometry of (various substacks of) the moduli stack Vect
3155: 2317:. This in particular makes the existence of a fine moduli space impossible (intuitively, the idea is that if 495: 4893: 4703: 4417: 4260: 4101: 3859: 3801: 203: 2939:. The last problem, in general, does not admit a solution; however, it is addressed by the groundbreaking 4934: 4658: 4399: 4205: 4096: 4068: 3891: 3402: 3315: 3006: 2955: 2752: 2605: 4808: 4144: 4111: 3975: 3817: 2919:. Thus one can move back from the rigidified problem to the original by taking quotient by the action of 1473: 950: 365: 4513: 4453: 4394: 4361: 4356: 4154: 3852: 3847: 3842: 3827: 3071: 2547: 2508: 2418: 2140: 246: 80: 4683: 2396:
of many moduli problems is better-behaved (such as smooth) than the corresponding coarse moduli space.
1679: 1290:
Showing this is true can be done by running through a series of tautologies: any projective embedding
4898: 3896: 3881: 3837: 3112: 3022: 2892: 140: 88: 43: 2855:, the number of moduli of vector bundles and the closely related problem of the number of moduli of 2840:
is one-dimensional, and especially when n equals one. In this case, the coarse moduli space is the
892:{\displaystyle ({\mathcal {L}},(s_{0},\ldots ,s_{n}))\sim ({\mathcal {L}}',(s_{0}',\ldots ,s_{n}'))} 4813: 4698: 4351: 4250: 3876: 3407: 3075: 2756: 2014: 150:
that intersect the origin by means of a topological construction. To wit: consider the unit circle
4858: 4778: 4678: 4638: 4518: 4483: 4318: 4195: 4091: 3832: 3319: 3102: 3017: 2990: 35: 4568: 4245: 2767: 1798:{\displaystyle {\mathcal {Hilb}}_{d}(\mathbb {P} ^{n})=\mathbb {P} (\Gamma ({\mathcal {O}}(d)))} 3297: 3249:
J. Kollar. Moduli of varieties of general type, Handbook of moduli. Vol. II, 2013, pp. 131–157.
4823: 4728: 4563: 4473: 4443: 4239: 4134: 4086: 3980: 3716: 3680: 3654: 3637: 3600: 3562: 3537: 3512: 3475: 3440: 3387: 3366: 3181: 3060: 2830: 2801: 199: 51: 2950:
To see how this might work, consider the problem of parametrizing smooth curves of the genus
2313:
It is frequently the case that interesting geometric objects come equipped with many natural
4833: 4768: 4738: 4618: 4558: 4523: 4468: 4458: 4438: 4371: 4323: 4281: 4186: 4179: 4172: 4165: 4158: 4076: 3866: 3774: 3708: 3669: 3592: 3554: 3529: 3504: 3432: 3412: 3042: 2845: 2074: 67: 59: 3685:"Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces" 3614: 3548: 3523: 3489: 3454: 3363: 3350: 3115:, general criterion for constructing moduli spaces as algebraic stacks from moduli functors 2785:
varieties. In this setting important results about boundedness of Fano varieties proven by
4913: 4868: 4818: 4803: 4793: 4688: 4653: 4478: 4048: 3822: 3610: 3588: 3545: 3520: 3485: 3450: 3360: 3347: 3030: 3026: 2884: 2760: 2382: 2378: 2362: 1908: 55: 47: 4758: 1503: 395: 17: 4888: 4883: 4843: 4783: 4773: 4693: 4613: 4603: 4598: 4593: 4508: 4503: 4498: 4463: 4448: 4376: 4053: 3916: 3624: 3383: 3272: 3145: 3092: 2989:. Here the idea is to start with an object of the kind to be classified and study its 2908: 2786: 2778: 2735: 1957: 1937: 1659: 1634: 1060: 309: 2540:
dim(space of genus zero curves) − dim(group of automorphisms) = 0 − dim(PGL(2)) = −3.
2497:−3; hence a stable nodal curve can be completely specified by choosing the values of 3 4928: 4878: 4863: 4838: 4828: 4798: 4743: 4718: 4663: 4648: 4643: 4608: 4583: 4543: 4333: 3985: 3901: 3779: 3760: 3655:"Moduli of representations of the fundamental group of a smooth projective variety I" 3424: 3335: 3140: 3002: 2994: 2986: 2944: 2841: 2826: 63: 4908: 4748: 4628: 4578: 4548: 4533: 4341: 4200: 4126: 4106: 4043: 3906: 3628: 3107: 3056: 2860: 2856: 2790: 2739: 2361:
with only isomorphisms between families taken as morphisms. One then considers the
2314: 268: 27:
Geometric space whose points represent algebro-geometric objects of some fixed kind
302:
Projective space as moduli of very ample line bundles generated by global sections
4903: 4873: 4853: 4713: 4668: 4623: 4588: 4538: 4303: 4272: 4033: 3990: 3700: 3463: 3150: 3097: 2947:
in 1965, which shows that under suitable conditions the quotient indeed exists.
2912: 31: 3712: 4848: 4788: 4723: 4386: 4366: 4265: 4224: 4038: 3436: 2797: 602:{\displaystyle {\hat {x}}:{\text{Spec}}(R)\to \mathbf {P} _{\mathbb {Z} }^{n}} 1047:{\displaystyle \mathbf {P} _{\mathbb {Z} }^{n}:{\text{Sch}}\to {\text{Sets}}} 4763: 4553: 4493: 4139: 4013: 3934: 3929: 3924: 3202: 2966:
is equivalent to a closed one dimensional subscheme of the projective space
1535: 3705:
Proceedings of the International Congress of Mathematicians 2010 (ICM 2010)
1895:{\displaystyle {\mathcal {U}}=\{(V(f),f):f\in \Gamma ({\mathcal {O}}(d))\}} 2227:) and τ is universal among such natural transformations. More concretely, 50:) whose points represent algebro-geometric objects of some fixed kind, or 4409: 4298: 4293: 4023: 4018: 3955: 3871: 2888: 2586:
One can also enrich the problem by considering the moduli stack of genus
1397:{\displaystyle i^{*}{\mathcal {O}}_{\mathbf {P} _{\mathbb {Z} }^{n}}(1)} 107:) by varying 0 â‰€ Îž < Ï€ or as a quotient space of 4028: 4008: 3965: 3960: 3673: 3416: 3048: 2852: 3346:, Neue Folge, Band 34 Springer-Verlag, Berlin-New York 1965 vi+145 pp 2265:(regarded as families over a point) correspond to the same point of 3596: 4000: 489:
which all don't vanish at the same time. This means, given a point
94: 1994:
This is the standard concept. Heuristically, if we have a space
115:
For example, consider how to describe the collection of lines in
3729: 3558: 3533: 3508: 2337:× {1} via a nontrivial automorphism. Now if a fine moduli space 482:{\displaystyle s_{0},\ldots ,s_{n}\in \Gamma (X,{\mathcal {L}})} 3733: 2734:
of genus 1 curves with one marked point. This is the stack of
1545:) is a projective algebraic variety which parametrizes degree 753:{\displaystyle \circ x=\in \mathbf {P} _{\mathbb {Z} }^{n}(R)} 2703: 2650: 2612: 2554: 2515: 2465: 2425: 1872: 1820: 1775: 1727: 1724: 1721: 1718: 1479: 1358: 1243: 1177: 1128: 928: 917: 833: 778: 471: 371: 3298:
Moduli stacks in P-adic modular forms and Langlands program
3227:"algebraic geometry - What does projective space classify?" 2742:, which are meromorphic sections of bundles on this stack. 178:). However, this map is two-to-one, so we want to identify 119:
which intersect the origin. We want to assign to each line
3587:. Graduate Texts in Mathematics. Vol. 187. New York: 3388:"The irreducibility of the space of curves of given genus" 3016:
by an object defined over a finitely generated ring. The
2575:
has dimension 0. The coarse moduli spaces have dimension 3
252:
is a moduli space that parametrizes the space of lines in
228:) as a moduli space of lines that intersect the origin in 2446:
classifies families of smooth projective curves of genus
2381:, but in many cases, they have a natural structure of an 2170:
carries a universal family; this family is the family on
2781:
has been achieved by restricting to a special class of
940:{\displaystyle \phi :{\mathcal {L}}\to {\mathcal {L}}'} 2985:
Another general approach is primarily associated with
2301:, while a coarse moduli space only has the base space 2120:
the set of all suitable families of objects with base
1652:) corresponds to a closed subscheme of a fixed scheme 1331:{\displaystyle i:X\to \mathbb {P} _{\mathbb {Z} }^{n}} 1172: 3001:
theorems to put these together into an object over a
2698: 2645: 2608: 2550: 2511: 2460: 2421: 1960: 1940: 1911: 1817: 1714: 1682: 1662: 1506: 1476: 1410: 1344: 1296: 1086: 1063: 1008: 953: 908: 772: 621: 547: 498: 424: 398: 368: 332: 312: 3327:
Séminaire Henri Cartan 13 No. 1, Exposés No. 7 and 8
2350:
some non-trivial families of objects they classify.
4431: 4408: 4385: 4332: 4217: 4125: 4067: 3999: 3948: 3915: 3810: 3767: 2325:× can be made into a twisted family on the circle 1934:is the associated projective scheme for the degree 763:
Then, two line bundles with sections are equivalent
2726: 2692:A case of particular interest is the moduli stack 2673: 2631: 2567: 2528: 2482: 2438: 2215:if there exists a natural transformation τ : 1966: 1946: 1926: 1894: 1797: 1697: 1668: 1518: 1492: 1462: 1396: 1330: 1279: 1069: 1046: 991: 939: 891: 752: 601: 527: 481: 410: 384: 354: 318: 3182:"Moduli Spaces of Curves: Classical and Tropical" 3033:if we are being careful) if not always a scheme. 3470:. Annals of Mathematics Studies. Vol. 108. 3344:Ergebnisse der Mathematik und ihrer Grenzgebiete 2727:{\displaystyle {\overline {\mathcal {M}}}_{1,1}} 2674:{\displaystyle {\overline {\mathcal {M}}}_{g,n}} 2146:, i.e., there is a natural isomorphism τ : 2116:from schemes to sets, which assigns to a scheme 174:) in the collection (which joins the origin and 146:We can also describe the collection of lines in 3630:Quasi-Projective Moduli for Polarized Manifolds 3273:"Algebraic Stacks and Moduli of Vector Bundles" 2907:, often described as a subscheme of a suitable 2112:More precisely, suppose that we have a functor 355:{\displaystyle \mathbf {P} _{\mathbb {Z} }^{n}} 2738:, and is the natural home of the much studied 2483:{\displaystyle {\overline {\mathcal {M}}}_{g}} 2166:) is the functor of points. This implies that 127:) with 0 ≀ Ξ < π radians. The set of lines 3745: 3051:to refer specifically to the moduli space of 2357:one can consider the category of families on 2321:is some geometric object, the trivial family 2285:In other words, a fine moduli space includes 1463:{\displaystyle i^{*}x_{0},\ldots ,i^{*}x_{n}} 8: 3703:(2011). "Moduli Problems for Ring Spectra". 2789:are used, for which he was awarded the 2018 2013:, then we can assemble these objects into a 1889: 1828: 1644:) is a moduli scheme. Every closed point of 3047:The term moduli space is sometimes used in 2974:in the Hilbert scheme has an action of PGL( 2081:if any family of algebro-geometric objects 2006:corresponds to an algebro-geometric object 999:. This means the associated moduli functor 306:Whenever there is an embedding of a scheme 198:/~ where the topology on this space is the 3752: 3738: 3730: 1613:curves as a subset of the space of degree 362:, the embedding is given by a line bundle 256:which pass through the origin. Similarly, 3406: 3203:"Lemma 27.13.1 (01NE)—The Stacks project" 2712: 2702: 2700: 2697: 2659: 2649: 2647: 2644: 2617: 2611: 2610: 2607: 2559: 2553: 2552: 2549: 2520: 2514: 2513: 2510: 2474: 2464: 2462: 2459: 2450:, together with their isomorphisms. When 2430: 2424: 2423: 2420: 2109:which is the base of a universal family. 1959: 1939: 1910: 1871: 1870: 1819: 1818: 1816: 1774: 1773: 1760: 1759: 1747: 1743: 1742: 1732: 1717: 1716: 1713: 1689: 1685: 1684: 1681: 1661: 1505: 1478: 1477: 1475: 1470:. Conversely, given an ample line bundle 1454: 1444: 1425: 1415: 1409: 1377: 1372: 1371: 1370: 1365: 1363: 1357: 1356: 1349: 1343: 1322: 1317: 1316: 1315: 1311: 1310: 1295: 1269: 1255: 1242: 1241: 1220: 1201: 1188: 1176: 1175: 1171: 1159: 1140: 1127: 1126: 1100: 1095: 1094: 1093: 1088: 1085: 1062: 1039: 1031: 1022: 1017: 1016: 1015: 1010: 1007: 980: 964: 952: 927: 926: 916: 915: 907: 874: 852: 832: 831: 812: 793: 777: 776: 771: 735: 730: 729: 728: 723: 701: 673: 648: 629: 620: 593: 588: 587: 586: 581: 563: 549: 548: 546: 505: 497: 470: 469: 448: 429: 423: 397: 370: 369: 367: 346: 341: 340: 339: 334: 331: 311: 3355:Mumford, David; Fogarty, J.; Kirwan, F. 3136:Moduli spaces of K-stable Fano varieties 3066:Moduli spaces also appear in physics in 2982:by the projective general linear group. 2899:the moduli problem under consideration. 2836:. This stack has been most studied when 1705:. This is given by the projective bundle 1609:, we obtain a parameter space of degree 3262:(Vol. 158). Cambridge University Press. 3172: 3151:Moduli of semistable sheaves on a curve 2954:> 2. A smooth curve together with a 528:{\displaystyle x:{\text{Spec}}(R)\to X} 2879:Methods for constructing moduli spaces 1526:sections gives an embedding as above. 70:first used the term "moduli" in 1857. 3059:, or to the moduli space of possible 1590:(2, 4), the Grassmannian of lines in 1257: form a basis of global sections 260:is the space of all complex lines in 7: 4150:Bogomol'nyi–Prasad–Sommerfield bound 3662:Publications MathĂ©matiques de l'IHÉS 3468:Arithmetic Moduli of Elliptic Curves 3395:Publications MathĂ©matiques de l'IHÉS 3078:of various algebraic moduli spaces. 2871:Simple geodesics and Weil-Petersson 2859:has been found to be significant in 2632:{\displaystyle {\mathcal {M}}_{g,n}} 1553:. It is constructed as follows. Let 326:into the universal projective space 2041:bundle whose fiber at any point ∊ 1493:{\displaystyle {\mathcal {L}}\to X} 1338:gives the globally generated sheaf 992:{\displaystyle \phi (s_{i})=s_{i}'} 385:{\displaystyle {\mathcal {L}}\to X} 2774:, now known as KSB moduli spaces. 2568:{\displaystyle {\mathcal {M}}_{1}} 2529:{\displaystyle {\mathcal {M}}_{0}} 2493:Both stacks above have dimension 3 2439:{\displaystyle {\mathcal {M}}_{g}} 2174:corresponding to the identity map 2025:. (For example, the Grassmannian 1864: 1767: 1676:hypersurfaces of projective space 1229: 457: 241:Projective space and Grassmannians 25: 3429:Degeneration of Abelian Varieties 2993:. This means first constructing 2755:. This is the problem underlying 2105:. A fine moduli space is a space 1565:, then consider all the lines in 294:-dimensional linear subspaces of 2997:deformations, then appealing to 2053:) is simply the linear subspace 1986:to represent geometric objects. 1698:{\displaystyle \mathbb {P} ^{n}} 1366: 1089: 1011: 724: 582: 335: 42:is a geometric space (usually a 4347:Eleven-dimensional supergravity 3131:Moduli stack of elliptic curves 2875:of bordered Riemann surfaces. 2375:categories fibred in groupoids 2369:the groupoid of families over 1921: 1915: 1886: 1883: 1877: 1867: 1852: 1843: 1837: 1831: 1808:with universal family given by 1792: 1789: 1786: 1780: 1770: 1764: 1753: 1738: 1617:divisors of the Grassmannian: 1484: 1391: 1385: 1306: 1248: 1232: 1182: 1165: 1123: 1112: 1106: 1036: 970: 957: 922: 886: 883: 845: 827: 821: 818: 786: 773: 747: 741: 716: 713: 707: 685: 679: 666: 654: 622: 577: 574: 568: 554: 519: 516: 510: 476: 460: 376: 1: 3795:Second superstring revolution 3014:Artin's approximation theorem 2231:is a coarse moduli space for 4289:Generalized complex manifold 3790:First superstring revolution 3161:Moduli of semistable sheaves 2707: 2654: 2469: 902:iff there is an isomorphism 538:there is an associated point 264:passing through the origin. 158:and notice that every point 131:so parametrized is known as 2685: âˆ’ 3 +  2602:-marked points are denoted 2365:which assigns to any space 290:is the moduli space of all 4956: 3887:Non-critical string theory 3713:10.1142/9789814324359_0088 3574:Other articles and sources 3472:Princeton University Press 3357:Geometric invariant theory 3340:Geometric invariant theory 3231:Mathematics Stack Exchange 3126:Moduli of algebraic curves 3040: 3005:base. Next, an appeal to 2941:geometric invariant theory 2867:Volume of the moduli space 2411:Moduli of algebraic curves 2408: 3437:10.1007/978-3-662-02632-8 3427:; Chai, Ching-Li (1990). 3386:; Mumford, David (1969). 3053:vacuum expectation values 1569:that intersect the curve 612:given by the compositions 4423:Introduction to M-theory 4117:Wess–Zumino–Witten model 4059:Hanany–Witten transition 3785:History of string theory 3688:Inventiones Mathematicae 3653:Simpson, Carlos (1994). 3583:; Morrison, Ian (1998). 3207:stacks.math.columbia.edu 3068:topological field theory 3010:formal existence theorem 2873:volumes of moduli spaces 2808:Moduli of vector bundles 2772:Nicholas Shepherd-Barron 258:complex projective space 18:Moduli of vector bundles 4102:Vertex operator algebra 3802:String theory landscape 3316:Grothendieck, Alexander 3260:Lectures on K3 surfaces 3156:Kontsevich moduli space 2681:), and have dimension 3 1954:homogeneous polynomial 1598:varies, by associating 220:Thus, when we consider 4400:AdS/CFT correspondence 4155:Exceptional Lie groups 4097:Superconformal algebra 4069:Conformal field theory 3940:Montonen–Olive duality 3892:Non-linear sigma model 3707:. pp. 1099–1125. 3258:Huybrechts, D., 2016. 3072:Feynman path integrals 2956:complete linear system 2753:Siegel modular variety 2728: 2675: 2633: 2579:−3 as the stacks when 2569: 2530: 2484: 2440: 2390:moduli space of curves 2277:are isomorphic. Thus, 1968: 1948: 1928: 1903: 1896: 1806: 1799: 1699: 1670: 1520: 1500:globally generated by 1494: 1464: 1398: 1332: 1288: 1281: 1190: is a line bundle 1071: 1055: 1048: 993: 941: 900: 893: 761: 754: 610: 603: 536: 529: 483: 412: 386: 356: 320: 112: 4395:Holographic principle 4362:Type IIB supergravity 4357:Type IIA supergravity 4209:-form electrodynamics 3828:Bosonic string theory 3041:Further information: 2729: 2676: 2634: 2570: 2531: 2485: 2441: 2409:Further information: 2293:and universal family 2243:gives rise to a map φ 1998:for which each point 1969: 1949: 1929: 1897: 1810: 1800: 1707: 1700: 1671: 1557:be a curve of degree 1521: 1495: 1465: 1399: 1333: 1282: 1079: 1072: 1049: 1001: 994: 942: 894: 765: 755: 614: 604: 540: 530: 491: 484: 413: 387: 357: 321: 247:real projective space 98: 81:positive real numbers 4314:Hoƙava–Witten theory 4261:HyperkĂ€hler manifold 3949:Particles and fields 3897:Tachyon condensation 3882:Matrix string theory 3076:intersection numbers 3070:, where one can use 3023:equivalence relation 2943:(GIT), developed by 2696: 2643: 2606: 2548: 2509: 2501:−3 parameters, when 2458: 2419: 2257:and any two objects 2199:Coarse moduli spaces 2085:over any base space 1958: 1938: 1927:{\displaystyle V(f)} 1909: 1815: 1712: 1680: 1660: 1504: 1474: 1408: 1342: 1294: 1084: 1061: 1006: 951: 906: 770: 619: 545: 496: 422: 396: 366: 330: 310: 282:) of a vector space 267:More generally, the 141:real projective line 139:) and is called the 4352:Type I supergravity 4256:Calabi–Yau manifold 4251:Ricci-flat manifold 4230:Kaluza–Klein theory 3971:Ramond–Ramond field 3877:String field theory 3636:. Springer Verlag. 2999:prorepresentability 2857:principal G-bundles 2851:In applications to 2757:Siegel modular form 2746:Moduli of varieties 2373:. The use of these 2209:coarse moduli space 2097:along a unique map 1573:. This is a degree 1519:{\displaystyle n+1} 1382: 1327: 1105: 1027: 988: 882: 860: 740: 598: 411:{\displaystyle n+1} 351: 52:isomorphism classes 4319:K-theory (physics) 4196:ADE classification 3833:Superstring theory 3674:10.1007/bf02698887 3462:Katz, Nicholas M; 3417:10.1007/bf02684599 3377:Early applications 3309:Fundamental papers 3103:Deformation theory 3087:Construction tools 3061:string backgrounds 2991:deformation theory 2893:TeichmĂŒller spaces 2724: 2671: 2629: 2590:nodal curves with 2565: 2526: 2480: 2436: 1990:Fine moduli spaces 1964: 1944: 1924: 1892: 1795: 1695: 1666: 1516: 1490: 1460: 1394: 1364: 1328: 1309: 1277: 1262: 1087: 1067: 1044: 1009: 989: 976: 937: 889: 870: 848: 750: 722: 599: 580: 525: 479: 408: 382: 352: 333: 316: 113: 36:algebraic geometry 4922: 4921: 4704:van Nieuwenhuizen 4240:Why 10 dimensions 4145:Chern–Simons form 4112:Kac–Moody algebra 4092:Conformal algebra 4087:Conformal anomaly 3981:Magnetic monopole 3976:Kalb–Ramond field 3818:Nambu–Goto action 3722:978-981-4324-30-4 3681:Maryam Mirzakhani 3643:978-3-540-59255-6 3606:978-0-387-98429-2 3567:978-3-03719-103-3 3542:978-3-03719-055-5 3517:978-3-03719-029-6 3481:978-0-691-08352-0 3446:978-3-540-52015-3 3304:Research articles 3113:Artin's criterion 2935:by the action of 2885:categories fibred 2831:algebraic variety 2802:Abelian varieties 2759:theory. See also 2710: 2657: 2472: 2415:The moduli stack 2341:existed, the map 2130:fine moduli space 2037:) carries a rank 1967:{\displaystyle f} 1947:{\displaystyle d} 1669:{\displaystyle d} 1258: 1191: 1070:{\displaystyle X} 1042: 1034: 566: 557: 508: 319:{\displaystyle X} 200:quotient topology 16:(Redirected from 4947: 4940:Invariant theory 4432:String theorists 4372:Lie superalgebra 4324:Twisted K-theory 4282:Spin(7)-manifold 4235:Compactification 4077:Virasoro algebra 3860:Heterotic string 3754: 3747: 3740: 3731: 3726: 3677: 3659: 3647: 3635: 3618: 3585:Moduli of Curves 3498:Other references 3493: 3458: 3420: 3410: 3392: 3330: 3324: 3280: 3279: 3277: 3269: 3263: 3256: 3250: 3247: 3241: 3240: 3238: 3237: 3223: 3217: 3216: 3214: 3213: 3199: 3193: 3192: 3186: 3177: 3043:moduli (physics) 2846:Jacobian variety 2804:are understood. 2733: 2731: 2730: 2725: 2723: 2722: 2711: 2706: 2701: 2680: 2678: 2677: 2672: 2670: 2669: 2658: 2653: 2648: 2638: 2636: 2635: 2630: 2628: 2627: 2616: 2615: 2574: 2572: 2571: 2566: 2564: 2563: 2558: 2557: 2535: 2533: 2532: 2527: 2525: 2524: 2519: 2518: 2489: 2487: 2486: 2481: 2479: 2478: 2473: 2468: 2463: 2445: 2443: 2442: 2437: 2435: 2434: 2429: 2428: 2405:Moduli of curves 2400:Further examples 2379:algebraic spaces 2211:for the functor 2132:for the functor 1973: 1971: 1970: 1965: 1953: 1951: 1950: 1945: 1933: 1931: 1930: 1925: 1901: 1899: 1898: 1893: 1876: 1875: 1824: 1823: 1804: 1802: 1801: 1796: 1779: 1778: 1763: 1752: 1751: 1746: 1737: 1736: 1731: 1730: 1704: 1702: 1701: 1696: 1694: 1693: 1688: 1675: 1673: 1672: 1667: 1525: 1523: 1522: 1517: 1499: 1497: 1496: 1491: 1483: 1482: 1469: 1467: 1466: 1461: 1459: 1458: 1449: 1448: 1430: 1429: 1420: 1419: 1403: 1401: 1400: 1395: 1384: 1383: 1381: 1376: 1375: 1369: 1362: 1361: 1354: 1353: 1337: 1335: 1334: 1329: 1326: 1321: 1320: 1314: 1286: 1284: 1283: 1278: 1273: 1268: 1264: 1263: 1259: 1256: 1247: 1246: 1225: 1224: 1206: 1205: 1192: 1189: 1181: 1180: 1164: 1163: 1145: 1144: 1132: 1131: 1104: 1099: 1098: 1092: 1076: 1074: 1073: 1068: 1053: 1051: 1050: 1045: 1043: 1040: 1035: 1032: 1026: 1021: 1020: 1014: 998: 996: 995: 990: 984: 969: 968: 946: 944: 943: 938: 936: 932: 931: 921: 920: 898: 896: 895: 890: 878: 856: 841: 837: 836: 817: 816: 798: 797: 782: 781: 759: 757: 756: 751: 739: 734: 733: 727: 706: 705: 678: 677: 653: 652: 634: 633: 608: 606: 605: 600: 597: 592: 591: 585: 567: 564: 559: 558: 550: 534: 532: 531: 526: 509: 506: 488: 486: 485: 480: 475: 474: 453: 452: 434: 433: 417: 415: 414: 409: 391: 389: 388: 383: 375: 374: 361: 359: 358: 353: 350: 345: 344: 338: 325: 323: 322: 317: 68:Bernhard Riemann 56:algebraic curves 34:, in particular 21: 4955: 4954: 4950: 4949: 4948: 4946: 4945: 4944: 4925: 4924: 4923: 4918: 4427: 4404: 4381: 4328: 4276: 4246:KĂ€hler manifold 4213: 4190: 4183: 4176: 4169: 4162: 4121: 4082:Mirror symmetry 4063: 4049:Brane cosmology 3995: 3944: 3911: 3867:N=2 superstring 3853:Type IIB string 3848:Type IIA string 3823:Polyakov action 3806: 3763: 3758: 3723: 3699: 3696: 3657: 3652: 3644: 3633: 3625:Viehweg, Eckart 3623: 3607: 3589:Springer Verlag 3579: 3576: 3500: 3482: 3461: 3447: 3423: 3390: 3384:Deligne, Pierre 3382: 3379: 3322: 3314: 3311: 3306: 3289: 3284: 3283: 3275: 3271: 3270: 3266: 3257: 3253: 3248: 3244: 3235: 3233: 3225: 3224: 3220: 3211: 3209: 3201: 3200: 3196: 3184: 3179: 3178: 3174: 3169: 3122: 3089: 3084: 3074:to compute the 3045: 3039: 3031:algebraic stack 3027:algebraic space 2881: 2869: 2817: 2810: 2761:Shimura variety 2748: 2736:elliptic curves 2699: 2694: 2693: 2646: 2641: 2640: 2609: 2604: 2603: 2551: 2546: 2545: 2512: 2507: 2506: 2461: 2456: 2455: 2422: 2417: 2416: 2413: 2407: 2402: 2383:algebraic stack 2363:fibred category 2329:by identifying 2311: 2269:if and only if 2248: 2201: 2182: 2011: 1992: 1980: 1956: 1955: 1936: 1935: 1907: 1906: 1813: 1812: 1741: 1715: 1710: 1709: 1683: 1678: 1677: 1658: 1657: 1631: 1607: 1584: 1532: 1502: 1501: 1472: 1471: 1450: 1440: 1421: 1411: 1406: 1405: 1355: 1345: 1340: 1339: 1292: 1291: 1261: 1260: 1252: 1251: 1216: 1197: 1194: 1193: 1155: 1136: 1122: 1118: 1082: 1081: 1059: 1058: 1057:sends a scheme 1004: 1003: 960: 949: 948: 925: 904: 903: 830: 808: 789: 768: 767: 697: 669: 644: 625: 617: 616: 543: 542: 494: 493: 444: 425: 420: 419: 394: 393: 364: 363: 328: 327: 308: 307: 304: 243: 238: 202:induced by the 76: 48:algebraic stack 28: 23: 22: 15: 12: 11: 5: 4953: 4951: 4943: 4942: 4937: 4927: 4926: 4920: 4919: 4917: 4916: 4911: 4906: 4901: 4896: 4891: 4886: 4881: 4876: 4871: 4866: 4861: 4856: 4851: 4846: 4841: 4836: 4831: 4826: 4821: 4816: 4811: 4806: 4801: 4796: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4754:Randjbar-Daemi 4751: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4696: 4691: 4686: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4646: 4641: 4636: 4631: 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4591: 4586: 4581: 4576: 4571: 4566: 4561: 4556: 4551: 4546: 4541: 4536: 4531: 4526: 4521: 4516: 4511: 4506: 4501: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4461: 4456: 4451: 4446: 4441: 4435: 4433: 4429: 4428: 4426: 4425: 4420: 4414: 4412: 4406: 4405: 4403: 4402: 4397: 4391: 4389: 4383: 4382: 4380: 4379: 4377:Lie supergroup 4374: 4369: 4364: 4359: 4354: 4349: 4344: 4338: 4336: 4330: 4329: 4327: 4326: 4321: 4316: 4311: 4306: 4301: 4296: 4291: 4286: 4285: 4284: 4279: 4274: 4270: 4269: 4268: 4258: 4248: 4243: 4237: 4232: 4227: 4221: 4219: 4215: 4214: 4212: 4211: 4203: 4198: 4193: 4188: 4181: 4174: 4167: 4160: 4152: 4147: 4142: 4137: 4131: 4129: 4123: 4122: 4120: 4119: 4114: 4109: 4104: 4099: 4094: 4089: 4084: 4079: 4073: 4071: 4065: 4064: 4062: 4061: 4056: 4054:Quiver diagram 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4016: 4011: 4005: 4003: 3997: 3996: 3994: 3993: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3952: 3950: 3946: 3945: 3943: 3942: 3937: 3932: 3927: 3921: 3919: 3917:String duality 3913: 3912: 3910: 3909: 3904: 3899: 3894: 3889: 3884: 3879: 3874: 3869: 3864: 3863: 3862: 3857: 3856: 3855: 3850: 3843:Type II string 3840: 3830: 3825: 3820: 3814: 3812: 3808: 3807: 3805: 3804: 3799: 3798: 3797: 3792: 3782: 3780:Cosmic strings 3777: 3771: 3769: 3765: 3764: 3759: 3757: 3756: 3749: 3742: 3734: 3728: 3727: 3721: 3695: 3694:External links 3692: 3691: 3690: 3678: 3649: 3648: 3642: 3620: 3619: 3605: 3597:10.1007/b98867 3575: 3572: 3571: 3570: 3551: 3526: 3499: 3496: 3495: 3494: 3480: 3459: 3445: 3425:Faltings, Gerd 3421: 3408:10.1.1.589.288 3378: 3375: 3374: 3373: 3353: 3336:Mumford, David 3332: 3331: 3310: 3307: 3305: 3302: 3301: 3300: 3295: 3288: 3285: 3282: 3281: 3264: 3251: 3242: 3218: 3194: 3180:Chan, Melody. 3171: 3170: 3168: 3165: 3164: 3163: 3158: 3153: 3148: 3146:Picard functor 3143: 3138: 3133: 3128: 3121: 3118: 3117: 3116: 3110: 3105: 3100: 3095: 3093:Hilbert scheme 3088: 3085: 3083: 3080: 3038: 3035: 3007:Grothendieck's 2909:Hilbert scheme 2880: 2877: 2868: 2865: 2827:vector bundles 2813: 2809: 2806: 2787:Caucher Birkar 2779:Fano varieties 2747: 2744: 2721: 2718: 2715: 2709: 2705: 2668: 2665: 2662: 2656: 2652: 2626: 2623: 2620: 2614: 2562: 2556: 2542: 2541: 2523: 2517: 2477: 2471: 2467: 2433: 2427: 2406: 2403: 2401: 2398: 2310: 2307: 2244: 2235:if any family 2200: 2197: 2178: 2073:. We say that 2069:of the family 2009: 1991: 1988: 1979: 1976: 1963: 1943: 1923: 1920: 1917: 1914: 1891: 1888: 1885: 1882: 1879: 1874: 1869: 1866: 1863: 1860: 1857: 1854: 1851: 1848: 1845: 1842: 1839: 1836: 1833: 1830: 1827: 1822: 1794: 1791: 1788: 1785: 1782: 1777: 1772: 1769: 1766: 1762: 1758: 1755: 1750: 1745: 1740: 1735: 1729: 1726: 1723: 1720: 1692: 1687: 1665: 1635:Hilbert scheme 1630: 1629:Hilbert scheme 1627: 1605: 1582: 1531: 1528: 1515: 1512: 1509: 1489: 1486: 1481: 1457: 1453: 1447: 1443: 1439: 1436: 1433: 1428: 1424: 1418: 1414: 1404:with sections 1393: 1390: 1387: 1380: 1374: 1368: 1360: 1352: 1348: 1325: 1319: 1313: 1308: 1305: 1302: 1299: 1276: 1272: 1267: 1254: 1253: 1250: 1245: 1240: 1237: 1234: 1231: 1228: 1223: 1219: 1215: 1212: 1209: 1204: 1200: 1196: 1195: 1187: 1184: 1179: 1174: 1173: 1170: 1167: 1162: 1158: 1154: 1151: 1148: 1143: 1139: 1135: 1130: 1125: 1121: 1117: 1114: 1111: 1108: 1103: 1097: 1091: 1066: 1038: 1030: 1025: 1019: 1013: 987: 983: 979: 975: 972: 967: 963: 959: 956: 935: 930: 924: 919: 914: 911: 888: 885: 881: 877: 873: 869: 866: 863: 859: 855: 851: 847: 844: 840: 835: 829: 826: 823: 820: 815: 811: 807: 804: 801: 796: 792: 788: 785: 780: 775: 749: 746: 743: 738: 732: 726: 721: 718: 715: 712: 709: 704: 700: 696: 693: 690: 687: 684: 681: 676: 672: 668: 665: 662: 659: 656: 651: 647: 643: 640: 637: 632: 628: 624: 596: 590: 584: 579: 576: 573: 570: 562: 556: 553: 524: 521: 518: 515: 512: 504: 501: 478: 473: 468: 465: 462: 459: 456: 451: 447: 443: 440: 437: 432: 428: 407: 404: 401: 381: 378: 373: 349: 343: 337: 315: 303: 300: 242: 239: 237: 236:Basic examples 234: 75: 72: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4952: 4941: 4938: 4936: 4935:Moduli theory 4933: 4932: 4930: 4915: 4912: 4910: 4907: 4905: 4902: 4900: 4899:Zamolodchikov 4897: 4895: 4894:Zamolodchikov 4892: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4870: 4867: 4865: 4862: 4860: 4857: 4855: 4852: 4850: 4847: 4845: 4842: 4840: 4837: 4835: 4832: 4830: 4827: 4825: 4822: 4820: 4817: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4797: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4590: 4587: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4520: 4517: 4515: 4512: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4445: 4442: 4440: 4437: 4436: 4434: 4430: 4424: 4421: 4419: 4418:Matrix theory 4416: 4415: 4413: 4411: 4407: 4401: 4398: 4396: 4393: 4392: 4390: 4388: 4384: 4378: 4375: 4373: 4370: 4368: 4365: 4363: 4360: 4358: 4355: 4353: 4350: 4348: 4345: 4343: 4340: 4339: 4337: 4335: 4334:Supersymmetry 4331: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4283: 4280: 4278: 4271: 4267: 4264: 4263: 4262: 4259: 4257: 4254: 4253: 4252: 4249: 4247: 4244: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4222: 4220: 4216: 4210: 4208: 4204: 4202: 4199: 4197: 4194: 4191: 4184: 4177: 4170: 4163: 4156: 4153: 4151: 4148: 4146: 4143: 4141: 4138: 4136: 4133: 4132: 4130: 4128: 4124: 4118: 4115: 4113: 4110: 4108: 4105: 4103: 4100: 4098: 4095: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4074: 4072: 4070: 4066: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4020: 4017: 4015: 4012: 4010: 4007: 4006: 4004: 4002: 3998: 3992: 3989: 3987: 3986:Dual graviton 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3953: 3951: 3947: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3922: 3920: 3918: 3914: 3908: 3905: 3903: 3902:RNS formalism 3900: 3898: 3895: 3893: 3890: 3888: 3885: 3883: 3880: 3878: 3875: 3873: 3870: 3868: 3865: 3861: 3858: 3854: 3851: 3849: 3846: 3845: 3844: 3841: 3839: 3838:Type I string 3836: 3835: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3815: 3813: 3809: 3803: 3800: 3796: 3793: 3791: 3788: 3787: 3786: 3783: 3781: 3778: 3776: 3773: 3772: 3770: 3766: 3762: 3761:String theory 3755: 3750: 3748: 3743: 3741: 3736: 3735: 3732: 3724: 3718: 3714: 3710: 3706: 3702: 3698: 3697: 3693: 3689: 3686: 3682: 3679: 3675: 3671: 3667: 3663: 3656: 3651: 3650: 3645: 3639: 3632: 3631: 3626: 3622: 3621: 3616: 3612: 3608: 3602: 3598: 3594: 3590: 3586: 3582: 3578: 3577: 3573: 3568: 3564: 3560: 3556: 3552: 3550: 3547: 3543: 3539: 3535: 3531: 3527: 3525: 3522: 3518: 3514: 3510: 3506: 3502: 3501: 3497: 3491: 3487: 3483: 3477: 3473: 3469: 3465: 3460: 3456: 3452: 3448: 3442: 3438: 3434: 3430: 3426: 3422: 3418: 3414: 3409: 3404: 3400: 3396: 3389: 3385: 3381: 3380: 3376: 3372: 3371:3-540-56963-4 3368: 3365: 3362: 3358: 3354: 3352: 3349: 3345: 3341: 3337: 3334: 3333: 3328: 3321: 3318:(1960–1961). 3317: 3313: 3312: 3308: 3303: 3299: 3296: 3294: 3293:Moduli theory 3291: 3290: 3286: 3274: 3268: 3265: 3261: 3255: 3252: 3246: 3243: 3232: 3228: 3222: 3219: 3208: 3204: 3198: 3195: 3190: 3183: 3176: 3173: 3166: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3141:Modular curve 3139: 3137: 3134: 3132: 3129: 3127: 3124: 3123: 3120:Moduli spaces 3119: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3090: 3086: 3081: 3079: 3077: 3073: 3069: 3064: 3062: 3058: 3057:scalar fields 3054: 3050: 3044: 3036: 3034: 3032: 3029:(actually an 3028: 3024: 3019: 3015: 3011: 3008: 3004: 3000: 2996: 2995:infinitesimal 2992: 2988: 2987:Michael Artin 2983: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2948: 2946: 2945:David Mumford 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2900: 2898: 2894: 2890: 2886: 2878: 2876: 2874: 2866: 2864: 2862: 2858: 2854: 2849: 2847: 2843: 2842:Picard scheme 2839: 2835: 2832: 2828: 2825: 2821: 2816: 2807: 2805: 2803: 2799: 2794: 2792: 2788: 2784: 2780: 2775: 2773: 2769: 2764: 2762: 2758: 2754: 2745: 2743: 2741: 2740:modular forms 2737: 2719: 2716: 2713: 2690: 2688: 2684: 2666: 2663: 2660: 2624: 2621: 2618: 2601: 2597: 2593: 2589: 2584: 2582: 2578: 2560: 2539: 2538: 2537: 2521: 2504: 2500: 2496: 2491: 2475: 2453: 2449: 2431: 2412: 2404: 2399: 2397: 2395: 2391: 2386: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2356: 2351: 2348: 2344: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2315:automorphisms 2309:Moduli stacks 2308: 2306: 2304: 2300: 2296: 2292: 2289:a base space 2288: 2283: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2247: 2242: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2210: 2206: 2198: 2196: 2194: 2190: 2186: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2142: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2110: 2108: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2075:such a family 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2005: 2001: 1997: 1989: 1987: 1985: 1977: 1975: 1961: 1941: 1918: 1912: 1902: 1880: 1861: 1858: 1855: 1849: 1846: 1840: 1834: 1825: 1809: 1805: 1783: 1756: 1748: 1733: 1706: 1690: 1663: 1655: 1651: 1647: 1643: 1639: 1636: 1628: 1626: 1624: 1620: 1616: 1612: 1608: 1601: 1597: 1593: 1589: 1585: 1579: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1537: 1529: 1527: 1513: 1510: 1507: 1487: 1455: 1451: 1445: 1441: 1437: 1434: 1431: 1426: 1422: 1416: 1412: 1388: 1378: 1350: 1346: 1323: 1303: 1300: 1297: 1287: 1274: 1270: 1265: 1238: 1235: 1226: 1221: 1217: 1213: 1210: 1207: 1202: 1198: 1185: 1168: 1160: 1156: 1152: 1149: 1146: 1141: 1137: 1133: 1119: 1115: 1109: 1101: 1078: 1064: 1054: 1028: 1023: 1000: 985: 981: 977: 973: 965: 961: 954: 933: 912: 909: 899: 879: 875: 871: 867: 864: 861: 857: 853: 849: 842: 838: 824: 813: 809: 805: 802: 799: 794: 790: 783: 764: 760: 744: 736: 719: 710: 702: 698: 694: 691: 688: 682: 674: 670: 663: 660: 657: 649: 645: 641: 638: 635: 630: 626: 613: 609: 594: 571: 560: 551: 539: 535: 522: 513: 502: 499: 490: 466: 463: 454: 449: 445: 441: 438: 435: 430: 426: 405: 402: 399: 379: 347: 313: 301: 299: 297: 293: 289: 286:over a field 285: 281: 277: 273: 270: 265: 263: 259: 255: 251: 248: 240: 235: 233: 231: 227: 223: 218: 216: 212: 208: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 166:gives a line 165: 161: 157: 153: 149: 144: 142: 138: 134: 130: 126: 122: 118: 110: 106: 102: 99:Constructing 97: 93: 90: 84: 82: 73: 71: 69: 65: 64:formal moduli 61: 57: 53: 49: 45: 41: 37: 33: 19: 4444:Arkani-Hamed 4342:Supergravity 4309:Moduli space 4308: 4206: 4201:Dirac string 4127:Gauge theory 4107:Loop algebra 4044:Black string 3907:GS formalism 3704: 3665: 3661: 3629: 3584: 3467: 3464:Mazur, Barry 3428: 3398: 3394: 3356: 3339: 3326: 3267: 3259: 3254: 3245: 3234:. Retrieved 3230: 3221: 3210:. Retrieved 3206: 3197: 3188: 3175: 3108:GIT quotient 3065: 3055:of a set of 3046: 2998: 2984: 2979: 2975: 2971: 2967: 2963: 2959: 2951: 2949: 2936: 2932: 2928: 2924: 2920: 2916: 2904: 2901: 2896: 2882: 2870: 2861:gauge theory 2850: 2837: 2833: 2823: 2819: 2814: 2811: 2795: 2791:Fields medal 2776: 2768:JĂĄnos KollĂĄr 2765: 2749: 2691: 2686: 2682: 2599: 2598:curves with 2595: 2591: 2587: 2585: 2580: 2576: 2543: 2502: 2498: 2494: 2492: 2451: 2447: 2414: 2394:moduli stack 2393: 2387: 2374: 2370: 2366: 2358: 2354: 2352: 2346: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2312: 2302: 2298: 2294: 2290: 2286: 2284: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2245: 2240: 2239:over a base 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2202: 2192: 2188: 2184: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2111: 2106: 2102: 2098: 2094: 2086: 2082: 2078: 2070: 2066: 2065:is called a 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 2015:tautological 2007: 2003: 1999: 1995: 1993: 1983: 1981: 1904: 1811: 1807: 1708: 1653: 1649: 1645: 1641: 1637: 1632: 1622: 1618: 1614: 1610: 1603: 1599: 1595: 1591: 1587: 1580: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1536:Chow variety 1533: 1530:Chow variety 1289: 1080: 1056: 1002: 901: 766: 762: 615: 611: 541: 537: 492: 305: 295: 291: 287: 283: 279: 275: 271: 269:Grassmannian 266: 261: 253: 249: 244: 229: 225: 221: 219: 214: 210: 206: 204:quotient map 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 147: 145: 136: 132: 128: 124: 120: 116: 114: 108: 104: 100: 85: 77: 40:moduli space 39: 29: 4804:Silverstein 4304:Orientifold 4039:Black holes 4034:Black brane 3991:Dual photon 3581:Harris, Joe 3559:10.4171/103 3534:10.4171/055 3509:10.4171/029 3098:Quot scheme 2913:Quot scheme 2897:rigidifying 2829:on a fixed 2798:K3 surfaces 2333:× {0} with 1978:Definitions 58:of a fixed 32:mathematics 4929:Categories 4824:Strominger 4819:Steinhardt 4814:Staudacher 4729:Polchinski 4679:Nanopoulos 4639:Mandelstam 4619:Kontsevich 4459:Berenstein 4387:Holography 4367:Superspace 4266:K3 surface 4225:Worldsheet 4140:Instantons 3768:Background 3668:: 47–129. 3401:: 75–109. 3236:2020-09-12 3212:2020-09-12 3167:References 3037:In physics 2958:of degree 2822:) of rank 2141:represents 2124:. A space 2067:base space 1549:curves in 1077:to the set 947:such that 74:Motivation 4859:Veneziano 4739:Rajaraman 4634:Maldacena 4524:Gopakumar 4474:Dijkgraaf 4469:Curtright 4135:Anomalies 4014:NS5-brane 3935:U-duality 3930:S-duality 3925:T-duality 3701:Lurie, J. 3403:CiteSeerX 2889:groupoids 2708:¯ 2655:¯ 2470:¯ 2158:), where 2079:universal 1865:Γ 1862:∈ 1768:Γ 1485:→ 1446:∗ 1435:… 1417:∗ 1351:∗ 1307:→ 1275:∼ 1230:Γ 1227:∈ 1211:… 1183:→ 1150:… 1037:→ 955:ϕ 923:→ 910:ϕ 865:… 825:∼ 803:… 720:∈ 692:⋯ 658:∘ 639:⋯ 578:→ 555:^ 520:→ 458:Γ 455:∈ 439:… 418:sections 377:→ 186:to yield 4914:Zwiebach 4869:Verlinde 4864:Verlinde 4839:Townsend 4834:Susskind 4769:Sagnotti 4734:Polyakov 4689:Nekrasov 4654:Minwalla 4649:Martinec 4614:Knizhnik 4609:Klebanov 4604:Kapustin 4569:'t Hooft 4504:Fischler 4439:Aganagić 4410:M-theory 4299:Conifold 4294:Orbifold 4277:manifold 4218:Geometry 4024:M5-brane 4019:M2-brane 3956:Graviton 3872:F-theory 3627:(1995). 3466:(1985). 3329:. Paris. 3082:See also 3018:spectrum 2783:K-stable 2249: : 2091:pullback 986:′ 934:′ 880:′ 858:′ 839:′ 4844:Trivedi 4829:Sundrum 4794:Shenker 4784:Seiberg 4779:Schwarz 4749:Randall 4709:Novikov 4699:Nielsen 4684:Năstase 4594:Kallosh 4579:Gibbons 4519:Gliozzi 4509:Friedan 4499:Ferrara 4484:Douglas 4479:Distler 4029:S-brane 4009:D-brane 3966:Tachyon 3961:Dilaton 3775:Strings 3683:(2007) 3615:1631825 3549:2524085 3524:2284826 3490:0772569 3455:1083353 3364:1304906 3351:0214602 3049:physics 2853:physics 2089:is the 2017:family 1594:. When 1578:divisor 4909:Zumino 4904:Zaslow 4889:Yoneya 4879:Witten 4799:Siegel 4774:Scherk 4744:Ramond 4719:Ooguri 4644:Marolf 4599:Kaluza 4584:Kachru 4574:Hoƙava 4564:Harvey 4559:Hanson 4544:Gubser 4534:Greene 4464:Bousso 4449:Atiyah 4001:Branes 3811:Theory 3719:  3640:  3613:  3603:  3565:  3540:  3515:  3488:  3478:  3453:  3443:  3405:  3369:  3003:formal 2962:> 2 1905:where 89:metric 46:or an 44:scheme 4849:Turok 4759:Roček 4724:Ovrut 4714:Olive 4694:Neveu 4674:Myers 4669:Mukhi 4659:Moore 4629:Linde 4624:Klein 4549:Gukov 4539:Gross 4529:Green 4514:Gates 4494:Dvali 4454:Banks 3658:(PDF) 3634:(PDF) 3391:(PDF) 3323:(PDF) 3287:Notes 3276:(PDF) 3185:(PDF) 2207:is a 2128:is a 2021:over 60:genus 4874:Wess 4854:Vafa 4764:Rohm 4664:Motl 4589:Kaku 4554:Guth 4489:Duff 3717:ISBN 3638:ISBN 3601:ISBN 3563:ISBN 3538:ISBN 3513:ISBN 3476:ISBN 3441:ISBN 3367:ISBN 2770:and 2639:(or 2287:both 2273:and 2261:and 2223:(−, 2162:(−, 2154:(−, 1646:Hilb 1638:Hilb 1633:The 1619:Chow 1539:Chow 1534:The 1041:Sets 565:Spec 507:Spec 392:and 245:The 194:) ≅ 38:, a 4884:Yau 4809:SÆĄn 4789:Sen 3709:doi 3670:doi 3593:doi 3555:doi 3530:doi 3505:doi 3433:doi 3413:doi 3189:AMS 2931:of 2911:or 2887:in 2800:or 2793:. 2536:is 2221:Hom 2195:). 2185:Hom 2160:Hom 2152:Hom 2136:if 2093:of 2077:is 2061:.) 1625:). 1621:(d, 1602:to 1586:in 1561:in 1541:(d, 1033:Sch 217:). 182:~ − 30:In 4931:: 4185:, 4178:, 4171:, 4164:, 3715:. 3666:79 3664:. 3660:. 3611:MR 3609:. 3599:. 3591:. 3561:, 3546:MR 3544:, 3536:, 3521:MR 3519:, 3511:, 3486:MR 3484:. 3474:. 3451:MR 3449:. 3439:. 3411:. 3399:36 3397:. 3393:. 3361:MR 3348:MR 3342:. 3338:, 3325:. 3229:. 3205:. 3187:. 3063:. 2863:. 2848:. 2763:. 2689:. 2385:. 2345:→ 2305:. 2297:→ 2253:→ 2219:→ 2191:, 2183:∊ 2150:→ 2101:→ 2057:⊂ 2049:, 2033:, 2002:∊ 1974:. 298:. 278:, 209:→ 162:∈ 154:⊂ 143:. 83:. 66:. 4275:2 4273:G 4242:? 4207:p 4192:) 4189:8 4187:E 4182:7 4180:E 4175:6 4173:E 4168:4 4166:F 4161:2 4159:G 4157:( 3753:e 3746:t 3739:v 3725:. 3711:: 3676:. 3672:: 3646:. 3617:. 3595:: 3569:. 3557:: 3532:: 3507:: 3492:. 3457:. 3435:: 3419:. 3415:: 3278:. 3239:. 3215:. 3191:. 2980:H 2976:n 2972:H 2968:P 2964:g 2960:d 2952:g 2937:G 2933:T 2929:G 2927:/ 2925:T 2921:G 2917:G 2905:T 2838:X 2834:X 2824:n 2820:X 2818:( 2815:n 2720:1 2717:, 2714:1 2704:M 2687:n 2683:g 2667:n 2664:, 2661:g 2651:M 2625:n 2622:, 2619:g 2613:M 2600:n 2596:g 2592:n 2588:g 2581:g 2577:g 2561:1 2555:M 2522:0 2516:M 2503:g 2499:g 2495:g 2476:g 2466:M 2452:g 2448:g 2432:g 2426:M 2371:B 2367:B 2359:B 2355:B 2347:X 2343:S 2339:X 2335:L 2331:L 2327:S 2323:L 2319:L 2303:M 2299:M 2295:U 2291:M 2279:M 2275:W 2271:V 2267:M 2263:W 2259:V 2255:M 2251:B 2246:T 2241:B 2237:T 2233:F 2229:M 2225:M 2217:F 2213:F 2205:M 2193:M 2189:M 2187:( 2180:M 2176:1 2172:M 2168:M 2164:M 2156:M 2148:F 2144:F 2138:M 2134:F 2126:M 2122:B 2118:B 2114:F 2107:M 2103:M 2099:B 2095:U 2087:B 2083:T 2071:U 2063:M 2059:V 2055:L 2051:V 2047:k 2045:( 2043:G 2039:k 2035:V 2031:k 2029:( 2027:G 2023:M 2019:U 2010:m 2008:U 2004:M 2000:m 1996:M 1984:M 1962:f 1942:d 1922:) 1919:f 1916:( 1913:V 1890:} 1887:) 1884:) 1881:d 1878:( 1873:O 1868:( 1859:f 1856:: 1853:) 1850:f 1847:, 1844:) 1841:f 1838:( 1835:V 1832:( 1829:{ 1826:= 1821:U 1793:) 1790:) 1787:) 1784:d 1781:( 1776:O 1771:( 1765:( 1761:P 1757:= 1754:) 1749:n 1744:P 1739:( 1734:d 1728:b 1725:l 1722:i 1719:H 1691:n 1686:P 1664:d 1654:X 1650:X 1648:( 1642:X 1640:( 1623:P 1615:d 1611:d 1606:C 1604:D 1600:C 1596:C 1592:P 1588:G 1583:C 1581:D 1575:d 1571:C 1567:P 1563:P 1559:d 1555:C 1551:P 1547:d 1543:P 1514:1 1511:+ 1508:n 1488:X 1480:L 1456:n 1452:x 1442:i 1438:, 1432:, 1427:0 1423:x 1413:i 1392:) 1389:1 1386:( 1379:n 1373:Z 1367:P 1359:O 1347:i 1324:n 1318:Z 1312:P 1304:X 1301:: 1298:i 1271:/ 1266:} 1249:) 1244:L 1239:, 1236:X 1233:( 1222:n 1218:s 1214:, 1208:, 1203:0 1199:s 1186:X 1178:L 1169:: 1166:) 1161:n 1157:s 1153:, 1147:, 1142:0 1138:s 1134:, 1129:L 1124:( 1120:{ 1116:= 1113:) 1110:X 1107:( 1102:n 1096:Z 1090:P 1065:X 1029:: 1024:n 1018:Z 1012:P 982:i 978:s 974:= 971:) 966:i 962:s 958:( 929:L 918:L 913:: 887:) 884:) 876:n 872:s 868:, 862:, 854:0 850:s 846:( 843:, 834:L 828:( 822:) 819:) 814:n 810:s 806:, 800:, 795:0 791:s 787:( 784:, 779:L 774:( 748:) 745:R 742:( 737:n 731:Z 725:P 717:] 714:) 711:x 708:( 703:n 699:s 695:: 689:: 686:) 683:x 680:( 675:0 671:s 667:[ 664:= 661:x 655:] 650:n 646:s 642:: 636:: 631:0 627:s 623:[ 595:n 589:Z 583:P 575:) 572:R 569:( 561:: 552:x 523:X 517:) 514:R 511:( 503:: 500:x 477:) 472:L 467:, 464:X 461:( 450:n 446:s 442:, 436:, 431:0 427:s 406:1 403:+ 400:n 380:X 372:L 348:n 342:Z 336:P 314:X 296:V 292:k 288:F 284:V 280:V 276:k 274:( 272:G 262:C 254:R 250:P 230:R 226:R 224:( 222:P 215:R 213:( 211:P 207:S 196:S 192:R 190:( 188:P 184:s 180:s 176:s 172:s 170:( 168:L 164:S 160:s 156:R 152:S 148:R 137:R 135:( 133:P 129:L 125:L 121:L 117:R 111:. 109:S 105:R 103:( 101:P 20:)

Index

Moduli of vector bundles
mathematics
algebraic geometry
scheme
algebraic stack
isomorphism classes
algebraic curves
genus
formal moduli
Bernhard Riemann
positive real numbers
metric

real projective line
quotient topology
quotient map
real projective space
complex projective space
Grassmannian
Chow variety
divisor
Hilbert scheme
tautological
such a family
pullback
represents
automorphisms
fibred category
algebraic spaces
algebraic stack

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑