Knowledge (XXG)

Group scheme

Source 📝

49: 829:, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The 2018:
Dieudonné theory exists in a somewhat more general setting than finite flat groups over a field. Oda's 1967 thesis gave a connection between Dieudonné modules and the first de Rham cohomology of abelian varieties, and at about the same time, Grothendieck suggested that there should be a crystalline
1817:
Among the finite flat group schemes, the constants (cf. example above) form a special class, and over an algebraically closed field of characteristic zero, the category of finite groups is equivalent to the category of constant finite group schemes. Over bases with positive characteristic or more
1174:
allows one to make several constructions. Finite direct products of group schemes have a canonical group scheme structure. Given an action of one group scheme on another by automorphisms, one can form semidirect products by following the usual set-theoretic construction. Kernels of group scheme
1743:
Complete connected group schemes are in some sense opposite to affine group schemes, since the completeness implies all global sections are exactly those pulled back from the base, and in particular, they have no nontrivial maps to affine schemes. Any complete group variety (variety here meaning
1736:-algebra). The multiplication, unit, and inverse maps of the group scheme are given by the comultiplication, counit, and antipode structures in the Hopf algebra. The unit and multiplication structures in the Hopf algebra are intrinsic to the underlying scheme. For an arbitrary group scheme 1740:, the ring of global sections also has a commutative Hopf algebra structure, and by taking its spectrum, one obtains the maximal affine quotient group. Affine group varieties are known as linear algebraic groups, since they can be embedded as subgroups of general linear groups. 1822:
is non-constant, because the special fiber isn't smooth. There exist sequences of highly ramified 2-adic rings over which the number of isomorphism types of group schemes of order 2 grows arbitrarily large. More detailed analysis of commutative finite flat group schemes over
1634:, where the additive group acts by translations, and the multiplicative group acts by dilations. The subgroup fixing a chosen basepoint is isomorphic to the multiplicative group, and taking the basepoint to be the identity of an additive group structure identifies 1980:
of Witt co-vectors. This sheaf is more or less dual to the sheaf of Witt vectors (which is in fact representable by a group scheme), since it is constructed by taking a direct limit of finite length Witt vectors under successive Verschiebung maps
1830:
Commutative finite flat group schemes often occur in nature as subgroup schemes of abelian and semi-abelian varieties, and in positive or mixed characteristic, they can capture a lot of information about the ambient variety. For example, the
1862:-torsion forms a finite flat group scheme over the parametrizing space, and the supersingular locus is where the fibers are connected. This merging of connected components can be studied in fine detail by passing from a modular scheme to a 1744:
reduced and geometrically irreducible separated scheme of finite type over a field) is automatically commutative, by an argument involving the action of conjugation on jet spaces of the identity. Complete group varieties are called
1182:
with respect to some morphism of base schemes, although one needs finiteness conditions to be satisfied to ensure representability of the resulting functor. When this morphism is along a finite extension of fields, it is known as
1154:
is a finite group. However, one can take a projective limit of finite constant group schemes to get profinite group schemes, which appear in the study of fundamental groups and Galois representations or in the theory of the
2023:-divisible groups. Galois actions on the group schemes transfer through the equivalences of categories, and the associated deformation theory of Galois representations was used in 1818:
arithmetic structure, additional isomorphism types exist. For example, if 2 is invertible over the base, all group schemes of order 2 are constant, but over the 2-adic integers, Ό
1655:) has a unique group scheme structure with that point as the identity. Unlike the previous positive-dimensional examples, elliptic curves are projective (in particular proper). 1957:
operators, and they may act nontrivially on the Witt vectors. Dieudonne and Cartier constructed an antiequivalence of categories between finite commutative group schemes over
494: 469: 432: 1810:. The order of a constant group scheme is equal to the order of the corresponding group, and in general, order behaves well with respect to base change and finite flat 1056:. Conjugation is an action by automorphisms, i.e., it commutes with the group structure, and this induces linear actions on naturally derived objects, such as its 796: 2171:
SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie – 1962–64 – SchĂ©mas en groupes – (SGA 3) – vol. 3 (Lecture notes in mathematics
2150:
SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie – 1962–64 – SchĂ©mas en groupes – (SGA 3) – vol. 2 (Lecture notes in mathematics
2129:
SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie – 1962–64 – SchĂ©mas en groupes – (SGA 3) – vol. 1 (Lecture notes in mathematics
1768:
and throughout algebraic geometry. A complete group scheme over a field need not be commutative, however; for example, any finite group scheme is complete.
1087:. There are several other equivalent conditions, such as conjugation inducing a trivial action, or inversion map Îč being a group scheme automorphism. 1999:, and then completing. Many properties of commutative group schemes can be seen by examining the corresponding DieudonnĂ© modules, e.g., connected 1764:
is proper and smooth with geometrically connected fibers. They are automatically projective, and they have many applications, e.g., in geometric
1052:. Right actions are defined similarly. Any group scheme admits natural left and right actions on its underlying scheme by multiplication and 354: 1175:
homomorphisms are group schemes, by taking a fiber product over the unit map from the base. Base change sends group schemes to group schemes.
2321: 2267: 2238: 971:
A homomorphism of group schemes is a map of schemes that respects multiplication. This can be precisely phrased either by saying that a map
304: 789: 299: 2195: 1835:-torsion of an elliptic curve in characteristic zero is locally isomorphic to the constant elementary abelian group scheme of order 1311:
is said to be normal, and the quotient scheme admits a natural group law. Representability holds in many other cases, such as when
1344:
to the multiplicative group of invertible global sections of the structure sheaf. It can be described as the diagonalizable group
2178: 2157: 2136: 2028: 715: 782: 1906:
can be studied by transferring their geometric structure to a (semi-)linear-algebraic setting. The basic object is the
1248:) can be formed as the spectrum of a group ring. More generally, one can form groups of multiplicative type by letting 1451:+ 1 variables by an ideal encoding the invertibility of the determinant. Alternatively, it can be constructed using 2 399: 213: 2045: 1291:) is in general not a sheaf, and even its sheafification is in general not representable as a scheme. However, if 1025: 2362: 2347: 2283: 2040: 1171: 1156: 838: 597: 331: 208: 96: 1543:
to the underlying additive group of global sections of the structure sheaf. Over an affine base such as Spec
1513:
is not invertible in the base, then this scheme is not smooth. In particular, over a field of characteristic
2357: 2352: 2166: 2145: 2124: 1811: 1179: 1159:, and these are affine of infinite type. More generally, by taking a locally constant sheaf of groups on 1118: 992: 936:, satisfying the usual compatibilities of groups (namely associativity of Ό, identity, and inverse axioms) 862: 830: 747: 537: 1396:
form an important class of commutative group schemes, defined either by the property of being locally on
2297: 854: 621: 1681: 1863: 1195: 822: 561: 549: 167: 101: 2222: 2060: 1893: 999: 886: 846: 136: 31: 477: 452: 415: 1881: 1765: 1718: 1053: 944: 850: 842: 818: 121: 93: 1676:
be the connected component of the identity, i.e., the maximal connected subgroup scheme. Then
2317: 2263: 2255: 2234: 2191: 1907: 952: 948: 692: 526: 369: 263: 2309: 2070: 1974: 1973:)-length. The Dieudonné module functor in one direction is given by homomorphisms into the 1854:
connected components (if the curve is ordinary) or one connected component (if the curve is
1184: 677: 669: 661: 653: 645: 633: 573: 513: 503: 345: 287: 162: 131: 2331: 2277: 2248: 2111: 1407:, or as groups of multiplicative type associated to finitely generated free abelian groups. 2327: 2305: 2273: 2262:, Publications de l'Institut Mathématique de l'Université de Nancago , 7, Paris: Hermann, 2244: 2230: 2107: 2103: 2055: 1875: 1745: 1393: 870: 826: 761: 754: 740: 697: 585: 508: 338: 252: 192: 72: 2095: 2075: 1937:), which is a quotient of the ring of noncommutative polynomials, with coefficients in 1652: 866: 858: 768: 704: 394: 374: 311: 276: 197: 187: 172: 157: 111: 88: 1336:
has the punctured affine line as its underlying scheme, and as a functor, it sends an
2341: 1855: 1620:
The automorphism group of the affine line is isomorphic to the semidirect product of
1419:
is an affine algebraic variety that can be viewed as the multiplicative group of the
964: 834: 687: 609: 443: 316: 182: 2050: 2024: 1954: 1938: 1722: 1447:. Over an affine base, one can construct it as a quotient of a polynomial ring in 960: 882: 542: 241: 230: 177: 152: 147: 106: 77: 40: 17: 1455:
variables, with relations describing an ordered pair of mutually inverse matrices.
821:
equipped with a composition law. Group schemes arise naturally as symmetries of
2065: 1057: 810: 1133:, where the number of copies is equal to the number of connected components of 2313: 709: 437: 1884:
taking finite commutative group schemes to finite commutative group schemes.
1164: 530: 845:. Group schemes that are not algebraic groups play a significant role in 48: 67: 1866:, where supersingular points are replaced by discs of positive radius. 1714:. The quotient scheme is the spectrum of a local ring of finite rank. 409: 323: 2011:
is nilpotent, and Ă©tale group schemes correspond to modules for which
1113:, and by choosing an identification of these copies with elements of 861:. The initial development of the theory of group schemes was due to 1802:-module of finite rank. The rank is a locally constant function on 1748:. This generalizes to the notion of abelian scheme; a group scheme 1299:, then the quotient is representable, and admits a canonical left 2304:, Graduate Texts in Mathematics, vol. 66, Berlin, New York: 1178:
Group schemes can be formed from smaller group schemes by taking
1352:) associated to the integers. Over an affine base such as Spec 1167:
on the base can induce non-trivial automorphisms on the fibers.
1117:, one can define the multiplication, unit, and inverse maps by 1303:-action by translation. If the restriction of this action to 2217:
Shatz, Stephen S. (1986), "Group schemes, formal groups, and
1827:-adic rings can be found in Raynaud's work on prolongations. 1060:, and the algebra of left-invariant differential operators. 995:
of functors from schemes to groups (rather than just sets).
1898:
Finite flat commutative group schemes over a perfect field
1163:, one obtains a locally constant group scheme, for which 833:
of group schemes is somewhat better behaved than that of
2100:
Passage au quotient par une relation d'Ă©quivalence plate
2188:
Introduction to algebraic geometry and algebraic groups
1710:
is a smooth group variety that is a subgroup scheme of
1651:
A smooth genus one curve with a marked point (i.e., an
1535:
as its underlying scheme. As a functor, it sends any
480: 455: 418: 2019:
version of the theory that could be used to analyze
1858:). If we consider a family of elliptic curves, the 1567: âŠ— 1, and the inverse is given by sending 1217:) to be the set of abelian group homomorphisms from 1109:. As a scheme, it is a disjoint union of copies of 1880:Cartier duality is a scheme-theoretic analogue of 488: 463: 426: 901:equipped with one of the equivalent sets of data 1555:to zero, the multiplication is given by sending 1427:matrix ring variety. As a functor, it sends an 1729:, this is given by the relative spectrum of an 955:is equivalent to the presheaf corresponding to 1668:is a group scheme of finite type over a field 1443:matrices whose entries are global sections of 889:that has fiber products and some final object 1364: − 1), which is also written 1252:be a non-constant sheaf of abelian groups on 790: 8: 1846:, it is a finite flat group scheme of order 1547:, it is the spectrum of the polynomial ring 1756:is abelian if the structural morphism from 1372:to one, multiplication is given by sending 797: 783: 235: 61: 26: 2227:Arithmetic geometry (Storrs, Conn., 1984) 2186:Gabriel, Peter; Demazure, Michel (1980). 1961:of order a power of "p" and modules over 1100:, one can form the constant group scheme 482: 481: 479: 457: 456: 454: 420: 419: 417: 2292:Modular Forms and Fermat's Last Theorem 2260:Groupes algĂ©briques et corps de classes 2087: 1692:has a unique maximal reduced subscheme 1497:= 1. Over an affine base such as Spec 1477:to itself. As a functor, it sends any 353: 119: 29: 2221:-divisible groups", in Cornell, Gary; 1601:, and the kernel is the group scheme α 1384:, and the inverse is given by sending 355:Classification of finite simple groups 2212:Transformation de Fourier gĂ©nĂ©ralisĂ©e 1594:th powers induces an endomorphism of 7: 2302:Introduction to affine group schemes 2190:. Amsterdam: North-Holland Pub. Co. 1551:. The unit map is given by sending 1368:. The unit map is given by sending 1129:to a product of copies of the group 853:, since they come up in contexts of 2206:ThĂ©orie de DieudonnĂ© Crystalline II 1605:. Over an affine base such as Spec 1205:), defined as a functor by setting 1806:, and is called the order of  1784:is finite and flat if and only if 25: 1356:, it is the spectrum of the ring 1221:to invertible global sections of 1194:, one can form the corresponding 947:, such that composition with the 1485:to the group of global sections 47: 2177:(in French). Berlin; New York: 2156:(in French). Berlin; New York: 2135:(in French). Berlin; New York: 1717:Any affine group scheme is the 1641:with the automorphism group of 1295:is finite, flat, and closed in 837:, since all homomorphisms have 1121:. As a functor, it takes any 1079:) is an abelian group for all 841:, and there is a well-behaved 716:Infinite dimensional Lie group 1: 2003:-group schemes correspond to 1000:left action of a group scheme 1267:, the functor that takes an 1071:is commutative if the group 939:a functor from schemes over 489:{\displaystyle \mathbb {Z} } 464:{\displaystyle \mathbb {Z} } 427:{\displaystyle \mathbb {Z} } 2029:Shimura–Taniyama conjecture 1902:of positive characteristic 1435:to the group of invertible 214:List of group theory topics 2379: 2204:Berthelot, Breen, Messing 2046:Geometric invariant theory 1891: 1873: 2314:10.1007/978-1-4612-6217-6 2288:Finite flat group schemes 1780:over a noetherian scheme 1772:Finite flat group schemes 1682:finite Ă©tale group scheme 1458:For any positive integer 1410:The general linear group 1329:The multiplicative group 1172:fiber products of schemes 905:a triple of morphisms ÎŒ: 817:is a type of object from 2041:Fundamental group scheme 1609:, it is the spectrum of 1501:, it is the spectrum of 1157:fundamental group scheme 332:Elementary abelian group 209:Glossary of group theory 1400:a product of copies of 975:satisfies the equation 2167:Alexandre Grothendieck 2146:Alexandre Grothendieck 2125:Alexandre Grothendieck 1953:are the Frobenius and 1812:restriction of scalars 1586:for some prime number 1259:For a subgroup scheme 1190:For any abelian group 1180:restriction of scalars 1119:transport of structure 993:natural transformation 863:Alexander Grothendieck 855:Galois representations 825:, and they generalize 748:Linear algebraic group 490: 465: 428: 1680:is an extension of a 1590:, then the taking of 1466:is the kernel of the 987:), or by saying that 491: 466: 429: 2229:, Berlin, New York: 2223:Silverman, Joseph H. 2181:. pp. vii, 529. 2102:, Berlin, New York: 1864:rigid analytic space 1531:has the affine line 1319:and both are affine. 1196:diagonalizable group 1024:that induces a left 893:. That is, it is an 881:A group scheme is a 873:in the early 1960s. 478: 453: 416: 2298:Waterhouse, William 2160:. pp. ix, 654. 2139:. pp. xv, 564. 2061:Group-scheme action 2015:is an isomorphism. 2007:-modules for which 1933: −  1524:The additive group 887:category of schemes 847:arithmetic geometry 122:Group homomorphisms 32:Algebraic structure 18:Affine group scheme 2256:Serre, Jean-Pierre 2233:, pp. 29–78, 2165:Demazure, Michel; 2144:Demazure, Michel; 2123:Demazure, Michel; 1882:Pontryagin duality 1793:is a locally free 1766:class field theory 1470:th power map from 1263:of a group scheme 945:category of groups 851:algebraic topology 843:deformation theory 819:algebraic geometry 598:Special orthogonal 486: 461: 424: 305:Lagrange's theorem 2323:978-0-387-90421-4 2269:978-2-7056-1264-1 2240:978-0-387-96311-2 1888:DieudonnĂ© modules 1746:abelian varieties 1721:of a commutative 1703:is perfect, then 1559:to 1 âŠ—  1307:is trivial, then 1170:The existence of 949:forgetful functor 807: 806: 382: 381: 264:Alternating group 221: 220: 16:(Redirected from 2370: 2363:Duality theories 2348:Algebraic groups 2334: 2280: 2251: 2201: 2182: 2161: 2140: 2115: 2114: 2092: 2071:Invariant theory 1894:DieudonnĂ© module 1850:that has either 1660:Basic properties 1185:Weil restriction 961:Yoneda embedding 827:algebraic groups 799: 792: 785: 741:Algebraic groups 514:Hyperbolic group 504:Arithmetic group 495: 493: 492: 487: 485: 470: 468: 467: 462: 460: 433: 431: 430: 425: 423: 346:Schur multiplier 300:Cauchy's theorem 288:Quaternion group 236: 62: 51: 38: 27: 21: 2378: 2377: 2373: 2372: 2371: 2369: 2368: 2367: 2338: 2337: 2324: 2306:Springer-Verlag 2296: 2270: 2254: 2241: 2231:Springer-Verlag 2216: 2198: 2185: 2179:Springer-Verlag 2169:, eds. (1970). 2164: 2158:Springer-Verlag 2148:, eds. (1970). 2143: 2137:Springer-Verlag 2127:, eds. (1970). 2122: 2119: 2118: 2104:Springer-Verlag 2096:Raynaud, Michel 2094: 2093: 2089: 2084: 2056:Groupoid scheme 2037: 2027:'s work on the 1998: 1991: 1896: 1890: 1878: 1876:Cartier duality 1872: 1870:Cartier duality 1845: 1821: 1801: 1792: 1776:A group scheme 1774: 1735: 1709: 1698: 1662: 1647: 1640: 1633: 1626: 1604: 1600: 1571:to − 1530: 1520: 1509:−1). If 1476: 1465: 1418: 1406: 1335: 1326: 1227: 1150:if and only if 1146:is affine over 1145: 1108: 1093: 1016: 912: 879: 871:Michel Demazure 859:moduli problems 835:group varieties 803: 774: 773: 762:Abelian variety 755:Reductive group 743: 733: 732: 731: 730: 681: 673: 665: 657: 649: 622:Special unitary 533: 519: 518: 500: 499: 476: 475: 451: 450: 414: 413: 405: 404: 395:Discrete groups 384: 383: 339:Frobenius group 284: 271: 260: 253:Symmetric group 249: 233: 223: 222: 73:Normal subgroup 59: 39: 30: 23: 22: 15: 12: 11: 5: 2376: 2374: 2366: 2365: 2360: 2355: 2350: 2340: 2339: 2336: 2335: 2322: 2294: 2281: 2268: 2252: 2239: 2214: 2208: 2202: 2196: 2183: 2162: 2141: 2117: 2116: 2086: 2085: 2083: 2080: 2079: 2078: 2076:Quotient stack 2073: 2068: 2063: 2058: 2053: 2048: 2043: 2036: 2033: 1996: 1989: 1908:DieudonnĂ© ring 1892:Main article: 1889: 1886: 1874:Main article: 1871: 1868: 1843: 1819: 1797: 1788: 1773: 1770: 1733: 1707: 1696: 1661: 1658: 1657: 1656: 1653:elliptic curve 1649: 1645: 1638: 1631: 1624: 1618: 1602: 1598: 1576: 1528: 1522: 1521:is not smooth. 1518: 1474: 1463: 1456: 1414: 1408: 1404: 1394:Algebraic tori 1333: 1325: 1322: 1321: 1320: 1257: 1225: 1188: 1176: 1168: 1141: 1104: 1096:Given a group 1092: 1089: 1067:-group scheme 1014: 1009:is a morphism 969: 968: 937: 910: 878: 875: 867:Michel Raynaud 805: 804: 802: 801: 794: 787: 779: 776: 775: 772: 771: 769:Elliptic curve 765: 764: 758: 757: 751: 750: 744: 739: 738: 735: 734: 729: 728: 725: 722: 718: 714: 713: 712: 707: 705:Diffeomorphism 701: 700: 695: 690: 684: 683: 679: 675: 671: 667: 663: 659: 655: 651: 647: 642: 641: 630: 629: 618: 617: 606: 605: 594: 593: 582: 581: 570: 569: 562:Special linear 558: 557: 550:General linear 546: 545: 540: 534: 525: 524: 521: 520: 517: 516: 511: 506: 498: 497: 484: 472: 459: 446: 444:Modular groups 442: 441: 440: 435: 422: 406: 403: 402: 397: 391: 390: 389: 386: 385: 380: 379: 378: 377: 372: 367: 364: 358: 357: 351: 350: 349: 348: 342: 341: 335: 334: 329: 320: 319: 317:Hall's theorem 314: 312:Sylow theorems 308: 307: 302: 294: 293: 292: 291: 285: 280: 277:Dihedral group 273: 272: 267: 261: 256: 250: 245: 234: 229: 228: 225: 224: 219: 218: 217: 216: 211: 203: 202: 201: 200: 195: 190: 185: 180: 175: 170: 168:multiplicative 165: 160: 155: 150: 142: 141: 140: 139: 134: 126: 125: 117: 116: 115: 114: 112:Wreath product 109: 104: 99: 97:direct product 91: 89:Quotient group 83: 82: 81: 80: 75: 70: 60: 57: 56: 53: 52: 44: 43: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2375: 2364: 2361: 2359: 2358:Hopf algebras 2356: 2354: 2353:Scheme theory 2351: 2349: 2346: 2345: 2343: 2333: 2329: 2325: 2319: 2315: 2311: 2307: 2303: 2299: 2295: 2293: 2289: 2285: 2282: 2279: 2275: 2271: 2265: 2261: 2257: 2253: 2250: 2246: 2242: 2236: 2232: 2228: 2224: 2220: 2215: 2213: 2209: 2207: 2203: 2199: 2197:0-444-85443-6 2193: 2189: 2184: 2180: 2176: 2174: 2168: 2163: 2159: 2155: 2153: 2147: 2142: 2138: 2134: 2132: 2126: 2121: 2120: 2113: 2109: 2105: 2101: 2097: 2091: 2088: 2081: 2077: 2074: 2072: 2069: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2038: 2034: 2032: 2030: 2026: 2022: 2016: 2014: 2010: 2006: 2002: 1995: 1988: 1984: 1979: 1976: 1975:abelian sheaf 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1909: 1905: 1901: 1895: 1887: 1885: 1883: 1877: 1869: 1867: 1865: 1861: 1857: 1856:supersingular 1853: 1849: 1842: 1838: 1834: 1828: 1826: 1815: 1813: 1809: 1805: 1800: 1796: 1791: 1787: 1783: 1779: 1771: 1769: 1767: 1763: 1759: 1755: 1751: 1747: 1741: 1739: 1732: 1728: 1725:(over a base 1724: 1720: 1715: 1713: 1706: 1702: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1664:Suppose that 1659: 1654: 1650: 1644: 1637: 1630: 1623: 1619: 1616: 1612: 1608: 1597: 1593: 1589: 1585: 1581: 1577: 1574: 1570: 1566: 1563: +  1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1527: 1523: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1473: 1469: 1462:, the group ÎŒ 1461: 1457: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1417: 1413: 1409: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1328: 1327: 1323: 1318: 1315:is closed in 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1197: 1193: 1189: 1186: 1181: 1177: 1173: 1169: 1166: 1162: 1158: 1153: 1149: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1107: 1103: 1099: 1095: 1094: 1091:Constructions 1090: 1088: 1086: 1082: 1078: 1074: 1070: 1066: 1061: 1059: 1055: 1051: 1047: 1043: 1039: 1036:) on the set 1035: 1031: 1028:of the group 1027: 1023: 1019: 1012: 1008: 1004: 1001: 996: 994: 990: 986: 982: 978: 974: 966: 965:group functor 963:. (See also: 962: 958: 954: 950: 946: 942: 938: 935: 931: 927: 923: 919: 915: 908: 904: 903: 902: 900: 896: 892: 888: 884: 876: 874: 872: 868: 864: 860: 856: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 800: 795: 793: 788: 786: 781: 780: 778: 777: 770: 767: 766: 763: 760: 759: 756: 753: 752: 749: 746: 745: 742: 737: 736: 726: 723: 720: 719: 717: 711: 708: 706: 703: 702: 699: 696: 694: 691: 689: 686: 685: 682: 676: 674: 668: 666: 660: 658: 652: 650: 644: 643: 639: 635: 632: 631: 627: 623: 620: 619: 615: 611: 608: 607: 603: 599: 596: 595: 591: 587: 584: 583: 579: 575: 572: 571: 567: 563: 560: 559: 555: 551: 548: 547: 544: 541: 539: 536: 535: 532: 528: 523: 522: 515: 512: 510: 507: 505: 502: 501: 473: 448: 447: 445: 439: 436: 411: 408: 407: 401: 398: 396: 393: 392: 388: 387: 376: 373: 371: 368: 365: 362: 361: 360: 359: 356: 352: 347: 344: 343: 340: 337: 336: 333: 330: 328: 326: 322: 321: 318: 315: 313: 310: 309: 306: 303: 301: 298: 297: 296: 295: 289: 286: 283: 278: 275: 274: 270: 265: 262: 259: 254: 251: 248: 243: 240: 239: 238: 237: 232: 231:Finite groups 227: 226: 215: 212: 210: 207: 206: 205: 204: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 145: 144: 143: 138: 135: 133: 130: 129: 128: 127: 124: 123: 118: 113: 110: 108: 105: 103: 100: 98: 95: 92: 90: 87: 86: 85: 84: 79: 76: 74: 71: 69: 66: 65: 64: 63: 58:Basic notions 55: 54: 50: 46: 45: 42: 37: 33: 28: 19: 2301: 2291: 2287: 2259: 2226: 2218: 2211: 2205: 2187: 2172: 2170: 2151: 2149: 2130: 2128: 2099: 2090: 2051:GIT quotient 2020: 2017: 2012: 2008: 2004: 2000: 1993: 1986: 1982: 1977: 1970: 1966: 1965:with finite 1962: 1958: 1955:Verschiebung 1950: 1946: 1942: 1939:Witt vectors 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1903: 1899: 1897: 1879: 1859: 1851: 1847: 1840: 1836: 1832: 1829: 1824: 1816: 1807: 1803: 1798: 1794: 1789: 1785: 1781: 1777: 1775: 1761: 1757: 1753: 1752:over a base 1749: 1742: 1737: 1730: 1726: 1723:Hopf algebra 1716: 1711: 1704: 1700: 1693: 1689: 1685: 1677: 1673: 1669: 1665: 1663: 1642: 1635: 1628: 1621: 1614: 1610: 1606: 1595: 1591: 1587: 1583: 1579: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1525: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1471: 1467: 1459: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1415: 1411: 1401: 1397: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1330: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1191: 1160: 1151: 1147: 1142: 1138: 1134: 1130: 1126: 1122: 1114: 1110: 1105: 1101: 1097: 1084: 1080: 1076: 1072: 1068: 1064: 1062: 1049: 1045: 1041: 1037: 1033: 1029: 1021: 1017: 1010: 1006: 1005:on a scheme 1002: 997: 988: 984: 980: 976: 972: 970: 956: 940: 933: 929: 925: 921: 917: 913: 906: 898: 894: 890: 883:group object 880: 815:group scheme 814: 808: 637: 625: 613: 601: 589: 577: 565: 553: 324: 281: 268: 257: 246: 242:Cyclic group 120: 107:Free product 78:Group action 41:Group theory 36:Group theory 35: 2066:Group-stack 1839:, but over 1240:is affine, 1058:Lie algebra 1054:conjugation 811:mathematics 527:Topological 366:alternating 2342:Categories 2082:References 1493:such that 1044:) for any 959:under the 877:Definition 634:Symplectic 574:Orthogonal 531:Lie groups 438:Free group 163:continuous 102:Direct sum 2284:John Tate 1699:, and if 1228:for each 1165:monodromy 1083:-schemes 928:, and Îč: 698:Conformal 586:Euclidean 193:nilpotent 2300:(1979), 2258:(1984), 2225:(eds.), 2210:Laumon, 2098:(1967), 2035:See also 1719:spectrum 1539:-scheme 1481:-scheme 1431:-scheme 1340:-scheme 1324:Examples 1271:-scheme 1232:-scheme 1125:-scheme 1048:-scheme 897:-scheme 831:category 693:PoincarĂ© 538:Solenoid 410:Integers 400:Lattices 375:sporadic 370:Lie type 198:solvable 188:dihedral 173:additive 158:infinite 68:Subgroup 2332:0547117 2290:, from 2278:0907288 2249:0861972 2112:0232781 1672:. Let 1582:= 0 in 943:to the 839:kernels 823:schemes 688:Lorentz 610:Unitary 509:Lattice 449:PSL(2, 183:abelian 94:(Semi-) 2330:  2320:  2276:  2266:  2247:  2237:  2194:  2110:  1236:. If 1026:action 979:ÎŒ = ÎŒ( 543:Circle 474:SL(2, 363:cyclic 327:-group 178:cyclic 153:finite 148:simple 132:kernel 2025:Wiles 991:is a 920:, e: 885:in a 727:Sp(∞) 724:SU(∞) 137:image 2318:ISBN 2264:ISBN 2235:ISBN 2192:ISBN 1949:and 953:sets 869:and 857:and 849:and 813:, a 721:O(∞) 710:Loop 529:and 2310:doi 2173:153 2152:152 2131:151 1997:n+1 1945:. 1941:of 1929:}/( 1760:to 1708:red 1697:red 1688:. 1684:by 1627:by 1578:If 1517:, ÎŒ 1489:of 1439:by 1423:by 1392:. 1388:to 1376:to 1275:to 1137:. 1063:An 951:to 809:In 636:Sp( 624:SU( 600:SO( 564:SL( 552:GL( 2344:: 2328:MR 2326:, 2316:, 2308:, 2286:, 2274:MR 2272:, 2245:MR 2243:, 2108:MR 2106:, 2031:. 1992:→ 1985:: 1978:CW 1931:FV 1921:){ 1913:= 1814:. 1617:). 1613:/( 1505:/( 1412:GL 1380:⊗ 1362:xy 1360:/( 1283:)/ 1213:)( 1020:→ 998:A 983:× 967:.) 932:→ 924:→ 916:→ 865:, 612:U( 588:E( 576:O( 34:→ 2312:: 2219:p 2200:. 2175:) 2154:) 2133:) 2021:p 2013:F 2009:F 2005:D 2001:p 1994:W 1990:n 1987:W 1983:V 1971:k 1969:( 1967:W 1963:D 1959:k 1951:V 1947:F 1943:k 1935:p 1927:V 1925:, 1923:F 1919:k 1917:( 1915:W 1911:D 1904:p 1900:k 1860:p 1852:p 1848:p 1844:p 1841:F 1837:p 1833:p 1825:p 1820:2 1808:G 1804:S 1799:S 1795:O 1790:G 1786:O 1782:S 1778:G 1762:S 1758:G 1754:S 1750:G 1738:G 1734:S 1731:O 1727:S 1712:G 1705:G 1701:k 1694:G 1690:G 1686:G 1678:G 1674:G 1670:k 1666:G 1648:. 1646:a 1643:G 1639:m 1636:G 1632:m 1629:G 1625:a 1622:G 1615:x 1611:A 1607:A 1603:p 1599:a 1596:G 1592:p 1588:p 1584:S 1580:p 1575:. 1573:x 1569:x 1565:x 1561:x 1557:x 1553:x 1549:A 1545:A 1541:T 1537:S 1533:A 1529:a 1526:G 1519:p 1515:p 1511:n 1507:x 1503:A 1499:A 1495:f 1491:T 1487:f 1483:T 1479:S 1475:m 1472:G 1468:n 1464:n 1460:n 1453:n 1449:n 1445:T 1441:n 1437:n 1433:T 1429:S 1425:n 1421:n 1416:n 1405:m 1402:G 1398:S 1390:x 1386:x 1382:x 1378:x 1374:x 1370:x 1366:A 1358:A 1354:A 1350:Z 1348:( 1346:D 1342:T 1338:S 1334:m 1331:G 1317:G 1313:H 1309:H 1305:H 1301:G 1297:G 1293:H 1289:T 1287:( 1285:H 1281:T 1279:( 1277:G 1273:T 1269:S 1265:G 1261:H 1256:. 1254:S 1250:A 1246:A 1244:( 1242:D 1238:S 1234:T 1230:S 1226:T 1223:O 1219:A 1215:T 1211:A 1209:( 1207:D 1203:A 1201:( 1199:D 1192:A 1187:. 1161:S 1152:G 1148:S 1143:S 1139:G 1135:T 1131:G 1127:T 1123:S 1115:G 1111:S 1106:S 1102:G 1098:G 1085:T 1081:S 1077:T 1075:( 1073:G 1069:G 1065:S 1050:T 1046:S 1042:T 1040:( 1038:X 1034:T 1032:( 1030:G 1022:X 1018:X 1015:S 1013:× 1011:G 1007:X 1003:G 989:f 985:f 981:f 977:f 973:f 957:G 941:S 934:G 930:G 926:G 922:S 918:G 914:G 911:S 909:× 907:G 899:G 895:S 891:S 798:e 791:t 784:v 680:8 678:E 672:7 670:E 664:6 662:E 656:4 654:F 648:2 646:G 640:) 638:n 628:) 626:n 616:) 614:n 604:) 602:n 592:) 590:n 580:) 578:n 568:) 566:n 556:) 554:n 496:) 483:Z 471:) 458:Z 434:) 421:Z 412:( 325:p 290:Q 282:n 279:D 269:n 266:A 258:n 255:S 247:n 244:Z 20:)

Index

Affine group scheme
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑