Knowledge (XXG)

Néron–Severi group

Source 📝

545: 388: 755: 237: 641: 1029: 399: 776:
Complex tori are special because they have multiple equivalent definitions of the Neron-Severi group. One definition uses its complex structure for the definition. For a complex torus
1057: 808: 1077: 868: 938: 1173:
La base per le varietà algebriche di dimensione qualunque contenute in una data e la teoria generale delle corrispondénze fra i punti di due superficie algebriche
311: 891: 652: 978: 958: 911: 848: 828: 143: 646:
and the Neron-Severi group can be identified with its image. Equivalently, by exactness, the Neron-Severi group is the kernel of the second arrow
262:). The elements of finite order are called Severi divisors, and form a finite group which is a birational invariant and whose order is called the 1117: 563: 986: 540:{\displaystyle \cdots \to H^{1}(V,{\mathcal {O}}_{V}^{*})\to H^{2}(V,2\pi i\mathbb {Z} )\to H^{2}(V,{\mathcal {O}}_{V})\to \cdots .} 120: 283: 1151: 275: 1188: 1146: 303: 33: 1159:
Problèmes arithmétiques et géometriques attachée à la notion de rang d'une courbe algébrique dans un corps
286:, the classification becomes amenable to discrete invariants. Algebraic equivalence is closely related to 1141: 287: 271: 29: 291: 1037: 779: 17: 1123: 1113: 1062: 853: 551: 49: 25: 761: 383:{\displaystyle 0\to 2\pi i\mathbb {Z} \to {\mathcal {O}}_{V}\to {\mathcal {O}}_{V}^{*}\to 0} 243: 61: 45: 916: 750:{\displaystyle \exp ^{*}\colon H^{2}(V,2\pi i\mathbb {Z} )\to H^{2}(V,{\mathcal {O}}_{V}).} 76: 72: 68: 873: 232:{\displaystyle 1\to \mathrm {Pic} ^{0}(V)\to \mathrm {Pic} (V)\to \mathrm {NS} (V)\to 0} 963: 943: 940:
makes it possible to identify the Neron-Severi group with the group of Hermitian forms
896: 833: 813: 760:
In the complex case, the Neron-Severi group is therefore the group of 2-cocycles whose
135: 124: 1182: 1088: 41: 37: 765: 555: 131: 1112:(Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. 1127: 282:; that is, using a stronger, non-linear equivalence relation in place of 636:{\displaystyle c_{1}\colon \mathrm {Pic} (V)\to H^{2}(V,\mathbb {Z} ),} 60:
In the cases of most importance to classical algebraic geometry, for a
1166:
La théorie de la base pour les diviseurs sur les variétés algébriques
1024:{\displaystyle {\text{Im}}H(\Lambda ,\Lambda )\subseteq \mathbb {Z} } 123:
by the Néron–Severi theorem, which was proved by Severi over the
1168:, Coll. Géom. Alg. Liège, G. Thone (1952) pp. 119–126 730: 514: 431: 358: 341: 1161:
Bull. Soc. Math. France, 80 (1952) pp. 101–166
1065: 1040: 989: 966: 946: 919: 899: 876: 856: 836: 816: 782: 764:
is represented by a complex hypersurface, that is, a
655: 566: 402: 314: 146: 1071: 1051: 1023: 972: 952: 932: 905: 885: 862: 842: 822: 802: 749: 635: 539: 382: 231: 298:First Chern class and integral valued 2-cocycles 1059:is an alternating integral form on the lattice 393:gives rise to a long exact sequence featuring 290:, an essentially topological classification by 1175:Mem. Accad. Ital., 5 (1934) pp. 239–283 1108:Birkenhake, Christina; Herbert Lange (2004). 8: 1064: 1041: 1039: 1017: 1016: 990: 988: 965: 945: 924: 918: 898: 875: 855: 835: 815: 792: 781: 735: 729: 728: 712: 698: 697: 673: 660: 654: 623: 622: 607: 580: 571: 565: 519: 513: 512: 496: 482: 481: 457: 441: 436: 430: 429: 413: 401: 368: 363: 357: 356: 346: 340: 339: 331: 330: 313: 206: 183: 165: 154: 145: 1100: 830:is a complex vector space of dimension 127:and by Néron over more general fields. 40:of a variety. Its rank is called the 7: 242:The fact that the rank is finite is 32:; in other words it is the group of 1066: 1007: 1001: 857: 797: 587: 584: 581: 210: 207: 190: 187: 184: 161: 158: 155: 14: 28:is the group of divisors modulo 121:finitely-generated abelian group 1010: 998: 741: 718: 705: 702: 679: 627: 613: 600: 597: 591: 528: 525: 502: 489: 486: 463: 450: 447: 419: 406: 374: 352: 335: 318: 284:linear equivalence of divisors 223: 220: 214: 203: 200: 194: 180: 177: 171: 150: 1: 1052:{\displaystyle {\text{Im}}H} 803:{\displaystyle X=V/\Lambda } 1147:Encyclopedia of Mathematics 75:of the Picard scheme is an 1205: 304:exponential sheaf sequence 1140:V.A. Iskovskikh (2001) , 1110:Complex Abelian Varieties 1072:{\displaystyle \Lambda } 913:, the first Chern class 863:{\displaystyle \Lambda } 550:The first arrow is the 107:is an abelian group NS( 1073: 1053: 1032: 1025: 974: 954: 934: 907: 887: 864: 844: 824: 804: 751: 637: 541: 384: 233: 1074: 1054: 1026: 982: 975: 955: 935: 933:{\displaystyle c_{1}} 908: 888: 870:is a lattice of rank 865: 845: 825: 805: 752: 638: 542: 385: 288:numerical equivalence 272:algebraic equivalence 234: 44:. It is named after 30:algebraic equivalence 1142:"Néron–Severi group" 1063: 1038: 987: 964: 944: 917: 897: 874: 854: 834: 814: 780: 653: 564: 400: 312: 292:intersection numbers 144: 130:In other words, the 446: 373: 266:. Geometrically NS( 248:theorem of the base 73:connected component 1189:Algebraic geometry 1069: 1049: 1021: 970: 950: 930: 903: 886:{\displaystyle 2n} 883: 860: 840: 820: 800: 747: 633: 537: 428: 380: 355: 258:, often denoted ρ( 250:; the rank is the 229: 113:Néron–Severi group 22:Néron–Severi group 18:algebraic geometry 1119:978-3-662-06307-1 1044: 993: 973:{\displaystyle V} 953:{\displaystyle H} 906:{\displaystyle V} 843:{\displaystyle n} 823:{\displaystyle V} 552:first Chern class 1196: 1154: 1132: 1131: 1105: 1078: 1076: 1075: 1070: 1058: 1056: 1055: 1050: 1045: 1042: 1030: 1028: 1027: 1022: 1020: 994: 991: 979: 977: 976: 971: 959: 957: 956: 951: 939: 937: 936: 931: 929: 928: 912: 910: 909: 904: 892: 890: 889: 884: 869: 867: 866: 861: 849: 847: 846: 841: 829: 827: 826: 821: 809: 807: 806: 801: 796: 772:For complex tori 756: 754: 753: 748: 740: 739: 734: 733: 717: 716: 701: 678: 677: 665: 664: 642: 640: 639: 634: 626: 612: 611: 590: 576: 575: 546: 544: 543: 538: 524: 523: 518: 517: 501: 500: 485: 462: 461: 445: 440: 435: 434: 418: 417: 389: 387: 386: 381: 372: 367: 362: 361: 351: 350: 345: 344: 334: 270:) describes the 244:Francesco Severi 238: 236: 235: 230: 213: 193: 170: 169: 164: 62:complete variety 46:Francesco Severi 1204: 1203: 1199: 1198: 1197: 1195: 1194: 1193: 1179: 1178: 1139: 1136: 1135: 1120: 1107: 1106: 1102: 1097: 1085: 1061: 1060: 1036: 1035: 985: 984: 962: 961: 942: 941: 920: 915: 914: 895: 894: 872: 871: 852: 851: 832: 831: 812: 811: 778: 777: 774: 727: 708: 669: 656: 651: 650: 603: 567: 562: 561: 511: 492: 453: 409: 398: 397: 338: 310: 309: 300: 153: 142: 141: 125:complex numbers 77:abelian variety 58: 12: 11: 5: 1202: 1200: 1192: 1191: 1181: 1180: 1177: 1176: 1169: 1162: 1155: 1134: 1133: 1118: 1099: 1098: 1096: 1093: 1092: 1091: 1084: 1081: 1068: 1048: 1019: 1015: 1012: 1009: 1006: 1003: 1000: 997: 969: 949: 927: 923: 902: 882: 879: 859: 839: 819: 799: 795: 791: 788: 785: 773: 770: 758: 757: 746: 743: 738: 732: 726: 723: 720: 715: 711: 707: 704: 700: 696: 693: 690: 687: 684: 681: 676: 672: 668: 663: 659: 644: 643: 632: 629: 625: 621: 618: 615: 610: 606: 602: 599: 596: 593: 589: 586: 583: 579: 574: 570: 548: 547: 536: 533: 530: 527: 522: 516: 510: 507: 504: 499: 495: 491: 488: 484: 480: 477: 474: 471: 468: 465: 460: 456: 452: 449: 444: 439: 433: 427: 424: 421: 416: 412: 408: 405: 391: 390: 379: 376: 371: 366: 360: 354: 349: 343: 337: 333: 329: 326: 323: 320: 317: 299: 296: 240: 239: 228: 225: 222: 219: 216: 212: 209: 205: 202: 199: 196: 192: 189: 186: 182: 179: 176: 173: 168: 163: 160: 157: 152: 149: 136:exact sequence 111:), called the 105: 104: 89: 88: 57: 54: 13: 10: 9: 6: 4: 3: 2: 1201: 1190: 1187: 1186: 1184: 1174: 1171:F. Severi, 1170: 1167: 1163: 1160: 1156: 1153: 1149: 1148: 1143: 1138: 1137: 1129: 1125: 1121: 1115: 1111: 1104: 1101: 1094: 1090: 1089:Complex torus 1087: 1086: 1082: 1080: 1046: 1031: 1013: 1004: 995: 981: 967: 947: 925: 921: 900: 893:embedding in 880: 877: 837: 817: 793: 789: 786: 783: 771: 769: 767: 763: 762:Poincaré dual 744: 736: 724: 721: 713: 709: 694: 691: 688: 685: 682: 674: 670: 666: 661: 657: 649: 648: 647: 630: 619: 616: 608: 604: 594: 577: 572: 568: 560: 559: 558: 557: 553: 534: 531: 520: 508: 505: 497: 493: 478: 475: 472: 469: 466: 458: 454: 442: 437: 425: 422: 414: 410: 403: 396: 395: 394: 377: 369: 364: 347: 327: 324: 321: 315: 308: 307: 306: 305: 297: 295: 293: 289: 285: 281: 277: 273: 269: 265: 264:Severi number 261: 257: 253: 252:Picard number 249: 245: 226: 217: 197: 174: 166: 147: 140: 139: 138: 137: 134:fits into an 133: 128: 126: 122: 118: 114: 110: 102: 98: 94: 93: 92: 91:The quotient 86: 82: 81: 80: 78: 74: 70: 66: 63: 55: 53: 51: 47: 43: 42:Picard number 39: 38:Picard scheme 35: 31: 27: 23: 19: 1172: 1165: 1164:A. Néron, 1158: 1157:A. Néron, 1145: 1109: 1103: 1033: 983: 775: 766:Weil divisor 759: 645: 556:Picard group 549: 392: 301: 279: 267: 263: 259: 255: 251: 247: 241: 132:Picard group 129: 119:. This is a 116: 112: 108: 106: 100: 96: 90: 84: 69:non-singular 64: 59: 21: 15: 274:classes of 50:André Néron 1095:References 1034:Note that 56:Definition 34:components 1152:EMS Press 1128:851380558 1067:Λ 1014:⊆ 1008:Λ 1002:Λ 980:such that 858:Λ 798:Λ 706:→ 692:π 667:: 662:∗ 601:→ 578:: 532:⋯ 529:→ 490:→ 476:π 451:→ 443:∗ 407:→ 404:⋯ 375:→ 370:∗ 353:→ 336:→ 325:π 319:→ 224:→ 204:→ 181:→ 151:→ 1183:Category 1083:See also 810:, where 276:divisors 79:written 67:that is 554:on the 36:of the 26:variety 1126:  1116:  99:)/Pic( 71:, the 20:, the 24:of a 1124:OCLC 1114:ISBN 850:and 302:The 95:Pic( 83:Pic( 48:and 960:on 658:exp 278:on 254:of 246:'s 115:of 16:In 1185:: 1150:, 1144:, 1122:. 1079:. 1043:Im 992:Im 768:. 294:. 87:). 52:. 1130:. 1047:H 1018:Z 1011:) 1005:, 999:( 996:H 968:V 948:H 926:1 922:c 901:V 881:n 878:2 838:n 818:V 794:/ 790:V 787:= 784:X 745:. 742:) 737:V 731:O 725:, 722:V 719:( 714:2 710:H 703:) 699:Z 695:i 689:2 686:, 683:V 680:( 675:2 671:H 631:, 628:) 624:Z 620:, 617:V 614:( 609:2 605:H 598:) 595:V 592:( 588:c 585:i 582:P 573:1 569:c 535:. 526:) 521:V 515:O 509:, 506:V 503:( 498:2 494:H 487:) 483:Z 479:i 473:2 470:, 467:V 464:( 459:2 455:H 448:) 438:V 432:O 426:, 423:V 420:( 415:1 411:H 378:0 365:V 359:O 348:V 342:O 332:Z 328:i 322:2 316:0 280:V 268:V 260:V 256:V 227:0 221:) 218:V 215:( 211:S 208:N 201:) 198:V 195:( 191:c 188:i 185:P 178:) 175:V 172:( 167:0 162:c 159:i 156:P 148:1 117:V 109:V 103:) 101:V 97:V 85:V 65:V

Index

algebraic geometry
variety
algebraic equivalence
components
Picard scheme
Picard number
Francesco Severi
André Néron
complete variety
non-singular
connected component
abelian variety
finitely-generated abelian group
complex numbers
Picard group
exact sequence
Francesco Severi
algebraic equivalence
divisors
linear equivalence of divisors
numerical equivalence
intersection numbers
exponential sheaf sequence
first Chern class
Picard group
Poincaré dual
Weil divisor
Complex torus
ISBN
978-3-662-06307-1

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.