Knowledge (XXG)

Molten carbonate fuel cell

Source 📝

976: 146:— they can even use carbon oxides as fuel — making them more attractive for fueling with gases made from coal. Because they are more resistant to impurities than other fuel cell types, scientists believe that they could even be capable of internal reforming of coal, assuming they can be made resistant to impurities such as sulfur and particulates that result from converting coal, a dirtier 847:
decrease corrosion rate) and allow for use of cheaper component materials. At the same time, a decrease in temperature would decrease ionic conductivity of the electrolyte and thus, the anode materials need to compensate for this performance decline (e.g. by increasing power density). Other researchers have looked into enhancing creep resistance by using a Ni
877:
limit this dissolution. Magnesium oxide serves to reduce the solubility of Ni in the cathode and decreases precipitation in the electrolyte. Alternatively, replacement of the conventional cathode material with a LiFeO2-LiCoO2-NiO alloy has shown promising performance results and almost completely avoids the problem of Ni dissolution of the cathode.
804: 917:
is a very corrosive electrolyte and this ratio of carbonates provides the lowest corrosion rate. Due to these issues, recent studies have delved into replacing the potassium carbonate with a sodium carbonate. A Li/Na electrolyte has shown to have better performance (higher conductivity) and improves
846:
of the anode at the high operating temperatures of the fuel cell. Recent research has looked at using nano Ni and other Ni alloys to increase the performance and decrease the operating temperature of the fuel cell. A reduction in operating temperature would extend the lifetime of the fuel cell (i.e.
157:
The primary disadvantage of current MCFC technology is durability. The high temperatures at which these cells operate and the corrosive electrolyte used accelerate component breakdown and corrosion, decreasing cell life. Scientists are currently exploring corrosion-resistant materials for components
876:
when the cathode is in contact with the carbonate electrolyte. This dissolution leads to precipitation of Ni metal in the electrolyte and since it is electrically conductive, the fuel cell can get short circuited. Therefore, current studies have looked into the addition of MgO to the NiO cathode to
171:
Molten carbonate FCs are a recently developed type of fuel cell that targets small and large energy distribution/generation systems since their power production is in the 0.3-3 MW range. The operating pressure is between 1-8 atm while the temperatures are between 600 and 700 °C. Due to the
17: 176:
during reforming of the fossil fuel (methane, natural gas), MCFCs are not a completely green technology, but are promising due to their reliability and efficiency (sufficient heat for co-generation with electricity). Current MCFC efficiencies range from 60 to 70%.
813:
Due to the high operating temperatures of MCFC's, the materials need to be very carefully selected to survive the conditions present within the cell. The following sections cover the various materials present in the fuel cell and recent developments in research.
955:
but will be reduced by up to 50% compared to diesel engines running on marine bunker fuel. The exhaust temperature is 400 °C, hot enough to be used for many industrial processes. Another possibility is to make more electric power via a
1200:
Nguyen, Hoang Viet Phuc; Othman, Mohd Roslee; Seo, Dongho; Yoon, Sung Pil; Ham, Hyung Chul; Nam, Suk Woo; Han, Jonghee; Kim, Jinsoo (2014-08-04). "Nano Ni layered anode for enhanced MCFC performance at reduced operating temperature".
556: 893:) matrix to contain the liquid between the electrodes. The high temperatures of the fuel cell is required to produce sufficient ionic conductivity of carbonate through this electrolyte. Common MCFC electrolytes contain 62% Li 871:
within the NiO crystal structure). The pore size within the cathode is in the range of 7-15 μm with 60-70% of the material being porous. The primary issue with the cathode material is dissolution of NiO since it reacts with
930:) in the material during cell operation. The phase change accompanies a volume decrease in the electrolyte which leads to lower ionic conductivity. Through various studies, it has been found that an alumina doped α-LiAlO 950:
in 2006. The unit weighs 2 tonnes and can produce 240 kW of electric power from various gaseous fuels, including biogas. If fueled by fuels that contain carbon such as natural gas, the exhaust will contain
473: 374: 545: 154:
be delivered to the cathode along with the oxidizer, they can be used to electrochemically separate carbon dioxide from the flue gas of other fossil fuel power plants for sequestration.
131:. Due to the high temperatures at which MCFCs operate, these fuels are converted to hydrogen within the fuel cell itself by a process called internal reforming, which also reduces cost. 909:. A greater fraction of Li carbonate is used due to its higher ionic conductivity but is limited to 62% due to its lower gas solubility and ionic diffusivity of oxygen. In addition, Li 269: 108:(PAFCs). Molten carbonate fuel cells can reach efficiencies approaching 60%, considerably higher than the 37–42% efficiencies of a phosphoric acid fuel cell plant. When the 1443: 830:(3-6 μm, 45-70% material porosity) Ni based alloy. Ni is alloyed with either Chromium or Aluminum in the 2-10% range. These alloying elements allow for formation of LiCrO 1026: 799:{\displaystyle E=E^{o}+{\frac {RT}{2F}}log{\frac {P_{H_{2}}P_{O_{2}}^{\frac {1}{2}}}{P_{H_{2}O}}}+{\frac {RT}{2F}}log{\frac {P_{CO_{2},cathode}}{P_{CO_{2},anode}}}} 1416: 960:. Depending on feed gas type, the electric efficiency is between 12% and 19%. A steam turbine can increase the efficiency by up to 24%. The unit can be used for 1051: 1438: 1470: 1083: 1426: 922:). In addition, scientists have also looked into modifying the matrix of the electrolyte to prevent issues such as phase changes (γ-LiAlO 1508: 1120: 1030: 385: 1089: 1651: 1318:
Fang, Baizeng; Liu, Xinyu; Wang, Xindong; Duan, Shuzhen (1998-01-15). "The mechanism of surface modification of a MCFC anode".
889:(molten carbonate) which consists of a sodium(Na) and potassium(K) carbonate. This electrolyte is supported by a ceramic (LiAlO 1606: 1291:
Antolini, Ermete (December 2011). "The stability of molten carbonate fuel cell electrodes: A review of recent improvements".
82: 1228:
Kim, Yun-Sung; Lim, Jun-Heok; Chun, Hai-Soo (2006-01-01). "Creep mechanism of porous MCFC Ni anodes strengthened by Ni3Al".
280: 1421: 1646: 85:(BASE). Since they operate at extremely high temperatures of 650 °C (roughly 1,200 °F) and above, non-precious 1529: 1699: 1616: 1559: 989: 484: 1636: 1391: 1348:
Kulkarni, A.; Giddey, S. (2012-06-08). "Materials issues and recent developments in molten carbonate fuel cells".
1626: 1544: 1503: 868: 105: 127:
electrolyte membrane fuel cells, MCFCs don't require an external reformer to convert more energy-dense fuels to
1631: 1539: 1463: 203: 1621: 1554: 1534: 1641: 1580: 1059: 1549: 1513: 1432: 1149: 994: 36: 1564: 81:
composed of a molten carbonate salt mixture suspended in a porous, chemically inert ceramic matrix of
864: 55: 1720: 1585: 1456: 943: 839: 51: 1264: 1172: 1141: 16: 1493: 1373: 70: 1094: 1021: 1365: 1245: 63: 1686: 1681: 1676: 1671: 1357: 1327: 1300: 1237: 1210: 919: 1115: 1265:"Development and Characterisation of Cathode Materials for the Molten Carbonate Fuel Cell" 139: 934:
matrix would improve the phase stability while maintaining the fuel cell's performance.
143: 1331: 1714: 1601: 981: 957: 947: 158:
as well as fuel cell designs that increase cell life without decreasing performance.
1377: 1611: 1304: 1214: 961: 113: 104:
Improved efficiency is another reason MCFCs offer significant cost reductions over
886: 147: 78: 66: 43: 918:
the stability of the cathode when compared to a Li/K electrolyte (Li/K is more
150:
source than many others, into hydrogen. Alternatively, because MCFCs require CO
1361: 971: 851:
Al alloy anode to reduce mass transport of Ni in the anode when in operation.
109: 1369: 1249: 1479: 1444:
Presentation to Fourth Annual Conference on Carbon Capture and Sequestration
975: 867:
or of a porous Ni that is converted to a lithiated nickel oxide (lithium is
843: 32: 1663: 827: 135: 128: 120: 90: 74: 1399: 860: 124: 98: 1241: 47: 823: 94: 86: 15: 1417:
LLNL: The Carbon/Air Fuel Cell Conversion of Coal-Derived Carbons
77:
applications. MCFCs are high-temperature fuel cells that use an
59: 1452: 1448: 468:{\displaystyle {\frac {1}{2}}O_{2}+CO_{2}+2e^{-}=CO_{3}^{2-}} 1439:
Molten carbonate fuel cells distributed generation challenge
1435:
integrate, install and operate all fuel cell technologies
838:
at the grain boundaries, which increases the materials'
42:
Molten carbonate fuel cells (MCFCs) were developed for
369:{\displaystyle H_{2}+CO_{3}^{2-}=H_{2}O+CO_{2}+2e^{-}} 559: 487: 388: 283: 206: 1662: 1594: 1573: 1522: 1486: 1392:"Fuel cell technology introduces ultra clean ships" 116:, overall fuel efficiencies can be as high as 85%. 798: 539: 467: 368: 263: 1027:Office of Energy Efficiency and Renewable Energy 540:{\displaystyle H_{2}+{\frac {1}{2}}O_{2}=H_{2}O} 1464: 1084:"Tutorial: Molten Carbonate Fuel Cell (MCFC)" 134:Molten carbonate fuel cells are not prone to 8: 1173:"The anode and the electrolyte in the MCFC" 1471: 1457: 1449: 768: 760: 724: 716: 710: 681: 665: 660: 644: 637: 632: 620: 615: 608: 579: 570: 558: 528: 515: 501: 492: 486: 456: 451: 435: 419: 403: 389: 387: 360: 344: 325: 309: 304: 288: 282: 246: 227: 214: 205: 1203:International Journal of Hydrogen Energy 1350:Journal of Solid State Electrochemistry 1006: 264:{\displaystyle CH_{4}+H_{2}O=3H_{2}+CO} 1422:DoD Fuel Cell - Fuel Cell Descriptions 1320:Journal of Electroanalytical Chemistry 1016: 1014: 1012: 1010: 20:Scheme of a molten-carbonate fuel cell 1343: 1341: 1286: 1284: 1088:National Fuel Cell Research Center - 7: 1078: 1076: 197:Internal Reformer (methane example): 1429:presented on the Hannover Fair 2006 859:On the other side of the cell, the 1509:Proton-exchange membrane fuel cell 1121:United States Department of Energy 1031:United States Department of Energy 14: 826:material typically consists of a 1090:University of California, Irvine 974: 1652:Unitized regenerative fuel cell 863:material is composed of either 1305:10.1016/j.apenergy.2011.07.009 1215:10.1016/j.ijhydene.2014.03.253 83:beta-alumina solid electrolyte 1: 1647:Solid oxide electrolyzer cell 1332:10.1016/S0022-0728(97)00202-7 1263:Wijayasinghe, Athula (2004). 1142:"High Temperature Fuel Cells" 1530:Direct borohydride fuel cell 1617:Membrane electrode assembly 1560:Reformed methanol fuel cell 990:Glossary of fuel cell terms 25:Molten-carbonate fuel cells 1737: 1637:Protonic ceramic fuel cell 1607:Electro-galvanic fuel cell 1499:Molten carbonate fuel cell 106:phosphoric acid fuel cells 39:of 600 °C and above. 1695: 1627:Photoelectrochemical cell 1545:Direct methanol fuel cell 1504:Phosphoric acid fuel cell 1362:10.1007/s10008-012-1771-y 946:presented an MCFC at the 274:Anode (hydrogen example): 50:(produced as a result of 1632:Proton-exchange membrane 1540:Direct-ethanol fuel cell 842:resistance and prevents 1622:Membraneless Fuel Cells 1555:Metal hydride fuel cell 1535:Direct carbon fuel cell 1171:Boden, Andreas (2007). 123:, phosphoric acid, and 37:operate at temperatures 31:) are high-temperature 1642:Regenerative fuel cell 1581:Enzymatic biofuel cell 800: 541: 469: 370: 265: 21: 1550:Formic acid fuel cell 1514:Solid oxide fuel cell 1150:University of Babylon 1116:"Types of Fuel Cells" 1052:"Types of Fuel Cells" 1022:"Types of Fuel Cells" 995:Hydrogen technologies 801: 542: 470: 371: 266: 19: 1433:Logan Energy Limited 1056:Fuel Cell Energy.com 885:MCFC's use a liquid 865:Lithium metatitanate 557: 485: 386: 281: 204: 56:biomass gasification 1586:Microbial fuel cell 1427:MTU 240kW fuel cell 1402:on 31 January 2008. 1209:(23): 12285–12290. 944:MTU Friedrichshafen 942:The German company 654: 464: 317: 52:anaerobic digestion 1494:Alkaline fuel cell 796: 628: 537: 465: 447: 366: 300: 261: 101:, reducing costs. 73:, industrial, and 71:electrical utility 22: 1708: 1707: 1356:(10): 3123–3146. 1299:(12): 4274–4293. 1242:10.1002/aic.10630 794: 699: 676: 652: 597: 509: 397: 114:captured and used 1728: 1565:Zinc–air battery 1473: 1466: 1459: 1450: 1404: 1403: 1398:. Archived from 1388: 1382: 1381: 1345: 1336: 1335: 1315: 1309: 1308: 1288: 1279: 1278: 1276: 1274: 1269: 1260: 1254: 1253: 1225: 1219: 1218: 1197: 1191: 1190: 1188: 1186: 1177: 1168: 1162: 1161: 1159: 1157: 1146: 1138: 1132: 1131: 1129: 1128: 1112: 1106: 1105: 1103: 1102: 1093:. Archived from 1080: 1071: 1070: 1068: 1067: 1058:. Archived from 1048: 1042: 1041: 1039: 1038: 1018: 984: 979: 978: 805: 803: 802: 797: 795: 793: 792: 773: 772: 755: 754: 729: 728: 711: 700: 698: 690: 682: 677: 675: 674: 670: 669: 655: 653: 645: 643: 642: 641: 627: 626: 625: 624: 609: 598: 596: 588: 580: 575: 574: 550:Nernst Equation: 546: 544: 543: 538: 533: 532: 520: 519: 510: 502: 497: 496: 474: 472: 471: 466: 463: 455: 440: 439: 424: 423: 408: 407: 398: 390: 375: 373: 372: 367: 365: 364: 349: 348: 330: 329: 316: 308: 293: 292: 270: 268: 267: 262: 251: 250: 232: 231: 219: 218: 193: 192: 188: 172:production of CO 1736: 1735: 1731: 1730: 1729: 1727: 1726: 1725: 1711: 1710: 1709: 1704: 1691: 1658: 1590: 1569: 1518: 1482: 1477: 1413: 1408: 1407: 1390: 1389: 1385: 1347: 1346: 1339: 1317: 1316: 1312: 1290: 1289: 1282: 1272: 1270: 1267: 1262: 1261: 1257: 1227: 1226: 1222: 1199: 1198: 1194: 1184: 1182: 1175: 1170: 1169: 1165: 1155: 1153: 1144: 1140: 1139: 1135: 1126: 1124: 1114: 1113: 1109: 1100: 1098: 1082: 1081: 1074: 1065: 1063: 1050: 1049: 1045: 1036: 1034: 1020: 1019: 1008: 1003: 980: 973: 970: 954: 940: 933: 929: 925: 916: 912: 908: 904: 900: 896: 892: 883: 875: 857: 850: 837: 833: 820: 811: 764: 756: 720: 712: 691: 683: 661: 656: 633: 616: 611: 610: 589: 581: 566: 555: 554: 524: 511: 488: 483: 482: 431: 415: 399: 384: 383: 356: 340: 321: 284: 279: 278: 242: 223: 210: 202: 201: 194: 190: 186: 184: 183: 175: 169: 164: 153: 140:carbon monoxide 89:can be used as 12: 11: 5: 1734: 1732: 1724: 1723: 1713: 1712: 1706: 1705: 1703: 1702: 1696: 1693: 1692: 1690: 1689: 1684: 1679: 1674: 1668: 1666: 1660: 1659: 1657: 1656: 1655: 1654: 1649: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1598: 1596: 1592: 1591: 1589: 1588: 1583: 1577: 1575: 1571: 1570: 1568: 1567: 1562: 1557: 1552: 1547: 1542: 1537: 1532: 1526: 1524: 1520: 1519: 1517: 1516: 1511: 1506: 1501: 1496: 1490: 1488: 1487:By electrolyte 1484: 1483: 1478: 1476: 1475: 1468: 1461: 1453: 1447: 1446: 1441: 1436: 1430: 1424: 1419: 1412: 1411:External links 1409: 1406: 1405: 1383: 1337: 1326:(1–2): 65–68. 1310: 1293:Applied Energy 1280: 1255: 1236:(1): 359–365. 1220: 1192: 1163: 1133: 1107: 1072: 1043: 1005: 1004: 1002: 999: 998: 997: 992: 986: 985: 969: 966: 952: 939: 936: 931: 927: 923: 914: 910: 906: 902: 898: 894: 890: 882: 879: 873: 856: 853: 848: 835: 831: 819: 816: 810: 807: 791: 788: 785: 782: 779: 776: 771: 767: 763: 759: 753: 750: 747: 744: 741: 738: 735: 732: 727: 723: 719: 715: 709: 706: 703: 697: 694: 689: 686: 680: 673: 668: 664: 659: 651: 648: 640: 636: 631: 623: 619: 614: 607: 604: 601: 595: 592: 587: 584: 578: 573: 569: 565: 562: 536: 531: 527: 523: 518: 514: 508: 505: 500: 495: 491: 462: 459: 454: 450: 446: 443: 438: 434: 430: 427: 422: 418: 414: 411: 406: 402: 396: 393: 363: 359: 355: 352: 347: 343: 339: 336: 333: 328: 324: 320: 315: 312: 307: 303: 299: 296: 291: 287: 260: 257: 254: 249: 245: 241: 238: 235: 230: 226: 222: 217: 213: 209: 182: 179: 173: 168: 165: 163: 160: 151: 144:carbon dioxide 13: 10: 9: 6: 4: 3: 2: 1733: 1722: 1719: 1718: 1716: 1701: 1698: 1697: 1694: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1669: 1667: 1665: 1661: 1653: 1650: 1648: 1645: 1644: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1599: 1597: 1593: 1587: 1584: 1582: 1579: 1578: 1576: 1574:Biofuel cells 1572: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1527: 1525: 1521: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1491: 1489: 1485: 1481: 1474: 1469: 1467: 1462: 1460: 1455: 1454: 1451: 1445: 1442: 1440: 1437: 1434: 1431: 1428: 1425: 1423: 1420: 1418: 1415: 1414: 1410: 1401: 1397: 1393: 1387: 1384: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1344: 1342: 1338: 1333: 1329: 1325: 1321: 1314: 1311: 1306: 1302: 1298: 1294: 1287: 1285: 1281: 1266: 1259: 1256: 1251: 1247: 1243: 1239: 1235: 1231: 1230:AIChE Journal 1224: 1221: 1216: 1212: 1208: 1204: 1196: 1193: 1181: 1174: 1167: 1164: 1152: 1151: 1143: 1137: 1134: 1123: 1122: 1117: 1111: 1108: 1097:on 2018-10-08 1096: 1092: 1091: 1085: 1079: 1077: 1073: 1062:on 2013-08-25 1061: 1057: 1053: 1047: 1044: 1033: 1032: 1028: 1023: 1017: 1015: 1013: 1011: 1007: 1000: 996: 993: 991: 988: 987: 983: 982:Energy portal 977: 972: 967: 965: 963: 959: 958:steam turbine 949: 948:Hannover Fair 945: 938:MTU fuel cell 937: 935: 921: 888: 880: 878: 870: 866: 862: 854: 852: 845: 841: 829: 825: 817: 815: 808: 806: 789: 786: 783: 780: 777: 774: 769: 765: 761: 757: 751: 748: 745: 742: 739: 736: 733: 730: 725: 721: 717: 713: 707: 704: 701: 695: 692: 687: 684: 678: 671: 666: 662: 657: 649: 646: 638: 634: 629: 621: 617: 612: 605: 602: 599: 593: 590: 585: 582: 576: 571: 567: 563: 560: 552: 551: 547: 534: 529: 525: 521: 516: 512: 506: 503: 498: 493: 489: 480: 479: 475: 460: 457: 452: 448: 444: 441: 436: 432: 428: 425: 420: 416: 412: 409: 404: 400: 394: 391: 381: 380: 376: 361: 357: 353: 350: 345: 341: 337: 334: 331: 326: 322: 318: 313: 310: 305: 301: 297: 294: 289: 285: 276: 275: 271: 258: 255: 252: 247: 243: 239: 236: 233: 228: 224: 220: 215: 211: 207: 199: 198: 189: 180: 178: 166: 161: 159: 155: 149: 145: 141: 137: 132: 130: 126: 122: 117: 115: 111: 107: 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 65: 61: 57: 53: 49: 45: 40: 38: 34: 30: 26: 18: 1612:Flow battery 1498: 1400:the original 1395: 1386: 1353: 1349: 1323: 1319: 1313: 1296: 1292: 1271:. Retrieved 1258: 1233: 1229: 1223: 1206: 1202: 1195: 1183:. Retrieved 1179: 1166: 1154:. Retrieved 1148: 1136: 1125:. Retrieved 1119: 1110: 1099:. Retrieved 1095:the original 1087: 1064:. Retrieved 1060:the original 1055: 1046: 1035:. Retrieved 1025: 962:cogeneration 941: 884: 869:intercalated 858: 821: 812: 553: 549: 548: 481: 477: 476: 382: 378: 377: 277: 273: 272: 200: 196: 195: 170: 156: 133: 118: 103: 67:power plants 41: 28: 24: 23: 1602:Blue energy 1180:Diva Portal 887:electrolyte 881:Electrolyte 148:fossil fuel 79:electrolyte 44:natural gas 1721:Fuel cells 1480:Fuel cells 1273:2 November 1185:1 November 1156:1 November 1127:2015-11-02 1101:2015-11-02 1066:2015-11-02 1037:2016-03-18 1001:References 926:to α-LiAlO 167:Background 110:waste heat 33:fuel cells 1370:1432-8488 1250:1547-5905 901:and 38% K 844:sintering 809:Materials 461:− 437:− 362:− 314:− 181:Reactions 162:Operation 136:poisoning 91:catalysts 1715:Category 1700:Glossary 1664:Hydrogen 1396:Eidesvik 1378:95755022 968:See also 379:Cathode: 129:hydrogen 121:alkaline 75:military 1687:Vehicle 1682:Storage 1677:Station 1672:Economy 1523:By fuel 861:cathode 855:Cathode 125:polymer 119:Unlike 99:cathode 93:at the 58:), and 1595:Others 1376:  1368:  1248:  834:/LiAlO 828:porous 185:": --> 87:metals 48:biogas 1374:S2CID 1268:(PDF) 1176:(PDF) 1145:(PDF) 920:basic 840:creep 824:anode 818:Anode 478:Cell: 95:anode 64:based 35:that 29:MCFCs 1366:ISSN 1275:2015 1246:ISSN 1187:2015 1158:2015 822:The 187:edit 97:and 69:for 60:coal 1358:doi 1328:doi 1324:441 1301:doi 1238:doi 1211:doi 142:or 138:by 112:is 54:or 1717:: 1394:. 1372:. 1364:. 1354:16 1352:. 1340:^ 1322:. 1297:88 1295:. 1283:^ 1244:. 1234:52 1232:. 1207:39 1205:. 1178:. 1147:. 1118:. 1086:. 1075:^ 1054:. 1029:, 1024:. 1009:^ 964:. 951:CO 913:CO 905:CO 897:CO 872:CO 46:, 1472:e 1465:t 1458:v 1380:. 1360:: 1334:. 1330:: 1307:. 1303:: 1277:. 1252:. 1240:: 1217:. 1213:: 1189:. 1160:. 1130:. 1104:. 1069:. 1040:. 953:2 932:2 928:2 924:2 915:3 911:2 907:3 903:2 899:3 895:2 891:2 874:2 849:3 836:2 832:2 790:e 787:d 784:o 781:n 778:a 775:, 770:2 766:O 762:C 758:P 752:e 749:d 746:o 743:h 740:t 737:a 734:c 731:, 726:2 722:O 718:C 714:P 708:g 705:o 702:l 696:F 693:2 688:T 685:R 679:+ 672:O 667:2 663:H 658:P 650:2 647:1 639:2 635:O 630:P 622:2 618:H 613:P 606:g 603:o 600:l 594:F 591:2 586:T 583:R 577:+ 572:o 568:E 564:= 561:E 535:O 530:2 526:H 522:= 517:2 513:O 507:2 504:1 499:+ 494:2 490:H 458:2 453:3 449:O 445:C 442:= 433:e 429:2 426:+ 421:2 417:O 413:C 410:+ 405:2 401:O 395:2 392:1 358:e 354:2 351:+ 346:2 342:O 338:C 335:+ 332:O 327:2 323:H 319:= 311:2 306:3 302:O 298:C 295:+ 290:2 286:H 259:O 256:C 253:+ 248:2 244:H 240:3 237:= 234:O 229:2 225:H 221:+ 216:4 212:H 208:C 191:] 174:2 152:2 62:- 27:(

Index


fuel cells
operate at temperatures
natural gas
biogas
anaerobic digestion
biomass gasification
coal
based
power plants
electrical utility
military
electrolyte
beta-alumina solid electrolyte
metals
catalysts
anode
cathode
phosphoric acid fuel cells
waste heat
captured and used
alkaline
polymer
hydrogen
poisoning
carbon monoxide
carbon dioxide
fossil fuel
anode
porous

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.