Knowledge (XXG)

Moduli stack of principal bundles

Source đź“ť

1143: 1494: 967: 1344: 257: 386: 831: 1359: 201: 939: 678: 631: 580: 538: 479: 436: 329: 110: 1138:{\displaystyle \#\operatorname {Bun} _{G}(X)(\mathbf {F} _{q})=q^{\dim \operatorname {Bun} _{G}(X)}\operatorname {tr} (\phi ^{-1}|H^{*}(\operatorname {Bun} _{G}(X);\mathbb {Z} _{l}))} 1249: 1190: 290: 143: 53: 732: 1216: 867: 1524: 1238: 761: 1537:
neither left nor right side in the formula converges. Thus, the formula states that the two sides converge to finite numbers and that those numbers coincide.
1555: 1778: 1754: 1716: 768: 889: 767:. It is not of finite type but locally of finite type; one thus usually uses a stratification by open substacks of finite type (cf. the 214: 334: 1732:
J. Heinloth, A.H.W. Schmitt, The Cohomology Ring of Moduli Stacks of Principal Bundles over Curves, 2010 preprint, available at
1790: 1800: 781: 1489:{\displaystyle \operatorname {tr} (\phi ^{-1}|V_{*})=\sum _{i=0}^{\infty }(-1)^{i}\operatorname {tr} (\phi ^{-1}|V_{i})} 1815: 1347: 155: 1149: 905: 644: 597: 546: 504: 490: 445: 402: 295: 76: 878: 1339:{\displaystyle \#\operatorname {Bun} _{G}(X)(\mathbf {F} _{q})=\sum _{P}{1 \over \#\operatorname {Aut} (P)}} 899: 1564: 771:), also for parahoric G over curve X see and for G only a flat group scheme of finite type over X see. 591: 1741: 1166: 266: 119: 29: 1527: 893: 687: 1497: 1241: 56: 1199: 1604: 836: 1750: 1712: 494: 1693: 1704: 1614: 20: 1764: 1749:, Annals of Mathematics Studies, vol. 199, Princeton, NJ: Princeton University Press, 1726: 1626: 1502: 1223: 1760: 1722: 1622: 1599:
Arasteh Rad, E.; Hartl, Urs (2021), "Uniformizing the moduli stacks of global G-shtukas",
1193: 737: 583: 113: 482: 1809: 958: 950: 498: 954: 681: 442:
is over the field of complex numbers. Roughly, in the complex case, one can define
59: 17: 1708: 587: 1653: 1795: 1618: 543:
In the finite field case, it is not common to define the homotopy type of
1703:, Trends in Mathematics, Basel: Birkhäuser/Springer, pp. 123–153, 493:. Replacing the quotient stack (which is not a topological space) by a 1655:
The Lefschetz Trace Formula for the Moduli Stack of Principal Bundles
945:
is over a finite field, introduced by Behrend in 1993. It states: if
204: 1733: 1609: 778:
is a split reductive group, then the set of connected components
252:{\displaystyle X\times _{\mathbf {F} _{q}}\operatorname {Spec} R} 1779:
Lectures on moduli of principal G-bundles over algebraic curves
381:{\displaystyle \operatorname {Bun} _{G}(X)(\mathbf {F} _{q})} 1694:"Lectures on the moduli stack of vector bundles on a curve" 1557:
Tamagawa Numbers in the Function Field Case (Lecture 2)
1505: 1362: 1252: 1226: 1202: 1169: 970: 908: 839: 833:
is in a natural bijection with the fundamental group
826:{\displaystyle \pi _{0}(\operatorname {Bun} _{G}(X))} 784: 740: 690: 647: 600: 549: 507: 448: 405: 337: 298: 269: 217: 158: 122: 79: 32: 1518: 1488: 1346:, the sum running over all isomorphism classes of 1338: 1232: 1210: 1184: 1137: 933: 861: 825: 755: 726: 672: 625: 574: 532: 473: 430: 380: 323: 284: 251: 195: 137: 104: 47: 1661:(PhD thesis), University of California, Berkeley 196:{\displaystyle \operatorname {Bun} _{G}(X)(R)=} 1671: 1743:Weil's conjecture for function fields, Vol. 1 8: 1701:Affine flag manifolds and principal bundles 934:{\displaystyle \operatorname {Bun} _{G}(X)} 673:{\displaystyle \operatorname {Bun} _{G}(X)} 626:{\displaystyle \operatorname {Bun} _{G}(X)} 575:{\displaystyle \operatorname {Bun} _{G}(X)} 533:{\displaystyle \operatorname {Bun} _{G}(X)} 485:of the space of holomorphic connections on 474:{\displaystyle \operatorname {Bun} _{G}(X)} 431:{\displaystyle \operatorname {Bun} _{G}(X)} 324:{\displaystyle \operatorname {Bun} _{G}(X)} 105:{\displaystyle \operatorname {Bun} _{G}(X)} 1601:International Mathematics Research Notices 1608: 1510: 1504: 1477: 1468: 1459: 1440: 1421: 1410: 1394: 1385: 1376: 1361: 1309: 1303: 1287: 1282: 1260: 1251: 1225: 1204: 1203: 1201: 1176: 1172: 1171: 1168: 1123: 1119: 1118: 1096: 1083: 1074: 1065: 1032: 1021: 1005: 1000: 978: 969: 913: 907: 844: 838: 802: 789: 783: 739: 689: 652: 646: 605: 599: 554: 548: 512: 506: 497:(which is a topological space) gives the 453: 447: 410: 404: 369: 364: 342: 336: 303: 297: 276: 271: 268: 232: 227: 225: 216: 163: 157: 129: 124: 121: 84: 78: 39: 34: 31: 1740:Gaitsgory, Dennis; Lurie, Jacob (2019), 1639: 1586: 1546: 898:This is a (conjectural) version of the 1674:, Chapter 5: The Trace Formula for Bun 7: 890:Weil conjecture on Tamagawa numbers 438:can also be defined when the curve 1530:on the right absolutely converges. 1422: 1315: 1253: 971: 14: 67:moduli stack of principal bundles 1734:http://www.uni-essen.de/~hm0002/ 1283: 1185:{\displaystyle \mathbb {Z} _{l}} 1001: 769:Harder–Narasimhan stratification 365: 285:{\displaystyle \mathbf {F} _{q}} 272: 228: 138:{\displaystyle \mathbf {F} _{q}} 125: 48:{\displaystyle \mathbf {F} _{q}} 35: 1791:Geometric Langlands conjectures 1699:, in Schmitt, Alexander (ed.), 263:In particular, the category of 16:In algebraic geometry, given a 1801:Moduli stack of vector bundles 1554:Lurie, Jacob (April 3, 2013), 1483: 1469: 1452: 1437: 1427: 1400: 1386: 1369: 1330: 1324: 1293: 1278: 1275: 1269: 1159:is a prime number that is not 1132: 1129: 1111: 1105: 1089: 1075: 1058: 1047: 1041: 1011: 996: 993: 987: 928: 922: 856: 850: 820: 817: 811: 795: 750: 744: 727:{\displaystyle (g(X)-1)\dim G} 712: 703: 697: 691: 667: 661: 620: 614: 582:. But one can still define a ( 569: 563: 527: 521: 468: 462: 425: 419: 375: 360: 357: 351: 318: 312: 187: 181: 178: 172: 99: 93: 1: 883: 1211:{\displaystyle \mathbb {C} } 1709:10.1007/978-3-0346-0288-4_4 862:{\displaystyle \pi _{1}(G)} 1832: 1672:Gaitsgory & Lurie 2019 1196:is viewed as a subring of 957:with semisimple connected 887: 876: 1692:Heinloth, Jochen (2010), 1652:Behrend, Kai A. (1991), 211:over the relative curve 1150:Behrend's trace formula 900:Lefschetz trace formula 884:Behrend's trace formula 873:The Atiyah–Bott formula 1520: 1490: 1426: 1340: 1234: 1212: 1186: 1139: 935: 863: 827: 757: 728: 674: 627: 576: 534: 475: 432: 382: 325: 286: 253: 197: 139: 106: 49: 1521: 1519:{\displaystyle V_{*}} 1491: 1406: 1341: 1235: 1233:{\displaystyle \phi } 1213: 1187: 1140: 936: 864: 828: 758: 729: 675: 628: 577: 535: 476: 433: 388:, is the category of 383: 326: 287: 254: 198: 140: 107: 50: 1503: 1360: 1250: 1224: 1200: 1167: 968: 906: 837: 782: 756:{\displaystyle g(X)} 738: 688: 645: 598: 547: 505: 446: 403: 335: 296: 267: 215: 156: 120: 77: 30: 26:over a finite field 1642:, Proposition 2.1.2 1619:10.1093/imrn/rnz223 1603:(21): 16121–16192, 1589:, Proposition 2.1.2 1498:graded vector space 1242:geometric Frobenius 879:Atiyah–Bott formula 1816:Algebraic geometry 1516: 1486: 1336: 1308: 1230: 1208: 1182: 1135: 931: 859: 823: 753: 724: 670: 623: 572: 530: 471: 428: 378: 321: 282: 249: 193: 135: 116:given by: for any 102: 45: 1756:978-0-691-18214-8 1718:978-3-0346-0287-7 1630:; see Theorem 2.5 1334: 1299: 1152:for the details) 894:Behrend's formula 641:It is known that 495:homotopy quotient 1823: 1767: 1748: 1729: 1698: 1679: 1669: 1663: 1662: 1660: 1649: 1643: 1637: 1631: 1629: 1612: 1596: 1590: 1584: 1578: 1577: 1576: 1575: 1569: 1563:, archived from 1562: 1551: 1525: 1523: 1522: 1517: 1515: 1514: 1495: 1493: 1492: 1487: 1482: 1481: 1472: 1467: 1466: 1445: 1444: 1425: 1420: 1399: 1398: 1389: 1384: 1383: 1345: 1343: 1342: 1337: 1335: 1333: 1310: 1307: 1292: 1291: 1286: 1265: 1264: 1239: 1237: 1236: 1231: 1217: 1215: 1214: 1209: 1207: 1191: 1189: 1188: 1183: 1181: 1180: 1175: 1148:where (see also 1144: 1142: 1141: 1136: 1128: 1127: 1122: 1101: 1100: 1088: 1087: 1078: 1073: 1072: 1051: 1050: 1037: 1036: 1010: 1009: 1004: 983: 982: 940: 938: 937: 932: 918: 917: 868: 866: 865: 860: 849: 848: 832: 830: 829: 824: 807: 806: 794: 793: 763:is the genus of 762: 760: 759: 754: 733: 731: 730: 725: 679: 677: 676: 671: 657: 656: 637:Basic properties 632: 630: 629: 624: 610: 609: 581: 579: 578: 573: 559: 558: 539: 537: 536: 531: 517: 516: 480: 478: 477: 472: 458: 457: 437: 435: 434: 429: 415: 414: 387: 385: 384: 379: 374: 373: 368: 347: 346: 330: 328: 327: 322: 308: 307: 291: 289: 288: 283: 281: 280: 275: 258: 256: 255: 250: 239: 238: 237: 236: 231: 203:the category of 202: 200: 199: 194: 168: 167: 144: 142: 141: 136: 134: 133: 128: 111: 109: 108: 103: 89: 88: 54: 52: 51: 46: 44: 43: 38: 21:projective curve 1831: 1830: 1826: 1825: 1824: 1822: 1821: 1820: 1806: 1805: 1787: 1774: 1772:Further reading 1757: 1746: 1739: 1719: 1696: 1691: 1688: 1683: 1682: 1677: 1670: 1666: 1658: 1651: 1650: 1646: 1638: 1634: 1598: 1597: 1593: 1585: 1581: 1573: 1571: 1567: 1560: 1553: 1552: 1548: 1543: 1526:, provided the 1506: 1501: 1500: 1473: 1455: 1436: 1390: 1372: 1358: 1357: 1354:and convergent. 1314: 1281: 1256: 1248: 1247: 1222: 1221: 1198: 1197: 1194:l-adic integers 1170: 1165: 1164: 1117: 1092: 1079: 1061: 1028: 1017: 999: 974: 966: 965: 909: 904: 903: 896: 886: 881: 875: 840: 835: 834: 798: 785: 780: 779: 736: 735: 686: 685: 648: 643: 642: 639: 601: 596: 595: 550: 545: 544: 508: 503: 502: 449: 444: 443: 406: 401: 400: 363: 338: 333: 332: 299: 294: 293: 270: 265: 264: 226: 221: 213: 212: 159: 154: 153: 123: 118: 117: 114:algebraic stack 80: 75: 74: 33: 28: 27: 12: 11: 5: 1829: 1827: 1819: 1818: 1808: 1807: 1804: 1803: 1798: 1793: 1786: 1783: 1782: 1781: 1773: 1770: 1769: 1768: 1755: 1737: 1730: 1717: 1687: 1684: 1681: 1680: 1675: 1664: 1644: 1632: 1591: 1579: 1545: 1544: 1542: 1539: 1532: 1531: 1513: 1509: 1485: 1480: 1476: 1471: 1465: 1462: 1458: 1454: 1451: 1448: 1443: 1439: 1435: 1432: 1429: 1424: 1419: 1416: 1413: 1409: 1405: 1402: 1397: 1393: 1388: 1382: 1379: 1375: 1371: 1368: 1365: 1355: 1332: 1329: 1326: 1323: 1320: 1317: 1313: 1306: 1302: 1298: 1295: 1290: 1285: 1280: 1277: 1274: 1271: 1268: 1263: 1259: 1255: 1245: 1229: 1219: 1206: 1179: 1174: 1146: 1145: 1134: 1131: 1126: 1121: 1116: 1113: 1110: 1107: 1104: 1099: 1095: 1091: 1086: 1082: 1077: 1071: 1068: 1064: 1060: 1057: 1054: 1049: 1046: 1043: 1040: 1035: 1031: 1027: 1024: 1020: 1016: 1013: 1008: 1003: 998: 995: 992: 989: 986: 981: 977: 973: 930: 927: 924: 921: 916: 912: 885: 882: 877:Main article: 874: 871: 858: 855: 852: 847: 843: 822: 819: 816: 813: 810: 805: 801: 797: 792: 788: 752: 749: 746: 743: 723: 720: 717: 714: 711: 708: 705: 702: 699: 696: 693: 669: 666: 663: 660: 655: 651: 638: 635: 622: 619: 616: 613: 608: 604: 571: 568: 565: 562: 557: 553: 529: 526: 523: 520: 515: 511: 483:quotient stack 470: 467: 464: 461: 456: 452: 427: 424: 421: 418: 413: 409: 392:-bundles over 377: 372: 367: 362: 359: 356: 353: 350: 345: 341: 320: 317: 314: 311: 306: 302: 279: 274: 261: 260: 248: 245: 242: 235: 230: 224: 220: 192: 189: 186: 183: 180: 177: 174: 171: 166: 162: 132: 127: 101: 98: 95: 92: 87: 83: 42: 37: 13: 10: 9: 6: 4: 3: 2: 1828: 1817: 1814: 1813: 1811: 1802: 1799: 1797: 1794: 1792: 1789: 1788: 1784: 1780: 1776: 1775: 1771: 1766: 1762: 1758: 1752: 1745: 1744: 1738: 1735: 1731: 1728: 1724: 1720: 1714: 1710: 1706: 1702: 1695: 1690: 1689: 1685: 1673: 1668: 1665: 1657: 1656: 1648: 1645: 1641: 1640:Heinloth 2010 1636: 1633: 1628: 1624: 1620: 1616: 1611: 1606: 1602: 1595: 1592: 1588: 1587:Heinloth 2010 1583: 1580: 1570:on 2013-04-11 1566: 1559: 1558: 1550: 1547: 1540: 1538: 1536: 1529: 1511: 1507: 1499: 1478: 1474: 1463: 1460: 1456: 1449: 1446: 1441: 1433: 1430: 1417: 1414: 1411: 1407: 1403: 1395: 1391: 1380: 1377: 1373: 1366: 1363: 1356: 1353: 1349: 1327: 1321: 1318: 1311: 1304: 1300: 1296: 1288: 1272: 1266: 1261: 1257: 1246: 1243: 1227: 1220: 1195: 1177: 1163:and the ring 1162: 1158: 1155: 1154: 1153: 1151: 1124: 1114: 1108: 1102: 1097: 1093: 1084: 1080: 1069: 1066: 1062: 1055: 1052: 1044: 1038: 1033: 1029: 1025: 1022: 1018: 1014: 1006: 990: 984: 979: 975: 964: 963: 962: 960: 959:generic fiber 956: 952: 948: 944: 925: 919: 914: 910: 901: 895: 891: 880: 872: 870: 853: 845: 841: 814: 808: 803: 799: 790: 786: 777: 772: 770: 766: 747: 741: 721: 718: 715: 709: 706: 700: 694: 684:of dimension 683: 664: 658: 653: 649: 636: 634: 617: 611: 606: 602: 593: 589: 585: 566: 560: 555: 551: 541: 524: 518: 513: 509: 500: 499:homotopy type 496: 492: 488: 484: 465: 459: 454: 450: 441: 422: 416: 411: 407: 397: 395: 391: 370: 354: 348: 343: 339: 315: 309: 304: 300: 277: 246: 243: 240: 233: 222: 218: 210: 208: 190: 184: 175: 169: 164: 160: 152: 151: 150: 148: 130: 115: 96: 90: 85: 81: 73:, denoted by 72: 68: 65:over it, the 64: 61: 58: 55:and a smooth 40: 25: 22: 19: 1742: 1700: 1667: 1654: 1647: 1635: 1600: 1594: 1582: 1572:, retrieved 1565:the original 1556: 1549: 1534: 1533: 1351: 1160: 1156: 1147: 955:group scheme 946: 942: 897: 775: 773: 764: 682:smooth stack 640: 542: 486: 439: 398: 393: 389: 262: 206: 146: 70: 66: 62: 60:group scheme 23: 15: 1777:C. Sorger, 1678:(X), p. 260 491:gauge group 399:Similarly, 331:, that is, 292:-points of 1686:References 1574:2014-01-30 888:See also: 588:cohomology 205:principal 1796:Ran space 1610:1302.6351 1535:A priori, 1512:∗ 1461:− 1457:ϕ 1450:⁡ 1431:− 1423:∞ 1408:∑ 1396:∗ 1378:− 1374:ϕ 1367:⁡ 1348:G-bundles 1322:⁡ 1316:# 1301:∑ 1267:⁡ 1254:# 1228:ϕ 1103:⁡ 1085:∗ 1067:− 1063:ϕ 1056:⁡ 1039:⁡ 1026:⁡ 985:⁡ 972:# 920:⁡ 842:π 809:⁡ 787:π 719:⁡ 707:− 659:⁡ 612:⁡ 561:⁡ 519:⁡ 460:⁡ 417:⁡ 349:⁡ 310:⁡ 244:⁡ 223:× 170:⁡ 145:-algebra 91:⁡ 1810:Category 1785:See also 592:homology 209:-bundles 112:, is an 1765:3887650 1727:3013029 1627:4338216 1240:is the 961:, then 953:affine 489:by the 481:as the 1763:  1753:  1725:  1715:  1625:  1528:series 1496:for a 951:smooth 734:where 584:smooth 57:affine 18:smooth 1747:(PDF) 1697:(PDF) 1659:(PDF) 1605:arXiv 1568:(PDF) 1561:(PDF) 1541:Notes 949:is a 941:when 680:is a 69:over 1751:ISBN 1713:ISBN 902:for 892:and 590:and 241:Spec 1705:doi 1615:doi 1350:on 1319:Aut 1258:Bun 1192:of 1094:Bun 1030:Bun 1023:dim 976:Bun 911:Bun 800:Bun 774:If 716:dim 650:Bun 603:Bun 594:of 552:Bun 510:Bun 501:of 451:Bun 408:Bun 340:Bun 301:Bun 161:Bun 82:Bun 1812:: 1761:MR 1759:, 1723:MR 1721:, 1711:, 1623:MR 1621:, 1613:, 1447:tr 1364:tr 1053:tr 869:. 633:. 586:) 540:. 396:. 149:, 1736:. 1707:: 1676:G 1617:: 1607:: 1508:V 1484:) 1479:i 1475:V 1470:| 1464:1 1453:( 1442:i 1438:) 1434:1 1428:( 1418:0 1415:= 1412:i 1404:= 1401:) 1392:V 1387:| 1381:1 1370:( 1352:X 1331:) 1328:P 1325:( 1312:1 1305:P 1297:= 1294:) 1289:q 1284:F 1279:( 1276:) 1273:X 1270:( 1262:G 1244:. 1218:. 1205:C 1178:l 1173:Z 1161:p 1157:l 1133:) 1130:) 1125:l 1120:Z 1115:; 1112:) 1109:X 1106:( 1098:G 1090:( 1081:H 1076:| 1070:1 1059:( 1048:) 1045:X 1042:( 1034:G 1019:q 1015:= 1012:) 1007:q 1002:F 997:( 994:) 991:X 988:( 980:G 947:G 943:X 929:) 926:X 923:( 915:G 857:) 854:G 851:( 846:1 821:) 818:) 815:X 812:( 804:G 796:( 791:0 776:G 765:X 751:) 748:X 745:( 742:g 722:G 713:) 710:1 704:) 701:X 698:( 695:g 692:( 668:) 665:X 662:( 654:G 621:) 618:X 615:( 607:G 570:) 567:X 564:( 556:G 528:) 525:X 522:( 514:G 487:X 469:) 466:X 463:( 455:G 440:X 426:) 423:X 420:( 412:G 394:X 390:G 376:) 371:q 366:F 361:( 358:) 355:X 352:( 344:G 319:) 316:X 313:( 305:G 278:q 273:F 259:. 247:R 234:q 229:F 219:X 207:G 191:= 188:) 185:R 182:( 179:) 176:X 173:( 165:G 147:R 131:q 126:F 100:) 97:X 94:( 86:G 71:X 63:G 41:q 36:F 24:X

Index

smooth
projective curve
affine
group scheme
algebraic stack
principal G-bundles
quotient stack
gauge group
homotopy quotient
homotopy type
smooth
cohomology
homology
smooth stack
Harder–Narasimhan stratification
Atiyah–Bott formula
Weil conjecture on Tamagawa numbers
Behrend's formula
Lefschetz trace formula
smooth
group scheme
generic fiber
Behrend's trace formula
l-adic integers
geometric Frobenius
G-bundles
graded vector space
series
Tamagawa Numbers in the Function Field Case (Lecture 2)
the original

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑