Knowledge

North Atlantic Aerosols and Marine Ecosystems Study

Source đź“ť

929:. These are particles that provide the surfaces necessary for water vapor to condensate below supersaturation conditions. The freezing of organic matter in these aerosols promotes the formation of clouds in warmer and drier environments than where they would otherwise form, especially at high latitudes such as the North Atlantic Ocean. Organic matter in these aerosols help nucleation of water droplets at these regions, yet plenty of unknowns remain, such as what fraction contain ice-freezing organic materials, and from what biological sources. Nevertheless, the role of phytoplankton blooms as a source of enhanced ice nucleating particles has been confirmed in laboratory experiments, implying the important role of these aerosols in cloud radiative forcing. Primary marine aerosols created through bubble-bursting emission have been measured in the North Atlantic during spring 2008 by the International Chemistry Experiment in the Arctic Lower Troposphere (ICEALOT). This research cruise measured clean, or background, areas and found them to be mostly composed of primary marine aerosols containing hydroxyl (58% ±13) and alkene (21% ±9) functional groups, indicating the importance of chemical compounds in the air with biological origin. Nonetheless, the small temporal scale of these measurements, plus the inability to determine the exact source of these particles, justifies the scientific need for a better understanding of aerosols over this region. 1096:(DMSP) by phytoplankton. Another chemical compound, dimethyl sulfide (DMS), has been identified as a major volatile sulfur compound in most oceans. DMS concentrations in the world's seawater have been estimated to be, on average, on the order of 102.4 nanograms per liter (ng/L). Regional values of the North Atlantic are roughly 66.8 ng/L. These regional values vary seasonally and are influenced by the effects of continental aerosols. Nonetheless, DMS is one of the dominant sources of biogenic volatile sulfur compounds in the marine atmosphere. Since its conceptualization, several research studies have found empirical and circumstantial evidence supporting the CLAW hypothesis in mid-latitudes of the Atlantic Ocean. The NAAMES campaign sought to provide an empirical understanding of the effects of marine bioaerosols on cloud formation and global radiation balance by quantifying the mechanisms underlying the CLAW hypothesis. 880:(or soot). The second mechanism by which aerosols alter the planet's temperature is called the indirect effect, which occurs when a cloud's microphysical properties are altered causing either an increase in reflection of incoming solar radiation, or an inhibited ability of clouds to develop precipitation. The first indirect effect is an increase in the amount of water droplets, which leads to an increase in clouds that reflect more solar radiation and therefore cool the planet's surface. The second indirect effect (also called the cloud's lifetime effect) is the increase in droplet numbers, which simultaneously causes an increase in droplet size, and therefore less potential for precipitation. That is, smaller droplets mean clouds live longer and retain higher liquid water content, which is associated with lower precipitation rates and higher cloud 868: 1116:, and other biological components are released by phytoplankton and bacteria. They are concentrated into nano-sized gels on the surface of the oceans. Specifically, such compounds are concentrated in the sea surface micro-layer (SML), the uppermost film of water in the ocean. The SML is considered a "skin" within the top 1 millimeter of water where the exchange of matter and energy occurs between the sea and atmosphere. The biological, chemical, and physical processes occurring here may be some of the most important anywhere on Earth, and this thin layer experiences the first exposure to climatic changes such as heat, trace gases, winds, precipitation, and also wastes such as nanomaterials and plastics. The SML also has important roles in air-sea gas exchange and the production of primary organic aerosols. 1426:
period. The biogenic origin was the production of dimethyl sulfide (DMS) by phytoplankton, which then act as cloud condensation nuclei (CCN) and affect cloud formation. This study classified the sulfates as "New Sulfate", formed by nucleation in the atmosphere; and "Added Sulfate", which were existing aerosols in the atmosphere where sulfate was incorporated. During the November 2015 cruise (Campaign 1), primary sea salt was the main mechanism (55%) for CCN budget. However, during the spring bloom in May–June 2016 (Campaign 2) Added Sulfate accounted for 32% of CCN while sea-salt accounted for 4%. These empirical measurements by seasonality will help improve the accuracy of climate models that simulate warming or cooling effects of marine bioaerosols.
941:
biologic materials, including bacteria, archaea, algae, and fungi, and have been estimated to comprise as much as 25% of global total aerosol mass. Dispersal of these PBAPs occur via direct emission into the atmosphere through fungi spores, pollen, viruses, and biological fragments. Ambient concentrations and sizes of these particles vary by location and seasonality, but of relevance to NAAMES are the transient sizes of fungi spores (0.05 to 0.15 ÎĽm in diameter) and larger sizes (0.1 to 4 ÎĽm) for bacteria. Marine organic aerosols (OA) have been estimated through their correlation to chlorophyll pigments to vary in magnitude between 2-100 Tg per year. However, recent studies of OA are correlated with
1418: 1257:, conducted 10-hour flights in a “Z-pattern” above the study area. Flights took place at both high-altitudes and low-altitudes to measure aerosol heights and aerosol/ecosystem spatial features.  High-altitude flights collected data on above-cloud aerosols and atmospheric measurements of background aerosols in the troposphere. Once above the ship, the airplane underwent spiral descents to low-altitude to acquire data on the vertical structure of aerosols. These low-altitude flights sampled aerosols within the marine boundary layer. Cloud sampling measured in-cloud droplet number, density, and size measurements. 829:
characterized by both the natural terrestrial and anthropogenic inputs. Relevant to NAAMES are the emissions from industry and urban environments in eastern North America, which emit substantial quantities of sulfates, black carbon, and aromatic compounds. Such substances can be transported hundreds of kilometers over the sea. This contribution of continental influences may create a false positive signal in the biological fluorescence signals being measured and could affect cloud microphysical properties in the open North Atlantic Ocean. Furthermore, aerosols such as
715:
the rate of the addition of water equals the rate of growth. The deepening of the surface mixed layer dilutes the predator-prey interactions and decouples growth and grazing. When the mixed layer stops deepening, the increase in growth rate becomes apparent, but now growth and grazing become coupled again. The shoaling of the mixed layer concentrates predators, thereby increasing grazing pressure. However, the increase in light availability counters grazing pressure, which allows growth rates to remain high. In late spring, when the mixed layer is even more shallow,
816:. This generally occurs closer to the surface in the absence of turbulence and vertical mixing, and is determined through the interpretation of vertical humidity and temperature profiles. The MBL is often a localized and temporally dynamic phenomenon, and therefore its height into the air column can vary considerably from one region to another, or even across the span of a few days. The North Atlantic is a region where diverse and well-formed MBL clouds are commonly formed, and where MBL layer height can be between 2.0-and 0.1 km in height 1089:. A percentage of these aerosols are assimilated into clouds, which then can generate a negative feedback loop by reflecting solar radiation. The ecosystem-based hypothesis of phytoplankton bloom cycles (explored by NAAMES) suggests that a warming ocean would lead to a decrease in phytoplankton productivity. Decreased phytoplankton would cause a decrease in aerosol availability, which may lead to fewer clouds. This would result in a positive feedback loop, where warmer oceans lead to fewer clouds, which allows for more warming. 88: 1057: 900: 762:(e.g. temperature, density, salinity, and other ocean dynamic properties) when they separate. As the eddies migrate, their physical properties change as they mix with the surrounding water. In the Gulf Stream, migrating eddies are known as anticyclonic or cyclonic eddies based on the direction in which they spin (clockwise vs. counter-clockwise). The two eddies differ in motion, physical properties, and, consequently, their effects on biology and chemistry of the ocean. 843: 1039:(IPCC), forecasted an increase in global surface ocean temperatures by +1.3 to +2.8 degrees Celsius over the next century, which will cause spatial and seasonal shifts in North Atlantic phytoplankton blooms.  Changes in community dynamics will greatly affect the bioaerosols available for cloud condensation nuclei. Therefore, cloud formation in the North Atlantic is sensitive to bioaerosol availability, particle size, and chemical composition. 51:, clouds, and climate. The study focused on the sub-arctic region of the North Atlantic Ocean, which is the site of one of Earth's largest recurring phytoplankton blooms. The long history of research in this location, as well as relative ease of accessibility, made the North Atlantic an ideal location to test prevailing scientific hypotheses in an effort to better understand the role of phytoplankton aerosol emissions on Earth's energy budget. 1124:
However, predicting aerosol quantity, size distribution, and composition through water samples are currently problematic. Investigators suggest that future measurements focus on comparing fluorescence detection techniques that are able to detect proteins in aerosols. NAAMES filled this research gap by providing a fluorescent-based instrument (See section on Atmospheric Instruments below), both in the air column and near the sea's surface.
896:. This process is sometimes also called sedimentation. However, different types of biogenic organic aerosols exhibit different microphysical properties, and therefore their removal mechanisms from the air will depend on humidity. Without a better understanding of aerosol sizes and composition in the North Atlantic Ocean, climate models have limited ability to predict the magnitude of the cooling effect of aerosols in global climate. 812:
of air) above the ocean surface, which perturbs the direction of the mean surface wind and generates texture, roughness, and waves on the sea's surface. Two types of boundary layers exist. One is a stable, convective layer found between the lower 100m of the atmosphere extending up to approximately 3 km in height, and is referred to as the convective boundary layer (CBL). The other boundary layer forms as a result of a surface
571: 1314: 626: 864:
the atmosphere (primary) or whether they have reacted and changed in composition (secondary) after being emitted from their source. Aerosols emitted from the marine environment are one of the largest components of primary natural aerosols. Marine primary aerosols interact with anthropogenic pollution, and through these reactions produce other secondary aerosols.
28: 1461:
scientists tested new approaches to measuring cloud droplet size, and found that using a research scanning polarimeter correlated well with direct cloud droplet probe measurements and high-spectral resolution LIDAR. Their findings suggest that polarimetric droplet size retrieval may be an accurate and useful tool to measure global cloud droplet size.
1322:
these instruments, particles are collected on a filter and light transmission through the filter is monitored continuously.  This method is based on the integrating plate technique, in which the change in optical transmission of a filter caused by particle deposition is related to the light absorption coefficient of the deposited particles using
918:
breaking waves, which then rise to the atmosphere and burst into hundreds of ultra-fine droplets ranging from 0.1-1.0 ÎĽm in diameter. Sea-spray aerosols are mostly composed of inorganic salts, such as sodium and chloride. However, these bubbles sometimes carry organic material found in seawater, forming secondary organic compounds (SOAs) such as
1053:
as much as 63% of the aerosol mass in the atmosphere, while during winter periods of low biological activity it only accounted for 15% of the aerosol mass. Those data provided early empirical evidence of this emission phenomena, while also showing that organic matter from ocean biota can enhance cloud droplet concentrations by as much as 100%.
1447:, which is an important metric of biogeochemistry and ecosystem dynamics. By coupling a submersible laser diffraction particle sizer with a continuously flowing seawater system, scientists were able to accurately measure particle size distribution just as well as more established (but more time- and effort-intensive) methods such as 55:
and increasing intermediary biomass. The campaigns were designed to observe each unique phase, in order to resolve the scientific debates on the timing of bloom formations and the patterns driving annual bloom re-creation. The NAAMES project also investigated the quantity, size, and composition of aerosols generated by
1170: 1229:, to embark on 26-day cruises covering 4700 nautical miles. The ship first sailed to 40W. It then moved due north from 40N to 55N latitude along the 40W longitude parallel. This intensive south-north transect involved multiple stationary measurements. The ship then returned to port in Woods Hole. 1293:
were deployed to collect physical properties and bio-optical measurements. Argo floats are a battery-powered instrument that uses hydraulics to control its buoyancy to descend-and-ascend in the water. The Argo floats collect both the biological and physical properties of the ocean. The data collected
940:
are particles composed of living and non-living components released from terrestrial and marine ecosystems into the atmosphere. These can be forest, grasslands, agricultural crops, or even marine primary producers, such as phytoplankton. Primary biological aerosol particles (PBAPs) contain a range of
811:
The marine boundary layer (MBL) is the part of the atmosphere in direct contact with the ocean surface. The MBL is influenced by the exchange of heat, moisture, gases, particulates, and momentum, primarily via turbulence. The MBL is characterized by the formation of convective cells (or vertical flow
1353:
Some results stemming from NAAMES research include scientific articles on aerosols and cloud condensation nuclei, phytoplankton annual cycles, phytoplankton physiology, and mesoscale biology. There have also been publications on improved methodologies including new remote sensing algorithms and
1245:
Airplane-based measurements were designed to run at precisely the same time as the research vessel cruises so that scientists could link ocean-level processes with those in the lower atmosphere. Satellite data were also synthesized to create a more complete understanding of plankton and aerosol
1232:
Underway sampling (i.e., while the ship was moving) occurred along the entire cruise using the ship’s flow-through seawater analysis system. Then, once it reached the beginning of the triangular transect area, the ship stopped twice a day at dawn and noon for stationary measurements to collect water
863:
from the natural combustion of biomass, such as wildfires. Anthropogenic aerosols are those that have been emitted from human actions, such as fossil fuel burning or industrial emissions. Aerosols are classified as either primary or secondary depending on whether they have been directly emitted into
54:
NAAMES was led by scientists from Oregon State University and the National Aeronautics and Space Administration (NASA). They conducted four field campaigns from 2015-2018 that were designed to target specific phases of the annual phytoplankton cycle: minimum, climax, intermediary decreasing biomass,
1442:
provides relatively precise determination of phytoplankton net primary productivity, growth rate, and biomass. Both laboratory and field tests validated this approach, which does not require traditional carbon-14 isotope incubation techniques. Other NAAMES investigators employed new techniques to
1155:
The effects of aerosols on clouds is an understudied topic despite the major implications it could have for predicting future climate change. This objective addressed this gap by using combined measurement methods to understand the contribution of various aerosols to cloud formation produced during
1137:
To accomplish this objective, a combination of ship-based, airborne, and remote sensing measurements was used.  NAAMES conducted multiple campaigns that occurred during the various phases of the cycle in order to capture the important transitory features of the annual bloom for a comprehensive
1052:
and related chemical species emitted from phytoplankton. For example, in the eastern North Atlantic during the spring 2002 bloom, high phytoplankton activity was marked more by organic carbon (both soluble and insoluble species) than by sea-salts. The organic fraction from phytoplankton contributed
828:
in the middle latitudes (between 35 and 65 degrees latitude), which blow in regions north or southward of the high-pressure sub-tropical regions of the world. Consequently, aerosols sampled over the North Atlantic Ocean will be influenced by air masses originating in North America, and therefore be
793:
and model simulations created through satellite data have shown cases of the opposite phenomena. The deepening and shoaling of MLD via eddies is ubiquitous and varies seasonally. Such anomalies are most significant in the winter. Thus, the role of meso-scale eddies in MLD is complex, and a function
714:
This ecosystem-based view is based upon a dilution experiment where the addition of seawater dilutes predators but does not change the growth of phytoplankton. Thus, growth rates increase with dilution. Although the dilution effect is transient, predator-prey interactions can be maintained if
2496:
Alexandrov, Mikhail D.; Cairns, Brian; Sinclair, Kenneth; Wasilewski, Andrzej P.; Ziemba, Luke; Crosbie, Ewan; Moore, Richard; Hair, John; Scarino, Amy Jo; Hu, Yongxiang; Stamnes, Snorre (2018). "Retrievals of cloud droplet size from the research scanning polarimeter data: Validation using in situ
1473:
in oceanography. For example, Behrenfeld et al. (2017) showed that space-based LIDAR could capture annual cycles of phytoplankton dynamics in regions poleward of 45 latitude. Using these new techniques, they found that Antarctic phytoplankton biomass mainly changes due to ice cover, while in the
1460:
Advances in remote sensing algorithms were also developed during the NAAMES expeditions. Zhang et al. provided atmospheric corrections for the hyperspectral geostationary coastal and air pollution events airborne simulator (GCAS) instrument using both vicarious and cloud shadow approaches. Other
1178:
Four field campaigns were conducted to target the four specific changes during the annual plankton cycle. The four NAAMES field campaigns synchronized data collections from the ship, air, and satellites, and were strategically timed to capture the four unique phases of plankton blooms in the
917:
aerosols (SSA) constitute one of the major sources of primary aerosols, especially from moderate and strong winds. The estimated global emission of pure sea-salt aerosols are on the order of 2,000-10,000 Tg per year. The mechanism by which this occurs starts with the generation of air bubbles in
875:
One of the most significant yet uncertain components of predictive climate change models is the impact of aerosols on the climate system. Aerosols affect Earth's radiation balance directly and indirectly. The direct effect occurs when aerosol particles scatter, absorb, or exhibit a combination of
659:
is a resource-based view of the North Atlantic annual phytoplankton blooms. It is the traditional explanation for the cause of spring blooms and has been documented as a foundational concept in oceanography textbooks for over 50 years.  It focuses on the environmental conditions necessary to
1451:
and flow-cytobot. In addition to new oceanographic techniques, the NAAMES team also developed a novel method of collecting cloud water. An aircraft-mounted probe used inertial separation to collect cloud droplets from the atmosphere. Their axial cyclone technique was reported to collect cloud
1321:
Total light scattering by aerosol particles can be measured with a nephelometer. In contrast, aerosol light absorption can be measured using several types of instruments, such as the Particle Soot/Absorption Photometer (PSAP) and the Continuous Light Absorption Photometer (CLAP). In both of
710:
The dilution-recoupling hypothesis is an ecosystem-based view of the North Atlantic annual phytoplankton bloom. This hypothesis focuses on the physical processes that alter the balance between growth and grazing.  The spring bloom is considered to be one feature of an annual cycle, and
1425:
A clear seasonal difference in the quantity of biogenic sulfate aerosols was discovered in the North Atlantic as a result of the NAAMES campaign. These aerosols were traced to two different biogenic origins, both of them marine due to the lack of continental air mass influences during the study
1123:
and a protein are easily aerosolized in surface ocean waters, and scientists were able to quantify the amount and size resolution of the primary sea to air transport of biogenic material. These materials are small enough (0.2ÎĽm) to be largely emitted from phytoplankton and other microorganisms.
750:
play a significant role in modulating the Mixed Layer Depth (MLD). Fluctuations created by mesoscale eddies modulate nutrients in the base of the mixed layer. These modulations, along with light availability, drive the abundance of phytoplankton in the region. The availability of phytoplankton
690:
may increase stratification or decrease mixed layer depth during the winter, which would enhance the vernal bloom or increase phytoplankton biomass if this hypothesis governed spring phytoplankton bloom dynamics. A primary criticism of this resource-based view is that spring blooms occur in the
67:
The findings from NAAMES, while still forthcoming, have shed light on aerosols and cloud condensation nuclei, phytoplankton annual cycles, phytoplankton physiology, and mesoscale biology.  Several methodological advances have also been published, including new remote sensing algorithms and
3444:
Committee on Opportunities to Improve the Representation of Clouds and Aerosols in Climate Models with National Collection Systems: A Workshop; Board on Atmospheric Sciences and Climate; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine (2016-08-31).
2555:
Behrenfeld, Michael J.; Hu, Yongxiang; O’Malley, Robert T.; Boss, Emmanuel S.; Hostetler, Chris A.; Siegel, David A.; Sarmiento, Jorge L.; Schulien, Jennifer; Hair, Johnathan W.; Lu, Xiaomei; Rodier, Sharon (2017). "Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based
1366:
are controlled by predator-prey interactions and changes in mixed layer conditions such as temperature, light, and nutrients. Understanding the relative importance of these various factors at different stages of the seasonal cycle allows for better predictions of future ocean changes. One
1306:
Instruments used to characterize processes in the atmosphere can be divided into those that measure gas composition, and those that measure the composition of optical properties. Generally, aerosol sampling instruments are categorized by their ability to measure optical, physical, or chemical
1383:
Understanding taxonomic differences in photoacclimation and general phytoplankton community photoacclimation strategies is important for constructing models that rely on light as a major factor controlling bloom dynamics.  Furthermore, a better understanding of phytoplankton light-driven
833:
mixed with carbon dioxide and other greenhouse gases are emitted through the impartial combustion of fossil fuels from ship engines. These unburned hydrocarbons are present in the marine boundary layer of the North Atlantic and most other remote oceanic regions. As these particles age or are
769:
combined with high velocity currents drive eddy motion. This motion creates a 'bulge,' i.e., high sea surface height (SSH) in the center of the Anticyclonic eddies. In contrast, cyclonic eddies exhibit a low SSH in the center. The SSH in both anticyclonic and cyclonic decreases and increases,
1236:
Scientists also used autonomous ARGO floats at three locations during each cruise. These autonomous floating instruments measured parameters such as chlorophyll (a measure of phytoplankton abundance), light intensity, temperature, water density, and suspended particulates. A total of 12
4477:
Backer, Lorraine C.; McNeel, Sandra V.; Barber, Terry; Kirkpatrick, Barbara; Williams, Christopher; Irvin, Mitch; Zhou, Yue; Johnson, Trisha B.; Nierenberg, Kate; Aubel, Mark; LePrell, Rebecca (2010-05-01). "Recreational exposure to microcystins during algal blooms in two California lakes".
785:
Previous studies show the deepening effects of MLD under anticyclonic eddies and shoaling of MLD in cyclonic eddies. These phenomena may be due to increased heat loss to the atmosphere in anticyclonic eddies. This loss of heat causes the sinking of dense water, referred to as convective
4425:
Caller, Tracie A.; Doolin, James W.; Haney, James F.; Murby, Amanda J.; West, Katherine G.; Farrar, Hannah E.; Ball, Andrea; Harris, Brent T.; Stommel, Elijah W. (2009-01-01). "A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms".
961:. Cyanobacteria are known to produce toxins that can be aerosolized, which when inhaled by humans can affect the nervous and liver systems.  For example, Caller et al. (2009) suggested that bioaerosls from cyanobacteria blooms could play a role in high incidences of 876:
these two optical properties when interacting with incoming solar and infrared radiation in the atmosphere. Aerosols that typically scatter light include sulfates, nitrates, and some organic particles, while those that tend to exhibit a net absorption include mineral dust and
1388:
can assist with better readings of satellite data on chlorophyll concentrations and sea surface temperature. A NAAMES study determined the photoacclimation responses of multiple taxonomic groups during a 4-day storm event that caused deep mixing and re-stratification in the
680:.  When the surface mixed layer becomes shallower than the critical depth, initiation of the seasonal bloom occurs due to phytoplankton growth exceeding loss. There is a correlation of phytoplankton growth with springtime increases of light, temperature, and shallower 1474:
arctic the changes in phytoplankton are driven mainly by ecological processes. In another paper, the team described new advances in satellite LIDAR techniques, and argued that a new era of space-based LIDAR has the potential to revolutionize oceanographic remote sensing.
887:
Fine particles are generally those below 2 micrometers (ÎĽm) in diameter. Within this category, the range of particles that accumulate in the atmosphere (due to low volatility or condensation growth of nuclei) are from 0.1-1 ÎĽm, and are usually removed from the air through
1482:
NAAMES provided groundbreaking data on aerosols and their relationship to numerous ecosystems and oceanographic parameters. Their discoveries and methodologic innovations can be employed by modelers to determine how future oceanic ecosystem changes could affect climate.
945:
production and to a lesser extent chlorophyll, suggesting that organic material in sea salt aerosols are connected to biological activity in the sea's surface. The mechanisms contributing to marine organic aerosols thus remain unclear, and were a main focus of NAAMES.
1197: 1173:
Schematic of the diverse sampling strategies for NAAMES research campaigns, including satellite sensors, vessel measurements and deployments and aircraft remote sensing. It also depicts key processes, such as phytoplankton booms and aerosol emission and
858:
are very small, solid particles or liquid droplets suspended in the atmosphere or inside another gas and are formed through natural processes or by human actions. Natural aerosols include volcanic ash, biological particles, and mineral dust, as well as
903:
Contribution of aerosols and gases in the atmosphere of to the Earth's radiative forcing. This is Figure 8.17 of  Working Group 1 Firth Assessment (AR5) report by the Intergovernmental Panel on Climate Change (IPCC) Note the net cooling effect of
4660:
Gallitelli, Mauro; Ungaro, Nicola; Addante, Luigi Mario; Procacci, Vito; Silveri, Nicolò Gentiloni; Silver, Nicolò Gentiloni; Sabbà, Carlo (2005-06-01). "Respiratory illness as a reaction to tropical algal blooms occurring in a temperate climate".
1830:
Behrenfeld, Michael J.; O’Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B. (2016). "Revaluating ocean warming impacts on global phytoplankton".
789:, and the deepening of the MLD. In contrast, in cyclonic eddies the water temperature at the core is less cold than the Anticyclonic eddy. This therefore does not lead to deepening of the MLD. Studies conducted in the region via a network of 3952:
O'Dowd, Colin D.; Facchini, Maria Cristina; Cavalli, Fabrizia; Ceburnis, Darius; Mircea, Mihaela; Decesari, Stefano; Fuzzi, Sandro; Yoon, Young Jun; Putaud, Jean-Philippe (2004). "Biogenically driven organic contribution to marine aerosol".
59:
in order to understand how bloom cycles affect cloud formations and climate. Scientists employed multiple complementary research methods, including intensive field sampling via research ships, airborne aerosol sampling via airplane, and
5350:
Zhang, Minwei; Hu, Chuanmin; Kowalewski, Matthew G.; Janz, Scott J.; Lee, Zhongping; Wei, Jianwei (2017-01-23). "Atmospheric correction of hyperspectral airborne GCAS measurements over the Louisiana Shelf using a cloud shadow approach".
1146:
This objective seeks to reconcile the competing resource-based and ecosystem-based hypotheses.  NAAMES goal was to provide the mechanistic field studies necessary to understand a more holistic view of the annual bloom cycle.
1034:
In addition to sea-spray aerosols (see section above), biogenic aerosols produced by phytoplankton are also important source of small (typically 0.2 ÎĽm) cloud condensation nuclei (CCN) particles suspended in the atmosphere. The
1047:
Marine aerosols contribute significantly to global aerosols. Traditionally, biogeochemical cycling and climate modeling have focused on sea-salt aerosols, with less attention on biogenically-derived aerosol particles such as
1495:(DAACs).  Data for each cruise campaign were stored as separate projects and each campaign’s information was publicly released within 1 year of measurement collection. Ship-based information can be viewed through the 884:. This highlights the importance of aerosol size as one of the primary determinants of aerosol quantity in the atmosphere, how aerosols are removed from the atmosphere, and the implications of these processes in climate. 2297:
Crosbie, Ewan; Brown, Matthew D.; Shook, Michael; Ziemba, Luke; Moore, Richard H.; Shingler, Taylor; Winstead, Edward; Thornhill, K. Lee; Robinson, Claire; MacDonald, Alexander B.; Dadashazar, Hossein (2018-09-05).
4917:
Andreae, Meinrat O.; Elbert, Wolfgang; de Mora, Stephen J. (1995). "Biogenic sulfur emissions and aerosols over the tropical South Atlantic: 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei".
1030:
genus is most frequently detected in marine fungi aerosols. Fungi bioaerosols can also serve as ice nuclei, and therefore also impact the radiative budget in remote ocean regions, such as the North Atlantic Ocean.
4078:
Kim, Hyunji; Duong, Hieu Van; Kim, Eunhee; Lee, Byeong-Gweon; Han, Seunghee (2014). "Effects of phytoplankton cell size and chloride concentration on the bioaccumulation of methylmercury in marine phytoplankton".
4704:
Kirkpatrick, Barbara; Pierce, Richard; Cheng, Yung Sung; Henry, Michael S.; Blum, Patricia; Osborn, Shannon; Nierenberg, Kate; Pederson, Bradley A.; Fleming, Lora E.; Reich, Andrew; Naar, Jerome (2010-02-01).
2183:"Novel incubation-free approaches to determine phytoplankton net primary productivity, growth, and biomass based on flow cytometry and quantification of ATP and NAD(H): New methods to assess NPP and growth" 725:
would increase stratification and suppress winter mixing that occurs with the deepening of the mixed layer. The suppression of winter mixing would decrease phytoplankton biomass under this hypothesis.
663:
The central argument for the critical depth hypothesis is that blooms are a consequence of increased phytoplankton growth rates resulting from shoaling of the mixed layer above the critical depth. The
949:
There is some evidence that marine bioaerosols containing cyanobacteria and microalgae may be harmful to human health. Phytoplankton can absorb and accumulate a variety of toxic substances, such as
2370:
Zhang, Minwei; Hu, Chuanmin; Kowalewski, Matthew G.; Janz, Scott J. (2018). "Atmospheric Correction of Hyperspectral GCAS Airborne Measurements Over the North Atlantic Ocean and Louisiana Shelf".
1401:
One of the most recent results of the NAAMES campaign includes a better understanding of how biology helps draw atmospheric carbon dioxide down into the water column. Specifically, the impact of
1767:
Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S. (2016).
3075:
Zheng, Guangjie; Wang, Yang; Aiken, Allison C.; Gallo, Francesca; Jensen, Michael P.; Kollias, Pavlos; Kuang, Chongai; Luke, Edward; Springston, Stephen; Uin, Janek; Wood, Robert (2018-12-12).
5285:
Sanchez, Kevin J.; Chen, Chia-Li; Russell, Lynn M.; Betha, Raghu; Liu, Jun; Price, Derek J.; Massoli, Paola; Ziemba, Luke D.; Crosbie, Ewan C.; Moore, Richard H.; MĂĽller, Markus (2018-02-19).
1013:, and cough. Importantly, marine toxic aerosols have been found as far as 4 km inland, but investigators recommend additional studies that trace the fate of bioaerosols further inland. 913:
Although the amount and composition of aerosol particles in the marine atmosphere originate both from continental and oceanic sources and can be transported great distances, freshly emitted
1328:
One of the instruments used to characterize the amount and composition of bioaerosols was the Wideband Integrated Bioaerosol Sensors (WIBS). This instrument uses ultraviolet light-induced
1375:. Losses through sinking during the winter were compensated by net growth of phytoplankton, and this net wintertime growth was most likely a function of reduced grazing due to dilution. 1218:
above the ocean surface. Water samples were also collected to describe the plankton community composition, rates of productivity and respiration, and physiologic stress.  
5083:
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael; Burrows, Susannah M.; Friedrichs, Gernot; Galgani, Luisa; Herrmann, Hartmut; Hertkorn, Norbert; Johnson, Martin; Liss, Peter S.;
1660:
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael; Burrows, Susannah M.; Friedrichs, Gernot; Galgani, Luisa; Herrmann, Hartmut; Hertkorn, Norbert; Johnson, Martin; Liss, Peter S.;
2426:"Property Analysis of the Real-Time Uncalibrated Phase Delay Product Generated by Regional Reference Stations and Its Influence on Precise Point Positioning Ambiguity Resolution" 867: 778:
processes in the eddies create a cold and warm core. Downwelling in the anticyclonic eddy prevents colder water from entering the surface, thus creating a warm-core in the center
892:. Wet deposition can be precipitation, snow or hail. On the other hand, coarse particles, such as old sea-spray and plant-derived particles, are removed from the atmosphere via 2903: 1563: 1310:
Two commonly measured optical parameters are absorption and scattering of light by aerosol particles. The absorption and scattering coefficients depend on aerosol quantity.
4312:
Wan, Yi; Jin, Xiaohui; Hu, Jianying; Jin, Fen (2007-05-01). "Trophic Dilution of Polycyclic Aromatic Hydrocarbons (PAHs) in a Marine Food Web from Bohai Bay, North China".
3740:; Collins, Douglas B.; Grassian, Vicki H.; Prather, Kimberly A.; Bates, Timothy S. (2015-04-06). "Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol". 1133:
Identify the different features of the annual cycle of phytoplankton blooms in the North Atlantic and determine the different physical processes affecting those features.
636:
NAAMES sought to better understand the impact of bioaerosol emissions on cloud dynamics and climate. It also aimed to test two competing hypotheses on plankton blooms:
4806: 3569: 3486: 3178:"Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer" 1434:
NAAMES scientists developed several novel measurement techniques during the project. For example, sorting flow cytometry combined with bioluminescent detection of
3447:
Opportunities to Improve Representation of Clouds and Aerosols in Climate Models with Classified Observing Systems: Proceedings of a Workshop: Abbreviated Version
1417: 4863:
Charlson, Robert J.; Lovelock, James E.; Andreae, Meinrat O.; Warren, Stephen G. (1987). "Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate".
3642:
Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.; Ma, J.; Song, M.; Partridge, D. G.; KirkevĂĄg, A.; Leong, Y.; Hu, W. W.; Taylor, N. F.; Lambe, A. (2017-05-21).
3129:"Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study" 1274: 2135:"Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data: SEAWIFS AND MODIS MESOSCALE VARIABILITY" 2061:
Gaube, Peter; Braun, Camrin D.; Lawson, Gareth L.; McGillicuddy, Dennis J.; Penna, Alice Della; Skomal, Gregory B.; Fischer, Chris; Thorrold, Simon R. (2018).
1393:
Atlantic ocean. There were significant differences in photoacclimation and biomass accumulation at various depths of light intensity during the storm event.
672:
growth equals phytoplankton biomass losses. In this hypothesis, losses are both constant and independent of growth. The decline in biomass may be due to
1340:(NADH). A lamp flashing the gas xenon is able to detect particle’s size and shape using high precision ultraviolet wavebands (280 nm and 370 nm). 1721:; Coffman, D. J.; Johnson, J. E.; Upchurch, L. M.; Bates, T. S. (2017). "Small fraction of marine cloud condensation nuclei made up of sea spray aerosol". 1317:
The Autonomous ARGOS floats collects Conductivity,Temperature, and Depth (CTD) measurements. It adjusts its hydraulics to ascend and descend in the water.
834:
chemically transformed as a function of time in the air, they may alter microphysical and chemical properties as they react with other airborne particles.
1020:
has been understood as the major contributor (72% in relative proportion to other phyla) to marine bioaerosols, at least in the Southern Ocean. Of these,
1077:
conceptualizes and tries to quantify the mechanisms by which phytoplankton can alter global cloud cover and provide planetary-scale radiation balance or
985:.  These microcystins have been found in aerosols by a number of investigators, and such aerosols have been implicated as causing isolated cases of 602: 2868:
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., & O’Neill, L. W. (2015). Satellite observations of mesoscale eddy-induced Ekman pumping.
2975:
Sikora, Todd D. (1999-09-30). "Testing the Diagnosis of Marine Atmospheric Boundary Layer Structure from Synthetic Aperture Radar". Fort Belvoir, VA.
1036: 1254: 4482:. Harmful Algal Blooms and Natural Toxins in Fresh and Marine Waters -- Exposure, occurrence, detection, toxicity, control, management and policy. 5170:
Ogren, John A. (2010-06-30). "Comment on "Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols"".
4521: 1555: 1769:"The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol" 4269:
Kirso, U.; Paalme, L.; Voll, M.; Urbas, E.; Irha, N. (1990-01-01). "Accumulation of carcinogenic hydrocarbons at the sediment-water interface".
1265:
Satellite measurements were used in near real-time to help guide ship movement and flight planning. Measurements included sea surface height,
3716: 2229:"Validation of the particle size distribution obtained with the laser in-situ scattering and transmission (LISST) meter in flow-through mode" 3028:"Impact of the marine atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and subtropical North Atlantic Ocean" 4603:
Cheng, Yung Sung; Villareal, Tracy A.; Zhou, Yue; Gao, Jun; Pierce, Richard H.; Wetzel, Dana; Naar, Jerome; Baden, Daniel G. (2005-01-01).
846:
Aerosol size distribution and their associated modes of accumulation or removal from the atmosphere. Original diagram by, and adapted by.
3709:
Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: The Physical Science Basis
1545: 5408: 1200:
Area of study for NAAMES depicting routes of research vessels and deployment of autonomous profiling floats. Image courtesy of NASA.
1142:
Understand how the different features of the North Atlantic annual phytoplankton cycle interact to “set the stage” for annual blooms.
5155: 3520: 3462: 3280: 3245: 1439: 1337: 994: 871:
Representation of the direct and first indirect effect of aerosols on the albedo of clouds and therefore Earth's radiative balance.
1069:
There is growing evidence describing how oceanic phytoplankton affect cloud albedo and climate through the biogeochemical cycle of
625: 2907: 1560: 1506:
NAAMES anticipates many additional publications to be released in the coming years from ongoing research and processing of data.
958: 630: 4964:
ANDREAE, M. O.; RAEMDONCK, H. (1983-08-19). "Dimethyl Sulfide in the Surface Ocean and the Marine Atmosphere: A Global View".
4765:
Fröhlich-Nowoisky, J., Burrows, S. M., Xie, Z., Engling, G., Solomon, P. A., Fraser, M. P., ... & Andreae, M. O. (2012).
595: 962: 458: 48: 5030:
Aller, Josephine Y.; Radway, JoAnn C.; Kilthau, Wendy P.; Bothe, Dylan W.; Wilson, Theodore W.; Vaillancourt, Robert D.;
3644:"Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate" 1615:
Behrenfeld, Michael J.; Moore, Richard H.; Hostetler, Chris A.; Graff, Jason; Gaube, Peter; Russell, Lynn M.; Chen, Gao;
87: 1883:; Bianucci, Laura; Rasch, Philip J.; Leung, L. Ruby; Yoon, Jin-Ho; Lima, Ivan D. (2018-01-25). Dias, JoĂŁo Miguel (ed.). 1119:
A study using water samples and ambient conditions from the North Atlantic Ocean found that a polysaccharide-containing
498: 3176:
Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E. (2008-05-06).
187: 2848:
Gaube, P., J. McGillicuddy Jr, D., & Moulin, A. J. (2019). Mesoscale eddies modulate mixed layer depth globally.
2604:
Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A. (2018-01-03).
5084: 5031: 4012: 3887: 3737: 1718: 1661: 1444: 1093: 549: 156: 2019:"Photoacclimation Responses in Subarctic Atlantic Phytoplankton Following a Natural Mixing-Restratification Event" 1151:
Determine how the different features of the annual phytoplankton cycle affect marine aerosols and cloud formation.
1226: 1215: 926: 588: 513: 3077:"Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes" 4820:
Andreae, M. O. (1997-05-16). "Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry".
4203:
Tiano, Marion; Tronczyński, Jacek; Harmelin-Vivien, Mireille; Tixier, Céline; Carlotti, François (2014-12-15).
3358: 1086: 954: 2885:
Chi, P. C., Chen, Y., & Lu, S. (1998). Wind-driven South China Sea deep basin warm-core/cool-core eddies.
5223:"Modeling the Impact of Zooplankton Diel Vertical Migration on the Carbon Export Flux of the Biological Pump" 2063:"Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea" 1266: 1250: 1056: 813: 534: 503: 180: 4205:"PCB concentrations in plankton size classes, a temporal study in Marseille Bay, Western Mediterranean Sea" 2300:"Development and characterization of a high-efficiency, aircraft-based axial cyclone cloud water collector" 1169: 2793:
Behrenfeld, Michael J. (2010). "Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms".
1435: 508: 381: 5036:"Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol" 1768: 4800: 2996: 2927:
Klein, P., Treguier, A. M., & Hua, B. L. (1998). Three-dimensional stirring of thermohaline fronts.
1222: 842: 5287:"Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei" 1323: 1233:
samples for incubation (e.g. respiration), and perform water-column sampling and optical measurements.
31:
The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) project logo. Image courtesy of NASA.
1060:
Phytoplankton booms are important sources for biogenic aerosols that provide cloud condensation nuclei
5360: 5298: 5234: 5179: 5047: 4973: 4927: 4872: 4778: 4321: 4278: 4219: 4151: 4088: 4028: 3962: 3903: 3655: 3596: 3374: 3189: 3140: 3088: 3039: 2690: 2617: 2565: 2506: 2437: 2379: 2311: 2240: 2074: 1968: 1896: 1885:"Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate" 1840: 1730: 1621:"The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview" 1535: 681: 660:
initiate a bloom such as high nutrients, shallower mixing, increased light, and warmer temperatures.
438: 202: 3296: 758:
meander and pinch-off to create eddies. These eddies retain the physical properties of their parent
3886:
Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.;
2227:
Boss, Emmanuel; Haëntjens, Nils; Westberry, Toby K.; Karp-Boss, Lee; Slade, Wayne H. (2018-04-30).
1367:
publication from NAAMES found the winter mixed layer depth to be positively correlated with spring
1290: 1006: 899: 522: 443: 361: 3357:
Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.;
5384: 5203: 5005: 4896: 4845: 4459: 4407: 4251: 4120: 4060: 3994: 3526: 3480: 3468: 3320: 2984: 2826: 2770: 2724: 2659: 2532: 2403: 2274: 2204: 1807: 716: 527: 463: 345: 297: 286: 281: 56: 1179:
North Atlantic: winter transition, accumulation phase, climax transition, and depletion phase.
5376: 5332: 5314: 5262: 5195: 5151: 5120: 5065: 4997: 4989: 4943: 4888: 4837: 4744: 4726: 4686: 4678: 4642: 4624: 4585: 4567: 4503: 4495: 4451: 4443: 4399: 4391: 4345: 4337: 4294: 4243: 4235: 4185: 4167: 4112: 4104: 4052: 4044: 3986: 3978: 3929: 3921: 3868: 3817: 3809: 3765: 3757: 3712: 3689: 3671: 3624: 3563: 3516: 3458: 3402: 3276: 3263:
Finlayson-Pitts, Barbara J.; Pitts, James N. (2000), "Applications of Atmospheric Chemistry",
3241: 3207: 3158: 3106: 3057: 2818: 2810: 2762: 2716: 2708: 2651: 2633: 2581: 2473: 2455: 2395: 2347: 2329: 2266: 2258: 2108: 2090: 2040: 1994: 1932: 1914: 1856: 1799: 1791: 1746: 1697: 1642: 1363: 1295: 735: 669: 575: 468: 249: 175: 5368: 5322: 5306: 5252: 5242: 5187: 5143: 5110: 5100: 5055: 4981: 4935: 4880: 4829: 4786: 4734: 4718: 4670: 4632: 4616: 4575: 4559: 4487: 4435: 4381: 4329: 4286: 4227: 4175: 4159: 4096: 4036: 3970: 3911: 3858: 3848: 3799: 3749: 3679: 3663: 3614: 3604: 3508: 3450: 3392: 3382: 3268: 3233: 3197: 3148: 3096: 3047: 2976: 2802: 2754: 2698: 2641: 2625: 2573: 2522: 2514: 2463: 2445: 2387: 2337: 2319: 2248: 2194: 2156: 2146: 2098: 2082: 2030: 1984: 1976: 1922: 1904: 1848: 1783: 1738: 1687: 1677: 1632: 1307:
properties. Physical properties include parameters such as the particle diameter and shape.
1082: 1024:
constitutes the majority (95%) of fungi classes inside this phylum. Within this group, the
942: 919: 825: 782:
Whereas in the cyclonic eddy, the upwelling entrains deep cold water and forms a cold-core.
747: 170: 129: 1085:
drives primary production in the upper layers of the ocean, aerosols are released into the
5089:"The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer" 3009: 1666:"The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer" 1567: 1525: 1520: 1515: 1448: 1406: 1105: 1074: 990: 722: 629:
Competing scientific hypothesis of plankton variability. Figure adapted from. Courtesy of
493: 391: 350: 340: 233: 2703: 2678: 2629: 5364: 5302: 5238: 5183: 5051: 4977: 4931: 4876: 4782: 4325: 4282: 4223: 4204: 4155: 4092: 4032: 3966: 3907: 3659: 3600: 3378: 3193: 3144: 3092: 3043: 2694: 2621: 2569: 2510: 2441: 2383: 2315: 2244: 2078: 1972: 1900: 1844: 1734: 5327: 5286: 4739: 4706: 4637: 4604: 4580: 4547: 4180: 4139: 3863: 3836: 3684: 3643: 3272: 3237: 2646: 2605: 2468: 2425: 2342: 2299: 2103: 2062: 1989: 1956: 1927: 1884: 1021: 998: 893: 889: 766: 687: 665: 656: 453: 433: 401: 306: 238: 134: 61: 3026:
FuhlbrĂĽgge, S.; KrĂĽger, K.; Quack, B.; Atlas, E.; Hepach, H.; Ziska, F. (2013-07-04).
1957:"Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles" 1452:
water at a rate of 4.5 ml per minute, which was stored and later analyzed in the lab.
719:
or overgrazing ends the bloom—losses exceed growth at this point in the cycle.  
5402: 5388: 4290: 3530: 3472: 2663: 2536: 2208: 975: 950: 406: 260: 192: 105: 44: 5207: 5009: 4849: 4463: 4255: 4231: 4124: 2988: 2830: 2774: 2728: 2407: 2278: 1811: 5060: 5035: 4900: 4411: 4064: 3998: 1372: 1329: 877: 860: 830: 448: 396: 386: 326: 222: 197: 124: 119: 5372: 4833: 4491: 2944:
Kunze, E. (1986). The mean and near-inertial velocity fields in a warm-core ring.
2745:
Sverdrup, H. U. (1953). "On Conditions for the Vernal Blooming of Phytoplankton".
5191: 4985: 4017:"The case against climate regulation via oceanic phytoplankton sulphur emissions" 1909: 2130: 1880: 1616: 1540: 1530: 1402: 1368: 1313: 1270: 1078: 1026: 971: 966: 775: 755: 544: 539: 488: 428: 420: 331: 110: 5310: 4674: 3892:"Sources and composition of submicron organic mass in marine aerosol particles" 3397: 3363:"Particulate matter, air quality and climate: lessons learned and future needs" 2758: 2086: 1787: 1500: 1253:
equipped with sensitive scientific instruments.  The flight crew based at
1196: 798:
induced currents contribute to a shallowing of the MLD in anticyclonic eddies.
4722: 4620: 4563: 4439: 3619: 3228:
WHITBY, KENNETH T. (1978), "The Physical Characteristics of Sulfur Aerosols",
3101: 3076: 2518: 2391: 1550: 1385: 1333: 1120: 1017: 1010: 937: 795: 790: 759: 677: 254: 165: 5380: 5318: 5266: 5199: 5142:, Springer Praxis Books, Springer Berlin Heidelberg, 2006, pp. 507–566, 5124: 5105: 5088: 5069: 4993: 4947: 4892: 4841: 4730: 4682: 4628: 4571: 4499: 4447: 4395: 4341: 4298: 4239: 4171: 4108: 4048: 3982: 3925: 3813: 3761: 3675: 3628: 3406: 3387: 3362: 3211: 3162: 3110: 3061: 3052: 3027: 2814: 2766: 2712: 2637: 2585: 2459: 2399: 2333: 2324: 2262: 2094: 2044: 2035: 2018: 1918: 1860: 1795: 1750: 1701: 1682: 1665: 1646: 1637: 1620: 1269:, ocean color, winds, and clouds. Satellite data also provided mean surface 5147: 3853: 3202: 3177: 3153: 3128: 2527: 1390: 1183:
Campaign 1: Winter Transition sampling completed November 5-December 2, 2015
986: 914: 771: 17: 5336: 5257: 5001: 4791: 4766: 4748: 4690: 4646: 4507: 4455: 4403: 4368:
Genitsaris, Savvas; Kormas, Konstantinos A.; Moustaka-Gouni, Maria (2011).
4349: 4247: 4189: 4116: 4056: 3990: 3872: 3821: 3769: 3693: 3609: 3584: 2822: 2720: 2655: 2477: 2351: 2270: 2112: 1998: 1936: 1803: 1189:
Campaign 3: Declining Phase sampling completed August 30-September 24, 2017
43:) was a five-year scientific research program that investigated aspects of 4589: 3512: 1492: 5247: 5222: 5115: 3916: 3891: 3667: 2253: 2228: 2151: 2134: 1852: 1692: 1332:(UV-LIF) to detect the fluorescence signals from common amino acids like 1192:
Campaign 4: Accumulation Phase sampling completed March 20-April 13, 2018
981: 711:
other features during the cycle “set the stage” for this bloom to occur.
270: 148: 97: 79: 4546:
Turner, P. C.; Gammie, A. J.; Hollinrake, K.; Codd, G. A. (1990-06-02).
4370:"Airborne Algae and Cyanobacteria Occurrence and Related Health Effects" 4040: 3974: 3421:"Introduction to climate dynamics and climate modelling - Welcome Page" 2980: 2199: 2182: 1619:; Giovannoni, Stephen; Liu, Hongyu; Proctor, Christopher (2019-03-22). 1109: 1049: 1001:
are also thought to be involved in bioaerosol toxicity, with the genus
855: 673: 27: 4939: 4522:"Exploring Airborne Health Risks from Cyanobacteria Blooms in Florida" 4333: 4163: 4100: 3933: 3753: 3544:
Goosse H., P.Y. Barriat, W. Lefebvre, M.F. Loutre and V. Zunz (2008).
2806: 2450: 2181:
Jones, Bethan M.; Halsey, Kimberly H.; Behrenfeld, Michael J. (2017).
1980: 4884: 3297:"Atmospheric Aerosols: What Are They, and Why Are They So Important?" 2577: 2161: 1742: 1221:
All four campaigns followed a similar ship and flight plan. The
1113: 1070: 881: 265: 227: 4016: 3804: 3787: 2679:"Resurrecting the Ecological Underpinnings of Ocean Plankton Blooms" 1556:
Submesoscale and mesoscale Ekman Pumping, Dr. Dudley Chelton seminar
1186:
Campaign 2: Climax Transition sampling completed May 11-June 5, 2016
1092:
One of the key components of the CLAW hypothesis is the emission of
5034:; Coffman, Derek J.; Murray, Benjamin J.; Knopf, Daniel A. (2017). 3546:"Introduction to climate dynamics and climate modelling - Aerosols" 3454: 3837:"Sea spray aerosol as a unique source of ice nucleating particles" 3545: 3420: 1470: 624: 4386: 4369: 3361:; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E. (2015-07-24). 1496: 925:
An important biogeochemical consequence of SSA are their role as
4767:"Biogeography in the air: fungal diversity over land and oceans" 1246:
dynamics, and their potential impact on climate and ecosystems.
5221:
Archibald, Kevin M.; Siegel, David A.; Doney, Scott C. (2019).
1499:(SeaBASS) while airborne information can be viewed through the 1421:
Illustration of sources of aerosols found during NAAMES cruises
1491:
Finalized versions of field data can be viewed through NASA’s
1237:
autonomous instruments were deployed during the four cruises.
922:(DMS). This compound plays a key role in the NAAMES project. 47:
dynamics in ocean ecosystems, and how such dynamics influence
1405:
vertical migration on carbon export to the deep sea via the
751:
significantly affects the marine food web and ocean health.
691:
absence of stratification or shoaling of the mixed layer.
4707:"Inland transport of aerosolized Florida red tide toxins" 4605:"Characterization of red tide aerosol on the Texas coast" 770:
respectively, as the distance from the center increases.
2677:
Behrenfeld, Michael J.; Boss, Emmanuel S. (2014-01-03).
965:.   In addition, a group of toxic compounds called 695:
Dilution-recoupling Hypothesis - an ecosystem-based view
4548:"Pneumonia associated with contact with cyanobacteria" 4140:"Methylmercury uptake by diverse marine phytoplankton" 2424:
Zhang, Yong; Wang, Qing; Jiang, Xinyuan (2017-05-19).
2017:
Graff, Jason R.; Behrenfeld, Michael J. (2018-06-14).
1214:
Ship-based instruments measured gases, particles, and
2133:; Oestreich, William K.; Tullo, Alisdair W. (2018). 1156:
each major phase of the annual phytoplankton cycle.
676:, sinking, dilution, vertical mixing, infection, or 3707:Intergovernmental Panel on Climate Change. (2013). 1104:Dissolved organic compounds containing remnants of 37:
North Atlantic Aerosols and Marine Ecosystems Study
2963:Descriptive physical oceanography: an introduction 2372:IEEE Transactions on Geoscience and Remote Sensing 1955:Behrenfeld, Michael J.; Boss, Emmanuel S. (2018). 2606:"Spaceborne Lidar in the Study of Marine Systems" 1409:was parametrized and modeled for the first time. 1294:from the floats are transmitted remotely via the 969:are produced by some cyanobacteria in the genera 640:Critical Depth Hypothesis - a resource-based view 1465:Advances in satellite LIDAR ocean remote sensing 1073:, as originally proposed in the late 1980s. The 4138:Lee, Cheng-Shiuan; Fisher, Nicholas S. (2016). 3841:Proceedings of the National Academy of Sciences 1043:Marine Bioaerosols and Global Radiation Balance 3788:"Sea-spray particles cause freezing in clouds" 3449:. Washington, D.C.: National Academies Press. 1497:SeaWiFS Bio-optical Archive and Storage System 1277:(MODIS), as a proxy for primary productivity. 668:is a surface mixing depth where phytoplankton 1275:Moderate Resolution Imaging Spectroradiometer 596: 8: 4805:: CS1 maint: multiple names: authors list ( 3896:Journal of Geophysical Research: Atmospheres 3568:: CS1 maint: multiple names: authors list ( 3485:: CS1 maint: multiple names: authors list ( 1469:The NAAMES team made advances in the use of 3585:"Global indirect aerosol effects: a review" 3265:Chemistry of the Upper and Lower Atmosphere 1100:Emissions from the sea surface micro-layer 603: 589: 70: 5326: 5256: 5246: 5138:"Aerosol radiative forcing and climate", 5114: 5104: 5059: 4790: 4738: 4636: 4579: 4385: 4179: 3915: 3862: 3852: 3803: 3683: 3618: 3608: 3396: 3386: 3201: 3152: 3100: 3051: 2702: 2645: 2526: 2467: 2449: 2341: 2323: 2252: 2198: 2160: 2150: 2102: 2034: 1988: 1926: 1908: 1691: 1681: 1636: 1037:Intergovernmental Panel on Climate Change 794:of simultaneous processes where enhanced 3583:Lohmann, U.; Feichter, J. (2005-03-03). 3127:Toprak, E.; Schnaiter, M. (2013-01-10). 1416: 1312: 1195: 1168: 1055: 898: 866: 841: 26: 5353:International Journal of Remote Sensing 2139:Journal of Geophysical Research: Oceans 1582: 621:Competing hypotheses of plankton blooms 78: 5280: 5278: 5276: 5025: 5023: 5021: 5019: 4798: 4760: 4758: 4314:Environmental Science & Technology 3781: 3779: 3732: 3730: 3728: 3561: 3498: 3496: 3478: 3352: 3350: 3348: 3346: 3344: 3342: 3340: 3258: 3256: 3223: 3221: 3122: 3120: 3005: 2994: 2864: 2862: 2844: 2842: 2840: 2788: 2786: 2784: 2599: 2597: 2595: 2550: 2548: 2546: 2491: 2489: 2487: 2419: 2417: 2365: 2363: 2361: 2292: 2290: 2288: 2222: 2220: 2218: 2176: 2174: 2172: 2124: 2122: 1413:Aerosols and cloud condensation nuclei 1354:advances in satellite remote sensing. 68:advances in satellite remote sensing. 4959: 4957: 4912: 4910: 4363: 4361: 4359: 3947: 3945: 3943: 3021: 3019: 2740: 2738: 2056: 2054: 2012: 2010: 2008: 1950: 1948: 1946: 1874: 1872: 1870: 1825: 1823: 1821: 1762: 1760: 1713: 1711: 1610: 1608: 1606: 7: 2704:10.1146/annurev-marine-052913-021325 2630:10.1146/annurev-marine-121916-063335 1604: 1602: 1600: 1598: 1596: 1594: 1592: 1590: 1588: 1586: 1210:Research cruises on the R/V Atlantis 2187:Limnology and Oceanography: Methods 1546:Effects of climate change on oceans 963:amyotrophic lateral sclerosis (ALS) 4526:NOAA-NCCOS Coastal Science Website 3835:DeMott, P.J.; et al. (2015). 3238:10.1016/b978-0-08-022932-4.50018-5 2304:Atmospheric Measurement Techniques 1493:Distributed Active Archive Centers 1430:Improved measurement methodologies 1362:Seasonal changes in phytoplankton 25: 3589:Atmospheric Chemistry and Physics 3367:Atmospheric Chemistry and Physics 3182:Atmospheric Chemistry and Physics 3133:Atmospheric Chemistry and Physics 3081:Atmospheric Chemistry and Physics 3032:Atmospheric Chemistry and Physics 1338:nicotinamide adenine dinucleotide 995:non-alcoholic fatty liver disease 3273:10.1016/b978-012257060-5/50018-6 2946:Journal of physical oceanography 2870:Journal of Physical Oceanography 1065:Data to test the CLAW Hypothesis 959:polycyclic aromatic hydrocarbons 955:polychlorinated biphenyls (PCBs) 754:The fast-moving currents in the 730:Physical oceanographic processes 570: 569: 86: 4920:Journal of Geophysical Research 4232:10.1016/j.marpolbul.2014.09.040 2683:Annual Review of Marine Science 2610:Annual Review of Marine Science 1501:Atmospheric Science Data Center 5172:Aerosol Science and Technology 5140:Atmospheric Aerosol Properties 5061:10.1016/j.atmosenv.2017.01.053 3711:. IPCC. pp. Figure 8.17. 3267:, Elsevier, pp. 871–942, 3232:, Elsevier, pp. 135–159, 2747:ICES Journal of Marine Science 820:Regional Atmospheric Processes 802:Relevant Atmospheric Processes 1: 5373:10.1080/01431161.2017.1280633 4834:10.1126/science.276.5315.1052 4492:10.1016/j.toxicon.2009.07.006 4428:Amyotrophic Lateral Sclerosis 4015:; Bates, T. S. (2011-11-30). 2499:Remote Sensing of Environment 1456:New remote sensing algorithms 1249:Airborne sampling involved a 459:Great Atlantic Sargassum Belt 5227:Global Biogeochemical Cycles 5192:10.1080/02786826.2010.482111 4986:10.1126/science.221.4612.744 4291:10.1016/0304-4203(90)90079-R 3648:Geophysical Research Letters 2850:Geophysical Research Letters 1910:10.1371/journal.pone.0191509 5093:Frontiers in Marine Science 4552:BMJ (Clinical Research Ed.) 3503:Godish, Thad (1997-08-11). 2023:Frontiers in Marine Science 1670:Frontiers in Marine Science 1625:Frontiers in Marine Science 1358:Phytoplankton annual cycles 188:Photosynthetic picoplankton 5425: 5311:10.1038/s41598-018-21590-9 4675:10.1001/jama.293.21.2599-c 4144:Limnology and Oceanography 3505:Air Quality, Third Edition 2929:Journal of marine research 2087:10.1038/s41598-018-25565-8 1788:10.1038/nmicrobiol.2016.65 1531:Ocean color remote sensing 1445:particle size distribution 1273:concentrations via NASA’s 1216:volatile organic compounds 1094:dimethylsulfoniopropionate 157:Heterotrophic picoplankton 5409:Oceanographic expeditions 4723:10.1016/j.hal.2009.09.003 4621:10.1016/j.hal.2003.12.002 4564:10.1136/bmj.300.6737.1440 4440:10.3109/17482960903278485 4212:Marine Pollution Bulletin 3786:Russell, Lynn M. (2015). 3295:Allen, Bob (2015-04-06). 3102:10.5194/acp-18-17615-2018 2519:10.1016/j.rse.2018.03.005 2392:10.1109/TGRS.2017.2744323 1227:Woods Hole, Massachusetts 1005:causing symptoms such as 927:cloud condensation nuclei 657:critical depth hypothesis 514:Marine primary production 5106:10.3389/fmars.2017.00165 4081:Environmental Toxicology 3388:10.5194/acp-15-8217-2015 3230:Sulfur in the Atmosphere 3053:10.5194/acp-13-6345-2013 2759:10.1093/icesjms/18.3.287 2325:10.5194/amt-11-5025-2018 2036:10.3389/fmars.2018.00209 1683:10.3389/fmars.2017.00165 1638:10.3389/fmars.2019.00122 1379:Phytoplankton physiology 1087:planetary boundary layer 5148:10.1007/3-540-37698-4_9 5040:Atmospheric Environment 4374:Frontiers in Bioscience 3902:(22): 12, 977–13, 003. 3854:10.1073/pnas.1514034112 3203:10.5194/acp-8-2387-2008 3154:10.5194/acp-13-225-2013 2887:Journal of Oceanography 1302:Atmospheric Instruments 1267:sea surface temperature 535:Paradox of the plankton 504:Diel vertical migration 4792:10.5194/bg-9-1125-2012 3610:10.5194/acp-5-715-2005 3004:Cite journal requires 2961:Talley, L. D. (2011). 1422: 1371:concentrations in the 1318: 1281:Autonomous ARGO Floats 1261:Satellite Observations 1201: 1175: 1079:homeostasis regulation 1061: 905: 872: 847: 633: 382:Gelatinous zooplankton 32: 3513:10.1201/noe1566702317 3445:Thomas, Katie (ed.). 2904:"Eddies in the Ocean" 2893:(4), 347-360. Chicago 1961:Global Change Biology 1833:Nature Climate Change 1420: 1316: 1199: 1172: 1059: 902: 870: 845: 814:atmospheric inversion 807:Marine Boundary Layer 628: 30: 5248:10.1029/2018gb005983 3917:10.1002/2014jd021913 3668:10.1002/2017gl073056 3321:"What are aerosols?" 2254:10.1364/OE.26.011125 2152:10.1002/2017JC013023 1853:10.1038/nclimate2838 1536:Oceanic carbon cycle 1016:The fungi phylum of 439:Cyanobacterial bloom 203:Marine microplankton 49:atmospheric aerosols 5365:2017IJRS...38.1162Z 5303:2018NatSR...8.3235S 5239:2019GBioC..33..181A 5184:2010AerST..44..589O 5052:2017AtmEn.154..331A 4978:1983Sci...221..744A 4932:1995JGR...10011335A 4877:1987Natur.326..655C 4828:(5315): 1052–1058. 4783:2012BGeo....9.1125F 4558:(6737): 1440–1441. 4326:2007EnST...41.3109W 4283:1990MarCh..30..337K 4224:2014MarPB..89..331T 4156:2016LimOc..61.1626L 4093:2014EnTox..29..936K 4041:10.1038/nature10580 4033:2011Natur.480...51Q 3975:10.1038/nature02959 3967:2004Natur.431..676O 3908:2014JGRD..11912977F 3660:2017GeoRL..44.5167R 3601:2005ACP.....5..715L 3398:20.500.11850/103253 3379:2015ACP....15.8217F 3194:2008ACP.....8.2387P 3145:2013ACP....13..225T 3093:2018ACP....1817615Z 3087:(23): 17615–17635. 3044:2013ACP....13.6345F 2695:2014ARMS....6..167B 2622:2018ARMS...10..121H 2570:2017NatGe..10..118B 2511:2018RSEnv.210...76A 2442:2017Senso..17.1162Z 2384:2018ITGRS..56..168Z 2316:2018AMT....11.5025C 2245:2018OExpr..2611125B 2079:2018NatSR...8.7363G 1973:2018GCBio..24...55B 1901:2018PLoSO..1391509B 1879:Balaguru, Karthik; 1845:2016NatCC...6..323B 1776:Nature Microbiology 1735:2017NatGe..10..674Q 1561:Eddies in the Ocean 1478:Future Implications 1344:Scientific Findings 1324:Beer-Lambert's Law. 1289:instruments called 824:The westerlies are 523:Ocean fertilization 444:Harmful algal bloom 362:Freshwater plankton 74:Part of a series on 5291:Scientific Reports 5085:Quinn, Patricia K. 5032:Quinn, Patricia K. 3888:Quinn, Patricia K. 3738:Quinn, Patricia K. 3620:20.500.11850/33632 2981:10.21236/ada630865 2239:(9): 11125–11136. 2200:10.1002/lom3.10213 2129:Glover, David M.; 2067:Scientific Reports 1662:Quinn, Patricia K. 1566:2019-09-17 at the 1423: 1319: 1255:St. John’s, Canada 1202: 1176: 1062: 909:Sea-spray Aerosols 906: 873: 848: 717:nutrient depletion 634: 464:Great Calcite Belt 57:primary production 33: 4972:(4612): 744–747. 4940:10.1029/94jd02828 4871:(6114): 655–661. 4669:(21): 2599–2600. 4528:. 14 October 2014 4434:(sup2): 101–108. 4334:10.1021/es062594x 4164:10.1002/lno.10318 4101:10.1002/tox.21821 3961:(7009): 676–680. 3847:(21): 5797–5803. 3798:(7568): 194–195. 3754:10.1021/cr500713g 3748:(10): 4383–4399. 3718:978-92-9169-138-8 3654:(10): 5167–5177. 3373:(14): 8217–8299. 3038:(13): 6345–6357. 2965:. Academic press. 2807:10.1890/09-1207.1 2558:Nature Geoscience 2451:10.3390/s17051162 1981:10.1111/gcb.13858 1723:Nature Geoscience 1397:Mesoscale biology 1241:Airborne sampling 1128:NAAMES Objectives 743:Meso-scale Eddies 736:Mixed Layer Depth 613: 612: 469:Milky seas effect 176:Nanophytoplankton 16:(Redirected from 5416: 5393: 5392: 5359:(4): 1162–1179. 5347: 5341: 5340: 5330: 5282: 5271: 5270: 5260: 5250: 5218: 5212: 5211: 5167: 5161: 5160: 5135: 5129: 5128: 5118: 5108: 5080: 5074: 5073: 5063: 5027: 5014: 5013: 4961: 4952: 4951: 4914: 4905: 4904: 4885:10.1038/326655a0 4860: 4854: 4853: 4817: 4811: 4810: 4804: 4796: 4794: 4777:(3): 1125–1136. 4762: 4753: 4752: 4742: 4701: 4695: 4694: 4657: 4651: 4650: 4640: 4600: 4594: 4593: 4583: 4543: 4537: 4536: 4534: 4533: 4518: 4512: 4511: 4474: 4468: 4467: 4422: 4416: 4415: 4389: 4365: 4354: 4353: 4320:(9): 3109–3114. 4309: 4303: 4302: 4271:Marine Chemistry 4266: 4260: 4259: 4209: 4200: 4194: 4193: 4183: 4150:(5): 1626–1639. 4135: 4129: 4128: 4075: 4069: 4068: 4009: 4003: 4002: 3949: 3938: 3937: 3919: 3883: 3877: 3876: 3866: 3856: 3832: 3826: 3825: 3807: 3783: 3774: 3773: 3742:Chemical Reviews 3734: 3723: 3722: 3704: 3698: 3697: 3687: 3639: 3633: 3632: 3622: 3612: 3580: 3574: 3573: 3567: 3559: 3557: 3556: 3541: 3535: 3534: 3500: 3491: 3490: 3484: 3476: 3441: 3435: 3434: 3432: 3431: 3417: 3411: 3410: 3400: 3390: 3354: 3335: 3334: 3332: 3331: 3317: 3311: 3310: 3308: 3307: 3292: 3286: 3285: 3260: 3251: 3250: 3225: 3216: 3215: 3205: 3188:(9): 2387–2403. 3173: 3167: 3166: 3156: 3124: 3115: 3114: 3104: 3072: 3066: 3065: 3055: 3023: 3014: 3013: 3007: 3002: 3000: 2992: 2972: 2966: 2959: 2953: 2942: 2936: 2925: 2919: 2918: 2916: 2915: 2906:. Archived from 2900: 2894: 2883: 2877: 2866: 2857: 2846: 2835: 2834: 2790: 2779: 2778: 2742: 2733: 2732: 2706: 2674: 2668: 2667: 2649: 2601: 2590: 2589: 2578:10.1038/ngeo2861 2552: 2541: 2540: 2530: 2528:2060/20180002173 2493: 2482: 2481: 2471: 2453: 2421: 2412: 2411: 2367: 2356: 2355: 2345: 2327: 2310:(9): 5025–5048. 2294: 2283: 2282: 2256: 2224: 2213: 2212: 2202: 2178: 2167: 2166: 2164: 2154: 2126: 2117: 2116: 2106: 2058: 2049: 2048: 2038: 2014: 2003: 2002: 1992: 1952: 1941: 1940: 1930: 1912: 1876: 1865: 1864: 1827: 1816: 1815: 1773: 1764: 1755: 1754: 1743:10.1038/ngeo3003 1715: 1706: 1705: 1695: 1685: 1657: 1651: 1650: 1640: 1612: 1083:solar irradiance 920:dimethyl sulfide 838:Role of aerosols 826:prevailing winds 748:Mesoscale eddies 707: 706: 702: 652: 651: 647: 605: 598: 591: 578: 573: 572: 234:coccolithophores 171:Microzooplankton 130:Bacterioplankton 90: 71: 64:via satellites. 21: 5424: 5423: 5419: 5418: 5417: 5415: 5414: 5413: 5399: 5398: 5397: 5396: 5349: 5348: 5344: 5284: 5283: 5274: 5258:1721.1/141177.2 5220: 5219: 5215: 5169: 5168: 5164: 5158: 5137: 5136: 5132: 5082: 5081: 5077: 5029: 5028: 5017: 4963: 4962: 4955: 4916: 4915: 4908: 4862: 4861: 4857: 4819: 4818: 4814: 4797: 4764: 4763: 4756: 4703: 4702: 4698: 4659: 4658: 4654: 4602: 4601: 4597: 4545: 4544: 4540: 4531: 4529: 4520: 4519: 4515: 4476: 4475: 4471: 4424: 4423: 4419: 4367: 4366: 4357: 4311: 4310: 4306: 4268: 4267: 4263: 4207: 4202: 4201: 4197: 4137: 4136: 4132: 4077: 4076: 4072: 4027:(7375): 51–56. 4011: 4010: 4006: 3951: 3950: 3941: 3885: 3884: 3880: 3834: 3833: 3829: 3805:10.1038/525194a 3785: 3784: 3777: 3736: 3735: 3726: 3719: 3706: 3705: 3701: 3641: 3640: 3636: 3582: 3581: 3577: 3560: 3554: 3552: 3543: 3542: 3538: 3523: 3502: 3501: 3494: 3477: 3465: 3443: 3442: 3438: 3429: 3427: 3419: 3418: 3414: 3356: 3355: 3338: 3329: 3327: 3319: 3318: 3314: 3305: 3303: 3294: 3293: 3289: 3283: 3262: 3261: 3254: 3248: 3227: 3226: 3219: 3175: 3174: 3170: 3126: 3125: 3118: 3074: 3073: 3069: 3025: 3024: 3017: 3003: 2993: 2974: 2973: 2969: 2960: 2956: 2952:(8), 1444-1461. 2943: 2939: 2926: 2922: 2913: 2911: 2902: 2901: 2897: 2884: 2880: 2867: 2860: 2856:(3), 1505-1512. 2847: 2838: 2792: 2791: 2782: 2744: 2743: 2736: 2676: 2675: 2671: 2603: 2602: 2593: 2554: 2553: 2544: 2497:measurements". 2495: 2494: 2485: 2423: 2422: 2415: 2369: 2368: 2359: 2296: 2295: 2286: 2226: 2225: 2216: 2193:(11): 928–938. 2180: 2179: 2170: 2131:Doney, Scott C. 2128: 2127: 2120: 2060: 2059: 2052: 2016: 2015: 2006: 1954: 1953: 1944: 1895:(1): e0191509. 1881:Doney, Scott C. 1878: 1877: 1868: 1829: 1828: 1819: 1771: 1766: 1765: 1758: 1717: 1716: 1709: 1659: 1658: 1654: 1617:Doney, Scott C. 1614: 1613: 1584: 1579: 1573: 1568:Wayback Machine 1526:Biological pump 1521:GAIA hypothesis 1516:CLAW hypothesis 1512: 1489: 1480: 1467: 1458: 1449:Coulter counter 1432: 1415: 1407:Biological Pump 1399: 1381: 1360: 1351: 1346: 1304: 1283: 1263: 1243: 1212: 1207: 1167: 1165:Field Campaigns 1162: 1130: 1106:polysaccharides 1102: 1075:CLAW hypothesis 1067: 1045: 999:Dinoflagellates 991:gastroenteritis 935: 911: 853: 840: 822: 809: 804: 740: 732: 723:Climate warming 708: 704: 700: 698: 697: 688:Climate warming 653: 649: 645: 643: 642: 623: 618: 609: 568: 561: 560: 559: 518: 494:CLAW hypothesis 483: 475: 474: 473: 423: 413: 412: 411: 392:Ichthyoplankton 376: 368: 367: 366: 357: 341:Marine plankton 336: 321: 313: 312: 311: 302: 293: 277: 257: 245: 239:dinoflagellates 230: 217: 209: 208: 207: 161: 151: 141: 140: 139: 115: 100: 23: 22: 15: 12: 11: 5: 5422: 5420: 5412: 5411: 5401: 5400: 5395: 5394: 5342: 5272: 5233:(2): 181–199. 5213: 5178:(8): 589–591. 5162: 5156: 5130: 5075: 5015: 4953: 4906: 4855: 4812: 4771:Biogeosciences 4754: 4717:(2): 186–189. 4696: 4652: 4595: 4538: 4513: 4486:(5): 909–921. 4469: 4417: 4380:(2): 772–787. 4355: 4304: 4261: 4218:(1): 331–339. 4195: 4130: 4087:(8): 936–941. 4070: 4004: 3939: 3890:(2014-11-26). 3878: 3827: 3775: 3724: 3717: 3699: 3634: 3595:(3): 715–737. 3575: 3550:www.climate.be 3536: 3521: 3492: 3463: 3455:10.17226/23527 3436: 3425:www.climate.be 3412: 3336: 3312: 3287: 3281: 3252: 3246: 3217: 3168: 3139:(1): 225–243. 3116: 3067: 3015: 3006:|journal= 2967: 2954: 2937: 2920: 2895: 2878: 2858: 2836: 2801:(4): 977–989. 2780: 2753:(3): 287–295. 2734: 2689:(1): 167–194. 2669: 2616:(1): 121–147. 2591: 2564:(2): 118–122. 2542: 2483: 2413: 2378:(1): 168–179. 2357: 2284: 2233:Optics Express 2214: 2168: 2118: 2050: 2004: 1942: 1866: 1839:(3): 323–330. 1817: 1756: 1729:(9): 674–679. 1707: 1664:(2017-05-30). 1652: 1581: 1580: 1578: 1575: 1571: 1570: 1558: 1553: 1548: 1543: 1538: 1533: 1528: 1523: 1518: 1511: 1508: 1503:(ASDC).  1488: 1485: 1479: 1476: 1466: 1463: 1457: 1454: 1431: 1428: 1414: 1411: 1398: 1395: 1380: 1377: 1359: 1356: 1350: 1347: 1345: 1342: 1303: 1300: 1282: 1279: 1262: 1259: 1242: 1239: 1225:departed from 1211: 1208: 1206: 1203: 1194: 1193: 1190: 1187: 1184: 1166: 1163: 1161: 1158: 1153: 1152: 1144: 1143: 1135: 1134: 1129: 1126: 1101: 1098: 1066: 1063: 1044: 1041: 1022:Agaricomycetes 934: 931: 910: 907: 894:dry deposition 890:wet deposition 852: 849: 839: 836: 821: 818: 808: 805: 803: 800: 767:Coriolis force 739: 733: 731: 728: 696: 693: 682:stratification 666:critical depth 641: 638: 622: 619: 617: 614: 611: 610: 608: 607: 600: 593: 585: 582: 581: 580: 579: 563: 562: 558: 557: 552: 547: 542: 537: 532: 531: 530: 519: 517: 516: 511: 506: 501: 496: 491: 485: 484: 482:Related topics 481: 480: 477: 476: 472: 471: 466: 461: 456: 454:Eutrophication 451: 446: 441: 436: 434:Critical depth 431: 425: 424: 419: 418: 415: 414: 410: 409: 404: 402:Pseudoplankton 399: 394: 389: 384: 378: 377: 374: 373: 370: 369: 365: 364: 358: 356: 355: 354: 353: 348: 337: 335: 334: 329: 323: 322: 319: 318: 315: 314: 310: 309: 303: 301: 300: 294: 292: 291: 290: 289: 278: 276: 275: 274: 273: 268: 263: 261:foraminiferans 258: 246: 244: 243: 242: 241: 236: 231: 219: 218: 215: 214: 211: 210: 206: 205: 200: 195: 190: 185: 184: 183: 173: 168: 162: 160: 159: 153: 152: 147: 146: 143: 142: 138: 137: 132: 127: 122: 116: 114: 113: 108: 102: 101: 96: 95: 92: 91: 83: 82: 76: 75: 62:remote sensing 24: 14: 13: 10: 9: 6: 4: 3: 2: 5421: 5410: 5407: 5406: 5404: 5390: 5386: 5382: 5378: 5374: 5370: 5366: 5362: 5358: 5354: 5346: 5343: 5338: 5334: 5329: 5324: 5320: 5316: 5312: 5308: 5304: 5300: 5296: 5292: 5288: 5281: 5279: 5277: 5273: 5268: 5264: 5259: 5254: 5249: 5244: 5240: 5236: 5232: 5228: 5224: 5217: 5214: 5209: 5205: 5201: 5197: 5193: 5189: 5185: 5181: 5177: 5173: 5166: 5163: 5159: 5157:9783540262633 5153: 5149: 5145: 5141: 5134: 5131: 5126: 5122: 5117: 5116:10026.1/16046 5112: 5107: 5102: 5098: 5094: 5090: 5086: 5079: 5076: 5071: 5067: 5062: 5057: 5053: 5049: 5045: 5041: 5037: 5033: 5026: 5024: 5022: 5020: 5016: 5011: 5007: 5003: 4999: 4995: 4991: 4987: 4983: 4979: 4975: 4971: 4967: 4960: 4958: 4954: 4949: 4945: 4941: 4937: 4933: 4929: 4926:(D6): 11335. 4925: 4921: 4913: 4911: 4907: 4902: 4898: 4894: 4890: 4886: 4882: 4878: 4874: 4870: 4866: 4859: 4856: 4851: 4847: 4843: 4839: 4835: 4831: 4827: 4823: 4816: 4813: 4808: 4802: 4793: 4788: 4784: 4780: 4776: 4772: 4768: 4761: 4759: 4755: 4750: 4746: 4741: 4736: 4732: 4728: 4724: 4720: 4716: 4712: 4711:Harmful Algae 4708: 4700: 4697: 4692: 4688: 4684: 4680: 4676: 4672: 4668: 4664: 4656: 4653: 4648: 4644: 4639: 4634: 4630: 4626: 4622: 4618: 4614: 4610: 4609:Harmful Algae 4606: 4599: 4596: 4591: 4587: 4582: 4577: 4573: 4569: 4565: 4561: 4557: 4553: 4549: 4542: 4539: 4527: 4523: 4517: 4514: 4509: 4505: 4501: 4497: 4493: 4489: 4485: 4481: 4473: 4470: 4465: 4461: 4457: 4453: 4449: 4445: 4441: 4437: 4433: 4429: 4421: 4418: 4413: 4409: 4405: 4401: 4397: 4393: 4388: 4383: 4379: 4375: 4371: 4364: 4362: 4360: 4356: 4351: 4347: 4343: 4339: 4335: 4331: 4327: 4323: 4319: 4315: 4308: 4305: 4300: 4296: 4292: 4288: 4284: 4280: 4276: 4272: 4265: 4262: 4257: 4253: 4249: 4245: 4241: 4237: 4233: 4229: 4225: 4221: 4217: 4213: 4206: 4199: 4196: 4191: 4187: 4182: 4177: 4173: 4169: 4165: 4161: 4157: 4153: 4149: 4145: 4141: 4134: 4131: 4126: 4122: 4118: 4114: 4110: 4106: 4102: 4098: 4094: 4090: 4086: 4082: 4074: 4071: 4066: 4062: 4058: 4054: 4050: 4046: 4042: 4038: 4034: 4030: 4026: 4022: 4018: 4014: 4008: 4005: 4000: 3996: 3992: 3988: 3984: 3980: 3976: 3972: 3968: 3964: 3960: 3956: 3948: 3946: 3944: 3940: 3935: 3931: 3927: 3923: 3918: 3913: 3909: 3905: 3901: 3897: 3893: 3889: 3882: 3879: 3874: 3870: 3865: 3860: 3855: 3850: 3846: 3842: 3838: 3831: 3828: 3823: 3819: 3815: 3811: 3806: 3801: 3797: 3793: 3789: 3782: 3780: 3776: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3739: 3733: 3731: 3729: 3725: 3720: 3714: 3710: 3703: 3700: 3695: 3691: 3686: 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3649: 3645: 3638: 3635: 3630: 3626: 3621: 3616: 3611: 3606: 3602: 3598: 3594: 3590: 3586: 3579: 3576: 3571: 3565: 3551: 3547: 3540: 3537: 3532: 3528: 3524: 3522:9781566702317 3518: 3514: 3510: 3507:. CRC Press. 3506: 3499: 3497: 3493: 3488: 3482: 3474: 3470: 3466: 3464:9780309443425 3460: 3456: 3452: 3448: 3440: 3437: 3426: 3422: 3416: 3413: 3408: 3404: 3399: 3394: 3389: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3353: 3351: 3349: 3347: 3345: 3343: 3341: 3337: 3326: 3322: 3316: 3313: 3302: 3298: 3291: 3288: 3284: 3282:9780122570605 3278: 3274: 3270: 3266: 3259: 3257: 3253: 3249: 3247:9780080229324 3243: 3239: 3235: 3231: 3224: 3222: 3218: 3213: 3209: 3204: 3199: 3195: 3191: 3187: 3183: 3179: 3172: 3169: 3164: 3160: 3155: 3150: 3146: 3142: 3138: 3134: 3130: 3123: 3121: 3117: 3112: 3108: 3103: 3098: 3094: 3090: 3086: 3082: 3078: 3071: 3068: 3063: 3059: 3054: 3049: 3045: 3041: 3037: 3033: 3029: 3022: 3020: 3016: 3011: 2998: 2990: 2986: 2982: 2978: 2971: 2968: 2964: 2958: 2955: 2951: 2947: 2941: 2938: 2935:(3), 589-612. 2934: 2930: 2924: 2921: 2910:on 2019-09-17 2909: 2905: 2899: 2896: 2892: 2888: 2882: 2879: 2876:(1), 104-132. 2875: 2871: 2865: 2863: 2859: 2855: 2851: 2845: 2843: 2841: 2837: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2789: 2787: 2785: 2781: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2741: 2739: 2735: 2730: 2726: 2722: 2718: 2714: 2710: 2705: 2700: 2696: 2692: 2688: 2684: 2680: 2673: 2670: 2665: 2661: 2657: 2653: 2648: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2600: 2598: 2596: 2592: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2559: 2551: 2549: 2547: 2543: 2538: 2534: 2529: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2492: 2490: 2488: 2484: 2479: 2475: 2470: 2465: 2461: 2457: 2452: 2447: 2443: 2439: 2435: 2431: 2427: 2420: 2418: 2414: 2409: 2405: 2401: 2397: 2393: 2389: 2385: 2381: 2377: 2373: 2366: 2364: 2362: 2358: 2353: 2349: 2344: 2339: 2335: 2331: 2326: 2321: 2317: 2313: 2309: 2305: 2301: 2293: 2291: 2289: 2285: 2280: 2276: 2272: 2268: 2264: 2260: 2255: 2250: 2246: 2242: 2238: 2234: 2230: 2223: 2221: 2219: 2215: 2210: 2206: 2201: 2196: 2192: 2188: 2184: 2177: 2175: 2173: 2169: 2163: 2158: 2153: 2148: 2144: 2140: 2136: 2132: 2125: 2123: 2119: 2114: 2110: 2105: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2057: 2055: 2051: 2046: 2042: 2037: 2032: 2028: 2024: 2020: 2013: 2011: 2009: 2005: 2000: 1996: 1991: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1951: 1949: 1947: 1943: 1938: 1934: 1929: 1924: 1920: 1916: 1911: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1875: 1873: 1871: 1867: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1826: 1824: 1822: 1818: 1813: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1770: 1763: 1761: 1757: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1714: 1712: 1708: 1703: 1699: 1694: 1693:10026.1/16046 1689: 1684: 1679: 1675: 1671: 1667: 1663: 1656: 1653: 1648: 1644: 1639: 1634: 1630: 1626: 1622: 1618: 1611: 1609: 1607: 1605: 1603: 1601: 1599: 1597: 1595: 1593: 1591: 1589: 1587: 1583: 1576: 1574: 1569: 1565: 1562: 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1513: 1509: 1507: 1504: 1502: 1498: 1494: 1486: 1484: 1477: 1475: 1472: 1464: 1462: 1455: 1453: 1450: 1446: 1441: 1437: 1429: 1427: 1419: 1412: 1410: 1408: 1404: 1396: 1394: 1392: 1387: 1378: 1376: 1374: 1370: 1365: 1357: 1355: 1348: 1343: 1341: 1339: 1335: 1331: 1326: 1325: 1315: 1311: 1308: 1301: 1299: 1297: 1292: 1288: 1280: 1278: 1276: 1272: 1268: 1260: 1258: 1256: 1252: 1247: 1240: 1238: 1234: 1230: 1228: 1224: 1219: 1217: 1209: 1204: 1198: 1191: 1188: 1185: 1182: 1181: 1180: 1171: 1164: 1159: 1157: 1150: 1149: 1148: 1141: 1140: 1139: 1132: 1131: 1127: 1125: 1122: 1117: 1115: 1111: 1107: 1099: 1097: 1095: 1090: 1088: 1084: 1080: 1076: 1072: 1064: 1058: 1054: 1051: 1042: 1040: 1038: 1032: 1029: 1028: 1023: 1019: 1014: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 983: 978: 977: 976:Synechococcus 973: 968: 964: 960: 956: 952: 951:methylmercury 947: 944: 939: 932: 930: 928: 923: 921: 916: 908: 901: 897: 895: 891: 886: 883: 879: 869: 865: 862: 857: 850: 844: 837: 835: 832: 827: 819: 817: 815: 806: 801: 799: 797: 792: 788: 783: 781: 777: 773: 768: 763: 761: 757: 752: 749: 745: 744: 737: 734: 729: 727: 724: 720: 718: 712: 703: 694: 692: 689: 685: 683: 679: 675: 671: 667: 661: 658: 648: 639: 637: 632: 627: 620: 615: 606: 601: 599: 594: 592: 587: 586: 584: 583: 577: 567: 566: 565: 564: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 529: 526: 525: 524: 521: 520: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 486: 479: 478: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 426: 422: 417: 416: 408: 407:Tychoplankton 405: 403: 400: 398: 395: 393: 390: 388: 385: 383: 380: 379: 372: 371: 363: 360: 359: 352: 349: 347: 344: 343: 342: 339: 338: 333: 330: 328: 325: 324: 317: 316: 308: 305: 304: 299: 296: 295: 288: 287:cyanobacteria 285: 284: 283: 280: 279: 272: 269: 267: 264: 262: 259: 256: 253: 252: 251: 248: 247: 240: 237: 235: 232: 229: 226: 225: 224: 221: 220: 213: 212: 204: 201: 199: 196: 194: 193:Picoeukaryote 191: 189: 186: 182: 179: 178: 177: 174: 172: 169: 167: 164: 163: 158: 155: 154: 150: 145: 144: 136: 135:Virioplankton 133: 131: 128: 126: 123: 121: 118: 117: 112: 109: 107: 106:Phytoplankton 104: 103: 99: 94: 93: 89: 85: 84: 81: 77: 73: 72: 69: 65: 63: 58: 52: 50: 46: 45:phytoplankton 42: 38: 29: 19: 5356: 5352: 5345: 5294: 5290: 5230: 5226: 5216: 5175: 5171: 5165: 5139: 5133: 5096: 5092: 5078: 5043: 5039: 4969: 4965: 4923: 4919: 4868: 4864: 4858: 4825: 4821: 4815: 4801:cite journal 4774: 4770: 4714: 4710: 4699: 4666: 4662: 4655: 4615:(1): 87–94. 4612: 4608: 4598: 4555: 4551: 4541: 4530:. Retrieved 4525: 4516: 4483: 4479: 4472: 4431: 4427: 4420: 4387:10.2741/e285 4377: 4373: 4317: 4313: 4307: 4274: 4270: 4264: 4215: 4211: 4198: 4147: 4143: 4133: 4084: 4080: 4073: 4024: 4020: 4013:Quinn, P. K. 4007: 3958: 3954: 3899: 3895: 3881: 3844: 3840: 3830: 3795: 3791: 3745: 3741: 3708: 3702: 3651: 3647: 3637: 3592: 3588: 3578: 3553:. Retrieved 3549: 3539: 3504: 3446: 3439: 3428:. Retrieved 3424: 3415: 3370: 3366: 3328:. Retrieved 3325:ScienceDaily 3324: 3315: 3304:. Retrieved 3300: 3290: 3264: 3229: 3185: 3181: 3171: 3136: 3132: 3084: 3080: 3070: 3035: 3031: 2997:cite journal 2970: 2962: 2957: 2949: 2945: 2940: 2932: 2928: 2923: 2912:. Retrieved 2908:the original 2898: 2890: 2886: 2881: 2873: 2869: 2853: 2849: 2798: 2794: 2750: 2746: 2686: 2682: 2672: 2613: 2609: 2561: 2557: 2502: 2498: 2433: 2429: 2375: 2371: 2307: 2303: 2236: 2232: 2190: 2186: 2145:(1): 22–39. 2142: 2138: 2070: 2066: 2026: 2022: 1967:(1): 55–77. 1964: 1960: 1892: 1888: 1836: 1832: 1782:(8): 16065. 1779: 1775: 1726: 1722: 1719:Quinn, P. K. 1673: 1669: 1655: 1628: 1624: 1572: 1541:Algal blooms 1505: 1490: 1481: 1468: 1459: 1433: 1424: 1400: 1382: 1373:Labrador Sea 1361: 1352: 1330:fluorescence 1327: 1320: 1309: 1305: 1286: 1284: 1264: 1248: 1244: 1235: 1231: 1223:R/V Atlantis 1220: 1213: 1177: 1154: 1145: 1136: 1118: 1103: 1091: 1068: 1046: 1033: 1025: 1015: 1002: 980: 970: 967:microcystins 948: 936: 924: 912: 885: 878:black carbon 874: 861:black carbon 854: 831:black carbon 823: 810: 787: 784: 779: 764: 753: 746: 742: 741: 721: 713: 709: 686: 662: 654: 635: 554: 449:Spring bloom 397:Meroplankton 387:Holoplankton 327:Aeroplankton 255:radiolarians 198:Picoplankton 125:Mycoplankton 120:Mixoplankton 98:Trophic mode 66: 53: 40: 36: 34: 18:NAAMES study 5297:(1): 3235. 5046:: 331–347. 4277:: 337–341. 2436:(5): 1162. 2073:(1): 7363. 1487:NAAMES Data 1403:zooplankton 1369:chlorophyll 1298:satellite. 1291:Argo floats 1285:Autonomous 1271:chlorophyll 1174:dispersion. 1160:Methodology 1027:Penicillium 972:Microcystis 938:Bioaerosols 933:Bioaerosols 791:Argo floats 776:downwelling 756:Gulf Stream 550:Thin layers 545:Planktology 540:Planktivore 489:Algaculture 429:Algal bloom 375:Other types 346:prokaryotes 332:Geoplankton 216:By taxonomy 111:Zooplankton 4532:2019-11-13 3555:2019-11-19 3430:2019-11-19 3359:Fowler, D. 3330:2019-11-19 3306:2019-11-19 2914:2019-11-18 1577:References 1551:Bioaerosol 1386:physiology 1334:tryptophan 1121:exopolymer 1018:Ascomycota 1011:rhinorrhea 1003:Ostreopsis 904:sulphates. 796:wind shear 760:water mass 678:parasitism 616:Background 320:By habitat 250:Protozoans 181:calcareous 166:Microalgae 5389:125904068 5381:0143-1161 5319:2045-2322 5267:0886-6236 5200:0278-6826 5125:2296-7745 5070:1352-2310 4994:0036-8075 4948:0148-0227 4893:0028-0836 4842:0036-8075 4731:1568-9883 4683:1538-3598 4629:1568-9883 4572:0959-8138 4500:0041-0101 4448:1748-2968 4396:1945-0494 4342:0013-936X 4299:0304-4203 4240:0025-326X 4172:1939-5590 4109:1522-7278 4049:0028-0836 3983:0028-0836 3926:2169-897X 3814:0028-0836 3762:0009-2665 3676:0094-8276 3629:1680-7324 3531:132094588 3481:cite book 3473:132106110 3407:1680-7324 3212:1680-7324 3163:1680-7324 3111:1680-7324 3062:1680-7324 2815:0012-9658 2767:1054-3139 2713:1941-1405 2664:207652303 2638:1941-1405 2586:1752-0894 2537:134340457 2505:: 76–95. 2460:1424-8220 2400:0196-2892 2334:1867-8548 2263:1094-4087 2209:103780635 2162:1912/9640 2095:2045-2322 2045:2296-7745 1919:1932-6203 1861:1758-678X 1796:2058-5276 1751:1752-0894 1702:2296-7745 1647:2296-7745 1391:subarctic 1009:, fever, 987:pneumonia 915:sea-spray 772:Upwelling 5403:Category 5337:29459666 5208:98466916 5087:(2017). 5010:23208395 5002:17829533 4850:40669114 4749:20161504 4691:15928279 4647:20352032 4508:19615396 4464:35250897 4456:19929741 4404:21196350 4350:17539512 4256:16960843 4248:25440191 4190:30122791 4125:30163983 4117:23065924 4057:22129724 3991:15470425 3873:26699469 3822:26354479 3770:25844487 3694:28781391 3564:cite web 2989:22832293 2831:15244953 2823:20462113 2775:83584002 2729:12903662 2721:24079309 2656:28961071 2556:lidar". 2478:28534844 2408:10381502 2352:33868504 2279:13753994 2271:29716037 2113:29743492 1999:28787760 1937:29370224 1889:PLOS ONE 1812:10149804 1804:27573103 1564:Archived 1510:See also 1443:measure 1205:Sampling 1110:proteins 1050:sulfates 982:Anabaena 856:Aerosols 851:Aerosols 684:depths. 631:NASA.gov 576:Category 351:protists 282:Bacteria 271:ciliates 80:Plankton 5361:Bibcode 5328:5818515 5299:Bibcode 5235:Bibcode 5180:Bibcode 5048:Bibcode 4974:Bibcode 4966:Science 4928:Bibcode 4901:4321239 4873:Bibcode 4822:Science 4779:Bibcode 4740:2796838 4638:2845976 4590:2116198 4581:1663139 4480:Toxicon 4412:2897136 4322:Bibcode 4279:Bibcode 4220:Bibcode 4181:6092954 4152:Bibcode 4089:Bibcode 4065:4417436 4029:Bibcode 3999:4388791 3963:Bibcode 3934:1167616 3904:Bibcode 3864:4889344 3685:5518298 3656:Bibcode 3597:Bibcode 3375:Bibcode 3190:Bibcode 3141:Bibcode 3089:Bibcode 3040:Bibcode 2795:Ecology 2691:Bibcode 2647:7394243 2618:Bibcode 2566:Bibcode 2507:Bibcode 2469:5470908 2438:Bibcode 2430:Sensors 2380:Bibcode 2343:8051007 2312:Bibcode 2241:Bibcode 2104:5943458 2075:Bibcode 2029:: 209. 1990:5763361 1969:Bibcode 1928:5784959 1897:Bibcode 1841:Bibcode 1731:Bibcode 1631:: 122. 1364:biomass 1349:Results 1287:in-situ 1007:dyspnea 674:grazing 670:biomass 509:f-ratio 307:Viruses 298:Archaea 266:amoebae 228:diatoms 149:By size 5387:  5379:  5335:  5325:  5317:  5265:  5206:  5198:  5154:  5123:  5068:  5008:  5000:  4992:  4946:  4899:  4891:  4865:Nature 4848:  4840:  4747:  4737:  4729:  4689:  4681:  4645:  4635:  4627:  4588:  4578:  4570:  4506:  4498:  4462:  4454:  4446:  4410:  4402:  4394:  4348:  4340:  4297:  4254:  4246:  4238:  4188:  4178:  4170:  4123:  4115:  4107:  4063:  4055:  4047:  4021:Nature 3997:  3989:  3981:  3955:Nature 3932:  3924:  3871:  3861:  3820:  3812:  3792:Nature 3768:  3760:  3715:  3692:  3682:  3674:  3627:  3529:  3519:  3471:  3461:  3405:  3279:  3244:  3210:  3161:  3109:  3060:  2987:  2829:  2821:  2813:  2773:  2765:  2727:  2719:  2711:  2662:  2654:  2644:  2636:  2584:  2535:  2476:  2466:  2458:  2406:  2398:  2350:  2340:  2332:  2277:  2269:  2261:  2207:  2111:  2101:  2093:  2043:  1997:  1987:  1935:  1925:  1917:  1859:  1810:  1802:  1794:  1749:  1700:  1645:  1138:view. 1114:lipids 1071:sulfur 993:, and 979:, and 957:, and 882:albedo 786:mixing 738:Debate 699:": --> 644:": --> 574:  555:NAAMES 421:Blooms 41:NAAMES 5385:S2CID 5204:S2CID 5006:S2CID 4897:S2CID 4846:S2CID 4460:S2CID 4408:S2CID 4252:S2CID 4208:(PDF) 4121:S2CID 4061:S2CID 3995:S2CID 3527:S2CID 3469:S2CID 2985:S2CID 2827:S2CID 2771:S2CID 2725:S2CID 2660:S2CID 2533:S2CID 2404:S2CID 2275:S2CID 2205:S2CID 1808:S2CID 1772:(PDF) 1471:LIDAR 1296:ARGOS 1251:C-130 1081:. As 223:Algae 5377:ISSN 5333:PMID 5315:ISSN 5263:ISSN 5196:ISSN 5152:ISBN 5121:ISSN 5066:ISSN 4998:PMID 4990:ISSN 4944:ISSN 4889:ISSN 4838:ISSN 4807:link 4745:PMID 4727:ISSN 4687:PMID 4679:ISSN 4663:JAMA 4643:PMID 4625:ISSN 4586:PMID 4568:ISSN 4504:PMID 4496:ISSN 4452:PMID 4444:ISSN 4400:PMID 4392:ISSN 4346:PMID 4338:ISSN 4295:ISSN 4244:PMID 4236:ISSN 4186:PMID 4168:ISSN 4113:PMID 4105:ISSN 4053:PMID 4045:ISSN 3987:PMID 3979:ISSN 3930:OSTI 3922:ISSN 3869:PMID 3818:PMID 3810:ISSN 3766:PMID 3758:ISSN 3713:ISBN 3690:PMID 3672:ISSN 3625:ISSN 3570:link 3517:ISBN 3487:link 3459:ISBN 3403:ISSN 3301:NASA 3277:ISBN 3242:ISBN 3208:ISSN 3159:ISSN 3107:ISSN 3058:ISSN 3010:help 2819:PMID 2811:ISSN 2763:ISSN 2717:PMID 2709:ISSN 2652:PMID 2634:ISSN 2582:ISSN 2474:PMID 2456:ISSN 2396:ISSN 2348:PMID 2330:ISSN 2267:PMID 2259:ISSN 2109:PMID 2091:ISSN 2041:ISSN 1995:PMID 1933:PMID 1915:ISSN 1857:ISSN 1800:PMID 1792:ISSN 1747:ISSN 1698:ISSN 1643:ISSN 1440:NADH 1438:and 1336:and 774:and 765:The 701:edit 655:The 646:edit 528:iron 35:The 5369:doi 5323:PMC 5307:doi 5253:hdl 5243:doi 5188:doi 5144:doi 5111:hdl 5101:doi 5056:doi 5044:154 4982:doi 4970:221 4936:doi 4924:100 4881:doi 4869:326 4830:doi 4826:276 4787:doi 4735:PMC 4719:doi 4671:doi 4667:293 4633:PMC 4617:doi 4576:PMC 4560:doi 4556:300 4488:doi 4436:doi 4382:doi 4330:doi 4287:doi 4228:doi 4176:PMC 4160:doi 4097:doi 4037:doi 4025:480 3971:doi 3959:431 3912:doi 3900:119 3859:PMC 3849:doi 3845:113 3800:doi 3796:525 3750:doi 3746:115 3680:PMC 3664:doi 3615:hdl 3605:doi 3509:doi 3451:doi 3393:hdl 3383:doi 3269:doi 3234:doi 3198:doi 3149:doi 3097:doi 3048:doi 2977:doi 2803:doi 2755:doi 2699:doi 2642:PMC 2626:doi 2574:doi 2523:hdl 2515:doi 2503:210 2464:PMC 2446:doi 2388:doi 2338:PMC 2320:doi 2249:doi 2195:doi 2157:hdl 2147:doi 2143:123 2099:PMC 2083:doi 2031:doi 1985:PMC 1977:doi 1923:PMC 1905:doi 1849:doi 1784:doi 1739:doi 1688:hdl 1678:doi 1633:doi 1436:ATP 997:. 943:DMS 499:CPR 5405:: 5383:. 5375:. 5367:. 5357:38 5355:. 5331:. 5321:. 5313:. 5305:. 5293:. 5289:. 5275:^ 5261:. 5251:. 5241:. 5231:33 5229:. 5225:. 5202:. 5194:. 5186:. 5176:44 5174:. 5150:, 5119:. 5109:. 5099:. 5095:. 5091:. 5064:. 5054:. 5042:. 5038:. 5018:^ 5004:. 4996:. 4988:. 4980:. 4968:. 4956:^ 4942:. 4934:. 4922:. 4909:^ 4895:. 4887:. 4879:. 4867:. 4844:. 4836:. 4824:. 4803:}} 4799:{{ 4785:. 4773:. 4769:. 4757:^ 4743:. 4733:. 4725:. 4713:. 4709:. 4685:. 4677:. 4665:. 4641:. 4631:. 4623:. 4611:. 4607:. 4584:. 4574:. 4566:. 4554:. 4550:. 4524:. 4502:. 4494:. 4484:55 4458:. 4450:. 4442:. 4432:10 4430:. 4406:. 4398:. 4390:. 4378:E3 4376:. 4372:. 4358:^ 4344:. 4336:. 4328:. 4318:41 4316:. 4293:. 4285:. 4275:30 4273:. 4250:. 4242:. 4234:. 4226:. 4216:89 4214:. 4210:. 4184:. 4174:. 4166:. 4158:. 4148:61 4146:. 4142:. 4119:. 4111:. 4103:. 4095:. 4085:29 4083:. 4059:. 4051:. 4043:. 4035:. 4023:. 4019:. 3993:. 3985:. 3977:. 3969:. 3957:. 3942:^ 3928:. 3920:. 3910:. 3898:. 3894:. 3867:. 3857:. 3843:. 3839:. 3816:. 3808:. 3794:. 3790:. 3778:^ 3764:. 3756:. 3744:. 3727:^ 3688:. 3678:. 3670:. 3662:. 3652:44 3650:. 3646:. 3623:. 3613:. 3603:. 3591:. 3587:. 3566:}} 3562:{{ 3548:. 3525:. 3515:. 3495:^ 3483:}} 3479:{{ 3467:. 3457:. 3423:. 3401:. 3391:. 3381:. 3371:15 3369:. 3365:. 3339:^ 3323:. 3299:. 3275:, 3255:^ 3240:, 3220:^ 3206:. 3196:. 3184:. 3180:. 3157:. 3147:. 3137:13 3135:. 3131:. 3119:^ 3105:. 3095:. 3085:18 3083:. 3079:. 3056:. 3046:. 3036:13 3034:. 3030:. 3018:^ 3001:: 2999:}} 2995:{{ 2983:. 2950:16 2948:, 2933:56 2931:, 2891:54 2889:, 2874:45 2872:, 2861:^ 2854:46 2852:, 2839:^ 2825:. 2817:. 2809:. 2799:91 2797:. 2783:^ 2769:. 2761:. 2751:18 2749:. 2737:^ 2723:. 2715:. 2707:. 2697:. 2685:. 2681:. 2658:. 2650:. 2640:. 2632:. 2624:. 2614:10 2612:. 2608:. 2594:^ 2580:. 2572:. 2562:10 2560:. 2545:^ 2531:. 2521:. 2513:. 2501:. 2486:^ 2472:. 2462:. 2454:. 2444:. 2434:17 2432:. 2428:. 2416:^ 2402:. 2394:. 2386:. 2376:56 2374:. 2360:^ 2346:. 2336:. 2328:. 2318:. 2308:11 2306:. 2302:. 2287:^ 2273:. 2265:. 2257:. 2247:. 2237:26 2235:. 2231:. 2217:^ 2203:. 2191:15 2189:. 2185:. 2171:^ 2155:. 2141:. 2137:. 2121:^ 2107:. 2097:. 2089:. 2081:. 2069:. 2065:. 2053:^ 2039:. 2025:. 2021:. 2007:^ 1993:. 1983:. 1975:. 1965:24 1963:. 1959:. 1945:^ 1931:. 1921:. 1913:. 1903:. 1893:13 1891:. 1887:. 1869:^ 1855:. 1847:. 1835:. 1820:^ 1806:. 1798:. 1790:. 1778:. 1774:. 1759:^ 1745:. 1737:. 1727:10 1725:. 1710:^ 1696:. 1686:. 1676:. 1672:. 1668:. 1641:. 1627:. 1623:. 1585:^ 1112:, 1108:, 989:, 974:, 953:, 5391:. 5371:: 5363:: 5339:. 5309:: 5301:: 5295:8 5269:. 5255:: 5245:: 5237:: 5210:. 5190:: 5182:: 5146:: 5127:. 5113:: 5103:: 5097:4 5072:. 5058:: 5050:: 5012:. 4984:: 4976:: 4950:. 4938:: 4930:: 4903:. 4883:: 4875:: 4852:. 4832:: 4809:) 4795:. 4789:: 4781:: 4775:9 4751:. 4721:: 4715:9 4693:. 4673:: 4649:. 4619:: 4613:4 4592:. 4562:: 4535:. 4510:. 4490:: 4466:. 4438:: 4414:. 4384:: 4352:. 4332:: 4324:: 4301:. 4289:: 4281:: 4258:. 4230:: 4222:: 4192:. 4162:: 4154:: 4127:. 4099:: 4091:: 4067:. 4039:: 4031:: 4001:. 3973:: 3965:: 3936:. 3914:: 3906:: 3875:. 3851:: 3824:. 3802:: 3772:. 3752:: 3721:. 3696:. 3666:: 3658:: 3631:. 3617:: 3607:: 3599:: 3593:5 3572:) 3558:. 3533:. 3511:: 3489:) 3475:. 3453:: 3433:. 3409:. 3395:: 3385:: 3377:: 3333:. 3309:. 3271:: 3236:: 3214:. 3200:: 3192:: 3186:8 3165:. 3151:: 3143:: 3113:. 3099:: 3091:: 3064:. 3050:: 3042:: 3012:) 3008:( 2991:. 2979:: 2917:. 2833:. 2805:: 2777:. 2757:: 2731:. 2701:: 2693:: 2687:6 2666:. 2628:: 2620:: 2588:. 2576:: 2568:: 2539:. 2525:: 2517:: 2509:: 2480:. 2448:: 2440:: 2410:. 2390:: 2382:: 2354:. 2322:: 2314:: 2281:. 2251:: 2243:: 2211:. 2197:: 2165:. 2159:: 2149:: 2115:. 2085:: 2077:: 2071:8 2047:. 2033:: 2027:5 2001:. 1979:: 1971:: 1939:. 1907:: 1899:: 1863:. 1851:: 1843:: 1837:6 1814:. 1786:: 1780:1 1753:. 1741:: 1733:: 1704:. 1690:: 1680:: 1674:4 1649:. 1635:: 1629:6 780:. 705:] 650:] 604:e 597:t 590:v 39:( 20:)

Index

NAAMES study

phytoplankton
atmospheric aerosols
primary production
remote sensing
Plankton
Phytoplankton
Trophic mode
Phytoplankton
Zooplankton
Mixoplankton
Mycoplankton
Bacterioplankton
Virioplankton
By size
Heterotrophic picoplankton
Microalgae
Microzooplankton
Nanophytoplankton
calcareous
Photosynthetic picoplankton
Picoeukaryote
Picoplankton
Marine microplankton
Algae
diatoms
coccolithophores
dinoflagellates
Protozoans

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑