Knowledge (XXG)

Moser's worm problem

Source 📝

90:
It is not completely trivial that a minimum-area cover exists. An alternative possibility would be that there is some minimal area that can be approached but not actually attained. However, there does exist a smallest
82:
with vertex angles of 60° and 120° and with a long diagonal of unit length. However, these are not optimal solutions; other shapes are known that solve the problem with smaller areas.
181: 78:
of radius 1/2 can accommodate any plane curve of length 1 by placing the midpoint of the curve at the center of the disk. Another possible solution has the shape of a
142:
used a min-max strategy for area of a convex set containing a segment, a triangle and a rectangle to show a lower bound of 0.232239 for a convex cover.
122:
The problem remains open, but over a sequence of papers researchers have tightened the gap between the known lower and upper bounds. In particular,
212: 29: 577: 218: 431: 394: 358: 582: 306:
Khandhawit, Tirasan; Pagonakis, Dimitrios; Sriswasdi, Sira (2013), "Lower Bound for Convex Hull Area and Universal Cover Problems",
269: 209:, a set of minimal area that can accommodate every unit-length line segment (with translations allowed, but not rotations) 587: 572: 96: 106:
conjectured that a shape accommodates every unit-length curve if and only if it accommodates every unit-length
203:, the problem of finding a maximum-area shape that can be rotated and translated through an L-shaped corridor 152: 59: 126:
constructed a (nonconvex) universal cover and showed that the minimum shape has area at most 0.260437;
530: 200: 389: 353: 114:
showed that no finite bound on the number of segments in a polychain would suffice for this test.
551: 516: 498: 341: 315: 286: 485: 543: 508: 440: 403: 367: 325: 278: 267:
Gerriets, John; Poole, George (1974), "Convex regions which cover arcs of constant length",
62:
to fit inside the region. In some variations of the problem, the region is restricted to be
475: 454: 417: 381: 337: 298: 253:
attribute this observation to an unpublished manuscript of Laidacker and Poole, dated 1986.
592: 471: 450: 413: 377: 333: 294: 146: 107: 597: 566: 555: 520: 345: 191:. If confirmed, this will reduce the upper bound for the convex cover by about 3%. 356:; Poole, George (2003), "An improved upper bound for Leo Moser's worm problem", 55: 512: 425:
Panraksa, Chatchawan; Wetzel, John E.; Wichiramala, Wacharin (2007), "Covering
547: 445: 372: 329: 215:, find the smallest convex area that can cover any planar set of unit diameter 206: 92: 63: 392:; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", 47: 26:
What is the minimum area of a shape that can cover every unit-length curve?
221:, find the shortest path to escape from a forest of known size and shape. 102:
It is also not trivial to determine whether a given shape forms a cover.
43: 408: 290: 79: 18: 75: 282: 503: 462:
Wang, Wei (2006), "An improved upper bound for the worm problem",
320: 308:
International Journal of Computational Geometry & Applications
58:
of length 1. Here "accommodate" means that the curve may be
51: 183:. Two proofs of the conjecture were independently claimed by 139: 111: 110:
with three segments, a more easily tested condition, but
250: 155: 131: 50:
in 1966. The problem asks for the region of smallest
483:
Panraksa, Chatchawan; Wichiramala, Wacharin (2021),
188: 529: 484: 175: 46:formulated by the Austrian-Canadian mathematician 145:In the 1970s, John Wetzel conjectured that a 30° 531:"Drapeable unit arcs fit in the unit 30° sector" 184: 134:gave weaker upper bounds. In the convex case, 16:Unsolved geometry problem about planar regions 238: 127: 103: 8: 140:Khandhawit, Pagonakis & Sriswasdi (2013) 123: 528:Movshovich, Yevgenya; Wetzel, John (2017), 502: 444: 407: 371: 319: 159: 154: 112:Panraksa, Wetzel & Wichiramala (2007) 138:improved an upper bound to 0.270911861. 429:-segment unit arcs is not sufficient", 231: 30:(more unsolved problems in mathematics) 95:cover. Its existence follows from the 251:Norwood, Poole & Laidacker (1992) 213:Lebesgue's universal covering problem 176:{\displaystyle \pi /12\approx 0.2618} 132:Norwood, Poole & Laidacker (1992) 7: 149:of unit radius is a cover with area 135: 432:Discrete and Computational Geometry 395:Discrete and Computational Geometry 359:Discrete and Computational Geometry 486:"Wetzel's sector covers unit arcs" 219:Bellman's lost in a forest problem 14: 270:The American Mathematical Monthly 189:Panraksa & Wichiramala (2021) 491:Periodica Mathematica Hungarica 21:Unsolved problem in mathematics 185:Movshovich & Wetzel (2017) 1: 578:Unsolved problems in geometry 40:mother worm's blanket problem 42:) is an unsolved problem in 239:Gerriets & Poole (1974) 128:Gerriets & Poole (1974) 104:Gerriets & Poole (1974) 54:that can accommodate every 614: 513:10.1007/s10998-020-00354-x 124:Norwood & Poole (2003) 97:Blaschke selection theorem 548:10.1515/advgeom-2017-0011 446:10.1007/s00454-006-1258-7 373:10.1007/s00454-002-0774-3 330:10.1142/S0218195913500076 583:Recreational mathematics 464:Acta Mathematica Sinica 177: 60:rotated and translated 178: 536:Advances in Geometry 153: 36:Moser's worm problem 588:Eponyms in geometry 201:Moving sofa problem 86:Solution properties 409:10.1007/BF02187832 173: 573:Discrete geometry 605: 558: 533: 523: 506: 488: 478: 457: 448: 420: 411: 384: 375: 348: 323: 301: 254: 248: 242: 236: 182: 180: 179: 174: 163: 22: 613: 612: 608: 607: 606: 604: 603: 602: 563: 562: 527: 482: 461: 424: 388: 352: 305: 283:10.2307/2318909 266: 263: 258: 257: 249: 245: 237: 233: 228: 197: 151: 150: 147:circular sector 120: 108:polygonal chain 88: 74:For example, a 72: 38:(also known as 33: 32: 27: 24: 20: 17: 12: 11: 5: 611: 609: 601: 600: 595: 590: 585: 580: 575: 565: 564: 561: 560: 542:(4): 497–506, 525: 497:(2): 213–222, 480: 470:(4): 835–846, 459: 439:(2): 297–299, 422: 402:(2): 153–162, 386: 366:(3): 409–417, 350: 314:(3): 197–212, 303: 262: 259: 256: 255: 243: 230: 229: 227: 224: 223: 222: 216: 210: 204: 196: 193: 172: 169: 166: 162: 158: 119: 116: 87: 84: 71: 68: 28: 25: 19: 15: 13: 10: 9: 6: 4: 3: 2: 610: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 570: 568: 557: 553: 549: 545: 541: 537: 532: 526: 522: 518: 514: 510: 505: 500: 496: 492: 487: 481: 477: 473: 469: 465: 460: 456: 452: 447: 442: 438: 434: 433: 428: 423: 419: 415: 410: 405: 401: 397: 396: 391: 390:Norwood, Rick 387: 383: 379: 374: 369: 365: 361: 360: 355: 354:Norwood, Rick 351: 347: 343: 339: 335: 331: 327: 322: 317: 313: 309: 304: 300: 296: 292: 288: 284: 280: 276: 272: 271: 265: 264: 260: 252: 247: 244: 240: 235: 232: 225: 220: 217: 214: 211: 208: 205: 202: 199: 198: 194: 192: 190: 186: 170: 167: 164: 160: 156: 148: 143: 141: 137: 133: 129: 125: 117: 115: 113: 109: 105: 100: 98: 94: 85: 83: 81: 77: 76:circular disk 69: 67: 65: 61: 57: 53: 49: 45: 41: 37: 31: 539: 535: 494: 490: 467: 463: 436: 430: 426: 399: 393: 363: 357: 311: 307: 277:(1): 36–41, 274: 268: 246: 234: 144: 121: 118:Known bounds 101: 89: 73: 39: 35: 34: 136:Wang (2006) 56:plane curve 567:Categories 504:1907.07351 261:References 207:Kakeya set 556:125746596 521:225397486 346:207132316 321:1101.5638 168:≈ 157:π 48:Leo Moser 195:See also 70:Examples 44:geometry 476:2264090 455:2295060 418:1139077 382:1961007 338:3158583 299:0333991 291:2318909 187:and by 80:rhombus 593:Curves 554:  519:  474:  453:  416:  380:  344:  336:  297:  289:  171:0.2618 93:convex 64:convex 552:S2CID 517:S2CID 499:arXiv 342:S2CID 316:arXiv 287:JSTOR 226:Notes 598:Area 130:and 52:area 544:doi 509:doi 441:doi 404:doi 368:doi 326:doi 279:doi 569:: 550:, 540:17 538:, 534:, 515:, 507:, 495:82 493:, 489:, 472:MR 468:49 466:, 451:MR 449:, 437:37 435:, 414:MR 412:, 398:, 378:MR 376:, 364:29 362:, 340:, 334:MR 332:, 324:, 312:23 310:, 295:MR 293:, 285:, 275:81 273:, 165:12 99:. 66:. 559:. 546:: 524:. 511:: 501:: 479:. 458:. 443:: 427:n 421:. 406:: 400:7 385:. 370:: 349:. 328:: 318:: 302:. 281:: 241:. 161:/ 23::

Index

(more unsolved problems in mathematics)
geometry
Leo Moser
area
plane curve
rotated and translated
convex
circular disk
rhombus
convex
Blaschke selection theorem
Gerriets & Poole (1974)
polygonal chain
Panraksa, Wetzel & Wichiramala (2007)
Norwood & Poole (2003)
Gerriets & Poole (1974)
Norwood, Poole & Laidacker (1992)
Wang (2006)
Khandhawit, Pagonakis & Sriswasdi (2013)
circular sector
Movshovich & Wetzel (2017)
Panraksa & Wichiramala (2021)
Moving sofa problem
Kakeya set
Lebesgue's universal covering problem
Bellman's lost in a forest problem
Gerriets & Poole (1974)
Norwood, Poole & Laidacker (1992)
The American Mathematical Monthly
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.