Knowledge (XXG)

NC (complexity)

Source 📝

925: 1341: 780: 1450: 2083:
is also a 5-cycle. (The existence of such elements was established in Lemma 2.) If one or both of the circuits outputs 0, the resulting program will be the identity due to cancellation; if both circuits output 1, the resulting program will output the commutator
461: 1018: 820: 1219: 1238: 179:, but most researchers suspect this to be false, meaning that there are probably some tractable problems that are "inherently sequential" and cannot significantly be sped up by using parallelism. Just as the class 318:
An example of problem in NC is the parity check on a bit string. The problem consists in counting the number of 1s in a string made of 1 and 0. A simple solution consists in summing all the string's bits. Since
651: 689: 66: 1347: 1719:
Every regular language on {0,1} can be recognized by a family of branching programs of constant width and linear number of instructions (since a DFA can be converted to a branching program).
1755:
can be computed by a family of branching programs of constant width and polynomial size, while intuition might suggest that to achieve polynomial size, one needs a linear number of states.
1467:
operates only on a constant length of input bits. It is therefore described as the class of functions definable by uniform boolean circuits with constant depth and bounded fan-in.
326: 1100: 1647: 1614: 1680: 509: 563: 536: 940: 920:{\displaystyle {\mathsf {NC}}^{1}\subseteq {\mathsf {L}}\subseteq {\mathsf {NL}}\subseteq {\mathsf {AC}}^{1}\subseteq {\mathsf {NC}}^{2}\subseteq {\mathsf {P}}.} 72: 2713: 210:
is not affected by the choice of how the PRAM handles simultaneous access to a single bit by more than one processor. It can be CRCW, CREW, or EREW. See
1716:
on {0,1} can be recognized by a family of branching programs of width 5 and exponential length, or by a family of exponential width and linear length.
1164: 1336:{\displaystyle {\mathsf {NC}}^{1}\subset \cdots \subset {\mathsf {NC}}^{i}\subset \cdots \subset {\mathsf {NC}}^{i+j}\subset \cdots {\mathsf {NC}}} 206:). That is a parallel computer with a central pool of memory, and any processor can access any bit of memory in constant time. The definition of 1579:
of the program (more precisely, the yield on an input is the function mapping any initial state to the corresponding final state). The program
2485: 775:{\displaystyle {\mathsf {NC}}^{1}\subseteq {\mathsf {NC}}^{2}\subseteq \cdots \subseteq {\mathsf {NC}}^{i}\subseteq \cdots {\mathsf {NC}}} 664:
is the class of decision problems decidable by uniform boolean circuits with a polynomial number of gates of at most two inputs and depth
572: 3075: 2674: 2641: 2618: 2579: 2544: 2516: 27: 2706: 2175: 294:
Often algorithms for those problems had to be separately invented and could not be naïvely adapted from well-known algorithms –
1111: 79: 1445:{\displaystyle {\mathsf {NC}}^{1}\subset \cdots \subset {\mathsf {NC}}^{i}=\cdots ={\mathsf {NC}}^{i+j}=\cdots {\mathsf {NC}}} 930:
The NC classes are related to the AC classes, which are defined similarly, but with gates having unbounded fan-in. For each
211: 203: 1763:
A branching program of constant width and polynomial size can be easily converted (via divide-and-conquer) to a circuit in
1455:
It is widely believed that (1) is the case, although no proof as to the truth of either statement has yet been discovered.
171:
because polylogarithmic parallel computations can be simulated by polynomial-time sequential ones. It is unknown whether
3115: 3110: 2699: 1723:
denotes the class of languages recognizable by a family of branching programs of bounded width and polynomial length.
2898: 225:(which can be calculated from the length of the input, for NC, we suppose we can compute the Boolean circuit of size 3091: 2477: 1043: 2317:
IAS/PCMI Summer Session 2000 - Clay Mathematics Undergraduate Program - Basic Course on Computational Complexity
2157:
is the depth of the circuit. If the circuit has logarithmic depth, the branching program has polynomial length.
3080: 1539:
are called states of the branching program. The program initially starts in state 1, and each instruction (
3034: 2602: 456:{\displaystyle x_{1}+\cdots +x_{n}=(x_{1}+\cdots +x_{\frac {n}{2}})+(x_{{\frac {n}{2}}+1}+\cdots +x_{n})} 3029: 3024: 2243: 307: 274: 259:, by a slight abuse of language, one might classify function problems and search problems as being in 3019: 1734: 1057: 295: 91: 2533: 1619: 1586: 195:
reductions, can be thought of as "probably not parallelizable" or "probably inherently sequential".
2320: 1575:
th variable is 0 or 1. The function mapping an input to a final state of the program is called the
299: 2309: 2267: 303: 95: 1652: 156: 470: 3039: 2670: 2637: 2614: 2575: 2540: 2512: 2481: 2439: 2259: 2224: 1752: 146:, who had done extensive research on circuits with polylogarithmic depth and polynomial size. 2005:
and then multiply the output of the program by α. By Lemma 1, we get a branching program for
1013:{\displaystyle {\mathsf {NC}}^{i}\subseteq {\mathsf {AC}}^{i}\subseteq {\mathsf {NC}}^{i+1}.} 3003: 2893: 2825: 2815: 2722: 2680: 2647: 2585: 2522: 2491: 2447: 2429: 2379: 2251: 2214: 566: 285: 87: 2928: 541: 514: 2998: 2988: 2945: 2935: 2918: 2908: 2866: 2861: 2856: 2840: 2820: 2798: 2793: 2776: 2771: 2766: 2761: 2684: 2666: 2651: 2589: 2571: 2526: 2508: 2495: 2451: 1844: 810: 804: 234: 222: 2410: 163:
can be thought of as the problems that can be efficiently solved on a parallel computer.
2993: 2881: 2803: 2756: 2630: 2411:"Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in 1741: 798: 278: 151: 143: 117: 2219: 2202: 2187: 3104: 2469: 2434: 1952:. We will show that for all 5-cycles α, there exists a branching program α-computing 2563: 2550: 2271: 683:)) on a parallel computer with a polynomial number of processors. Clearly, we have 139: 98:
with a polynomial number of processors. In other words, a problem with input size
2660: 2871: 2781: 1158:-hierarchy collapse because even a single equality in the chain of containments 464: 181: 1214:{\displaystyle {\mathsf {NC}}^{1}\subseteq {\mathsf {NC}}^{2}\subseteq \cdots } 2983: 2808: 2383: 2070:, and δ-compute B for a choice of 5-cycles γ and δ such that their commutator 1882: 187: 2443: 2263: 2228: 1774:
is given. Without loss of generality, assume it uses only AND and NOT gates.
2978: 15: 2370:
S. Bellantoni and I. Oitavem (2004). "Separating NC along the delta axis".
1784:
If there exists a branching program that sometimes works as a permutation
2973: 2968: 2913: 2736: 2255: 1843:
As a consequence of Lemma 1 and the fact that all cycles of length 5 are
320: 2963: 2110:
are two 5-cycles, they are conjugate, and hence there exists a program
2923: 3070: 3065: 2940: 2691: 2128:
By assuming the subcircuits have branching programs so that they are
2248:
20th Annual Symposium on Foundations of Computer Science (SFCS 1979)
1751:
The theorem is rather surprising. For instance, it implies that the
1693:
A family of branching programs consists of a branching program with
1971:, the branching program we need has just one instruction: checking 646:{\displaystyle (x_{i}\land \neg x_{j})\lor (\neg x_{i}\land x_{j})} 237:
depth and a polynomial number of gates with a maximum fan-in of 2.
3060: 3055: 2876: 2507:. Texts in Theoretical Computer Science. An EATCS Series. Berlin: 2209:. International Conference on Foundations of Computation Theory. 2176:"Towards a complexity theory of synchronous parallel computation" 2888: 2746: 1859:, then there exists a branching program β-computing the circuit 1792:, by right-multiplying permutations in the first instruction by 463:. Recursively applying such property, it is possible to build a 2695: 2636:. Progress in Theoretical Computer Science. Basel: Birkhäuser. 1118:
hierarchy is proper. It was observed by Papadimitriou that, if
198:
The parallel computer in the definition can be assumed to be a
2903: 2835: 2830: 2751: 2741: 1948:
and 5-cycles α, there exists a branching program α-computing
302:
rely on operations performed in sequence. One might contrast
1855:, if there exists a branching program α-computing a circuit 61:{\displaystyle {\mathsf {NC}}{\overset {?}{=}}{\mathsf {P}}} 1800:, we can make a circuit of the same length that behaves as 1705:
variable program accepts the language restricted to length
185:
can be thought of as "probably intractable", so the class
221:
can be defined as those decision problems decidable by a
1616:
of variable values when there is some set of functions
284:
Polynomial GCD, by a reduction to linear algebra using
2662:
Introduction to circuit complexity. A uniform approach
2203:"A taxonomy of problems with fast parallel algorithms" 2153:
The size of the branching program is at most 4, where
2632:
Finite automata, formal logic, and circuit complexity
2536:
Limits To Parallel computation; P-Completeness Theory
1917:
We will now prove Barrington's theorem by induction:
1655: 1622: 1589: 1350: 1241: 1167: 1060: 943: 823: 692: 675:, or the class of decision problems solvable in time 575: 544: 517: 473: 329: 30: 1046:
restricted to at most two options at each step with
3048: 3012: 2956: 2849: 2729: 2534:Greenlaw, Raymond, James Hoover, and Walter Ruzzo. 1495:
instructions. Each of the instructions is a tuple (
2629: 2613:(1st ed.). Addison Wesley. pp. 375–381. 2308:David Mix Barrington; Alexis Maciel (2000-07-18). 1978:'s value (0 or 1), and outputting the identity or 1796:, and in the last instruction left-multiplying by 1674: 1641: 1608: 1444: 1335: 1213: 1094: 1031:. It is known that both inclusions are strict for 1023:As an immediate consequence of this, we have that 1012: 919: 774: 645: 557: 530: 503: 455: 60: 2665:. Texts in Theoretical Computer Science. Berlin: 1824:Call a branching program α-computing a circuit 271:Integer addition, multiplication and division; 2707: 1511:is the index of variable to check (1 ≤ 1042:is equivalent to the problems solvable on an 267:is known to include many problems, including 155:can be thought of as the tractable problems ( 8: 2310:"Lecture 2: The Complexity of Some Problems" 73:(more unsolved problems in computer science) 2474:Computational complexity. A modern approach 1867: 1778: 1114:is whether or not every containment in the 2714: 2700: 2692: 2503:Clote, Peter; Kranakis, Evangelos (2002). 2433: 2218: 1666: 1654: 1633: 1621: 1600: 1588: 1433: 1432: 1414: 1405: 1404: 1388: 1379: 1378: 1362: 1353: 1352: 1349: 1324: 1323: 1305: 1296: 1295: 1279: 1270: 1269: 1253: 1244: 1243: 1240: 1228:hierarchy "collapses" down to some level 1199: 1190: 1189: 1179: 1170: 1169: 1166: 1077: 1059: 995: 986: 985: 975: 966: 965: 955: 946: 945: 942: 908: 907: 898: 889: 888: 878: 869: 868: 855: 854: 845: 844: 835: 826: 825: 822: 763: 762: 750: 741: 740: 724: 715: 714: 704: 695: 694: 691: 634: 621: 599: 583: 574: 549: 543: 522: 516: 472: 444: 413: 412: 388: 369: 353: 334: 328: 52: 51: 41: 32: 31: 29: 2505:Boolean functions and computation models 2395: 2393: 2347: 2345: 2294: 2292: 2290: 2166: 1712:It is easy to show that every language 1437: 1434: 1409: 1406: 1383: 1380: 1357: 1354: 1328: 1325: 1300: 1297: 1274: 1271: 1248: 1245: 1194: 1191: 1174: 1171: 990: 987: 970: 967: 950: 947: 909: 893: 890: 873: 870: 859: 856: 846: 830: 827: 767: 764: 745: 742: 719: 716: 699: 696: 569:, e.g. through the boolean expression 53: 36: 33: 2555:The design and analysis of algorithms 2149:also has this property, as required. 142:coined the name "Nick's class" after 7: 1940:and assume that for all subcircuits 511:in which every sum between two bits 18:Unsolved problem in computer science 2088:. In other words, we get a program 2046:, join the branching programs that 2009:outputting the identity or α, i.e. 1232:. Thus, there are 2 possibilities: 114:such that it can be solved in time 86:(for "Nick's Class") is the set of 614: 592: 214:for descriptions of those models. 14: 3076:Probabilistically checkable proof 2605:(1993). "Section 15.3: The class 2351:Clote & Kranakis (2002) p.437 2339:Papadimitriou (1994) Theorem 16.1 2244:"On simultaneous resource bounds" 1770:Conversely, suppose a circuit in 1701:. It accepts a language when the 565:is expressible by means of basic 2399:Clote & Kranakis (2002) p.50 2360:Clote & Kranakis (2002) p.12 2201:Cook, Stephen A. (1985-01-01). 1788:and sometimes as a permutation 1686:precisely when its yield is in 1527:are functions from {1, 2, ..., 1154:. This observation is known as 1095:{\displaystyle (\log n)^{O(1)}} 200:parallel, random-access machine 80:computational complexity theory 2298:Arora & Barak (2009) p.118 2284:Arora & Barak (2009) p.120 1964:simply outputs some input bit 1649:such that a variable sequence 1642:{\displaystyle F\subset k^{k}} 1609:{\displaystyle A\subset 2^{n}} 1087: 1081: 1074: 1061: 640: 611: 605: 576: 498: 495: 489: 477: 450: 405: 399: 362: 1: 2570:. Texts in Computer Science. 2409:Barrington, David A. (1989). 2220:10.1016/S0019-9958(85)80041-3 1997:, create a branching program 1828:if it works as identity when 1759:Proof of Barrington's theorem 796:classes to the space classes 2435:10.1016/0022-0000(89)90037-8 2372:Theoretical Computer Science 2242:Pippenger, Nicholas (1979). 2132:-computing for all 5-cycles 1571:), depending on whether the 2180:L'Enseignement Mathématique 1993:for some different circuit 1897:is a 5-cycle. For example, 1110:One major open question in 1106:Open problem: Is NC proper? 290:Finding a maximal matching. 247:with access to randomness. 3132: 3092:List of complexity classes 2659:Vollmer, Heribert (1998). 2628:Straubing, Howard (1994). 2478:Cambridge University Press 1920:Suppose we have a circuit 1675:{\displaystyle x\in 2^{n}} 1491:consists of a sequence of 1044:alternating Turing machine 3089: 2384:10.1016/j.tcs.2003.10.021 1551:) changes the state from 504:{\displaystyle O(log(n))} 106:if there exist constants 3081:Interactive proof system 2611:Computational Complexity 2594:Lecture 12: Relation of 2186:: 99–124. Archived from 1744:of the symmetric group S 1224:implies that the entire 1038:Similarly, we have that 229:in logarithmic space in 2603:Papadimitriou, Christos 2559:Lectures 28 - 34 and 36 2207:Information and Control 1847:, for any two 5-cycles 1832:'s output is 0, and as 1758: 1470: 223:uniform Boolean circuit 3035:Arithmetical hierarchy 2472:; Barak, Boaz (2009). 1863:, of the same length. 1676: 1643: 1610: 1535:}. Numbers 1, 2, ..., 1446: 1337: 1215: 1096: 1014: 921: 776: 647: 559: 532: 505: 457: 62: 3030:Grzegorczyk hierarchy 3025:Exponential hierarchy 2957:Considered infeasible 2598:to Time-Space Classes 2568:Theory of Computation 1905:= (1 3 5 4 2) giving 1873:There exist 5-cycles 1740:. The proof uses the 1677: 1644: 1611: 1447: 1338: 1216: 1097: 1015: 922: 777: 648: 560: 558:{\displaystyle x_{j}} 533: 531:{\displaystyle x_{i}} 506: 458: 308:carry-lookahead adder 275:Matrix multiplication 243:is a class extending 138:parallel processors. 63: 3020:Polynomial hierarchy 2850:Suspected infeasible 2422:J. Comput. Syst. Sci 2256:10.1109/SFCS.1979.29 1727:Barrington's theorem 1653: 1620: 1587: 1471:Barrington's theorem 1348: 1239: 1165: 1058: 941: 821: 690: 573: 542: 515: 471: 327: 296:Gaussian elimination 92:polylogarithmic time 28: 3049:Families of classes 2730:Considered feasible 2321:Clarkson University 2174:Cook, S.A. (1981). 1924:which takes inputs 1871: —  1782: —  1697:variables for each 1483:variables of width 1146:, and as a result, 300:Euclidean algorithm 3116:Circuit complexity 3111:Complexity classes 2723:Complexity classes 1915: 1869: 1780: 1672: 1639: 1606: 1463:The special class 1442: 1333: 1211: 1092: 1010: 917: 792:We can relate the 772: 643: 555: 528: 501: 453: 304:ripple carry adder 149:Just as the class 58: 3098: 3097: 3040:Boolean hierarchy 3013:Class hierarchies 2487:978-0-521-42426-4 1913: 1753:majority function 1531:} to {1, 2, ..., 1477:branching program 1112:complexity theory 567:logical operators 421: 396: 96:parallel computer 88:decision problems 49: 3123: 2716: 2709: 2702: 2693: 2688: 2655: 2635: 2624: 2593: 2564:Kozen, Dexter C. 2558: 2551:Kozen, Dexter C. 2530: 2499: 2456: 2455: 2437: 2419: 2406: 2400: 2397: 2388: 2387: 2367: 2361: 2358: 2352: 2349: 2340: 2337: 2331: 2330: 2328: 2327: 2314: 2305: 2299: 2296: 2285: 2282: 2276: 2275: 2239: 2233: 2232: 2222: 2198: 2192: 2191: 2171: 2145:, we have shown 2144: 2123: 2101: 2082: 2037: 1896: 1881:such that their 1872: 1840:'s output is 1. 1820:, respectively. 1783: 1681: 1679: 1678: 1673: 1671: 1670: 1648: 1646: 1645: 1640: 1638: 1637: 1615: 1613: 1612: 1607: 1605: 1604: 1451: 1449: 1448: 1443: 1441: 1440: 1425: 1424: 1413: 1412: 1393: 1392: 1387: 1386: 1367: 1366: 1361: 1360: 1342: 1340: 1339: 1334: 1332: 1331: 1316: 1315: 1304: 1303: 1284: 1283: 1278: 1277: 1258: 1257: 1252: 1251: 1220: 1218: 1217: 1212: 1204: 1203: 1198: 1197: 1184: 1183: 1178: 1177: 1101: 1099: 1098: 1093: 1091: 1090: 1019: 1017: 1016: 1011: 1006: 1005: 994: 993: 980: 979: 974: 973: 960: 959: 954: 953: 926: 924: 923: 918: 913: 912: 903: 902: 897: 896: 883: 882: 877: 876: 863: 862: 850: 849: 840: 839: 834: 833: 785:which forms the 781: 779: 778: 773: 771: 770: 755: 754: 749: 748: 729: 728: 723: 722: 709: 708: 703: 702: 674: 657:The NC hierarchy 652: 650: 649: 644: 639: 638: 626: 625: 604: 603: 588: 587: 564: 562: 561: 556: 554: 553: 537: 535: 534: 529: 527: 526: 510: 508: 507: 502: 462: 460: 459: 454: 449: 448: 430: 429: 422: 414: 398: 397: 389: 374: 373: 358: 357: 339: 338: 323:is associative, 286:Sylvester matrix 137: 126: 69: 67: 65: 64: 59: 57: 56: 50: 42: 40: 39: 19: 3131: 3130: 3126: 3125: 3124: 3122: 3121: 3120: 3101: 3100: 3099: 3094: 3085: 3044: 3008: 2952: 2946:PSPACE-complete 2845: 2725: 2720: 2677: 2667:Springer-Verlag 2658: 2644: 2627: 2621: 2601: 2582: 2572:Springer-Verlag 2562: 2549: 2519: 2509:Springer-Verlag 2502: 2488: 2468: 2465: 2460: 2459: 2417: 2408: 2407: 2403: 2398: 2391: 2369: 2368: 2364: 2359: 2355: 2350: 2343: 2338: 2334: 2325: 2323: 2312: 2307: 2306: 2302: 2297: 2288: 2283: 2279: 2241: 2240: 2236: 2200: 2199: 2195: 2173: 2172: 2168: 2163: 2151: 2143: 2136: 2133: 2131: 2115: 2113: 2109: 2105: 2093: 2091: 2087: 2071: 2065: 2057: 2049: 2029: 2024:If the circuit 2012: 2000: 1985:If the circuit 1982:(respectively). 1981: 1977: 1976: 1969: 1960:If the circuit 1939: 1930: 1911: 1909:= (1 3 2 5 4). 1908: 1904: 1901:= (1 2 3 4 5), 1900: 1885: 1880: 1876: 1870: 1854: 1850: 1839: 1835: 1831: 1822: 1819: 1813: 1809: 1803: 1799: 1795: 1781: 1761: 1747: 1662: 1651: 1650: 1629: 1618: 1617: 1596: 1585: 1584: 1473: 1461: 1403: 1377: 1351: 1346: 1345: 1294: 1268: 1242: 1237: 1236: 1188: 1168: 1163: 1162: 1108: 1073: 1056: 1055: 984: 964: 944: 939: 938: 887: 867: 824: 819: 818: 739: 713: 693: 688: 687: 665: 659: 630: 617: 595: 579: 571: 570: 545: 540: 539: 518: 513: 512: 469: 468: 440: 408: 384: 365: 349: 330: 325: 324: 316: 277:, determinant, 253: 235:polylogarithmic 167:is a subset of 157:Cobham's thesis 128: 115: 76: 75: 70: 26: 25: 23: 21: 17: 12: 11: 5: 3129: 3127: 3119: 3118: 3113: 3103: 3102: 3096: 3095: 3090: 3087: 3086: 3084: 3083: 3078: 3073: 3068: 3063: 3058: 3052: 3050: 3046: 3045: 3043: 3042: 3037: 3032: 3027: 3022: 3016: 3014: 3010: 3009: 3007: 3006: 3001: 2996: 2991: 2986: 2981: 2976: 2971: 2966: 2960: 2958: 2954: 2953: 2951: 2950: 2949: 2948: 2938: 2933: 2932: 2931: 2921: 2916: 2911: 2906: 2901: 2896: 2891: 2886: 2885: 2884: 2882:co-NP-complete 2879: 2874: 2869: 2859: 2853: 2851: 2847: 2846: 2844: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2812: 2811: 2801: 2796: 2791: 2786: 2785: 2784: 2774: 2769: 2764: 2759: 2754: 2749: 2744: 2739: 2733: 2731: 2727: 2726: 2721: 2719: 2718: 2711: 2704: 2696: 2690: 2689: 2675: 2656: 2642: 2625: 2619: 2599: 2580: 2560: 2547: 2531: 2517: 2500: 2486: 2470:Arora, Sanjeev 2464: 2461: 2458: 2457: 2428:(1): 150–164. 2401: 2389: 2378:(1–2): 57–78. 2362: 2353: 2341: 2332: 2300: 2286: 2277: 2234: 2193: 2190:on 2022-03-10. 2165: 2164: 2162: 2159: 2141: 2134: 2129: 2126: 2125: 2111: 2107: 2103: 2089: 2085: 2063: 2055: 2047: 2022: 2010: 1998: 1983: 1979: 1974: 1972: 1967: 1935: 1928: 1912: 1906: 1902: 1898: 1878: 1874: 1865: 1852: 1848: 1837: 1833: 1829: 1817: 1811: 1807: 1801: 1797: 1793: 1776: 1760: 1757: 1745: 1742:nonsolvability 1669: 1665: 1661: 1658: 1636: 1632: 1628: 1625: 1603: 1599: 1595: 1592: 1472: 1469: 1460: 1457: 1453: 1452: 1439: 1436: 1431: 1428: 1423: 1420: 1417: 1411: 1408: 1402: 1399: 1396: 1391: 1385: 1382: 1376: 1373: 1370: 1365: 1359: 1356: 1343: 1330: 1327: 1322: 1319: 1314: 1311: 1308: 1302: 1299: 1293: 1290: 1287: 1282: 1276: 1273: 1267: 1264: 1261: 1256: 1250: 1247: 1222: 1221: 1210: 1207: 1202: 1196: 1193: 1187: 1182: 1176: 1173: 1107: 1104: 1102:alternations. 1089: 1086: 1083: 1080: 1076: 1072: 1069: 1066: 1063: 1021: 1020: 1009: 1004: 1001: 998: 992: 989: 983: 978: 972: 969: 963: 958: 952: 949: 928: 927: 916: 911: 906: 901: 895: 892: 886: 881: 875: 872: 866: 861: 858: 853: 848: 843: 838: 832: 829: 783: 782: 769: 766: 761: 758: 753: 747: 744: 738: 735: 732: 727: 721: 718: 712: 707: 701: 698: 658: 655: 642: 637: 633: 629: 624: 620: 616: 613: 610: 607: 602: 598: 594: 591: 586: 582: 578: 552: 548: 525: 521: 500: 497: 494: 491: 488: 485: 482: 479: 476: 452: 447: 443: 439: 436: 433: 428: 425: 420: 417: 411: 407: 404: 401: 395: 392: 387: 383: 380: 377: 372: 368: 364: 361: 356: 352: 348: 345: 342: 337: 333: 315: 312: 292: 291: 288: 282: 272: 252: 251:Problems in NC 249: 217:Equivalently, 144:Nick Pippenger 71: 55: 48: 45: 38: 35: 22: 16: 13: 10: 9: 6: 4: 3: 2: 3128: 3117: 3114: 3112: 3109: 3108: 3106: 3093: 3088: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3053: 3051: 3047: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3017: 3015: 3011: 3005: 3002: 3000: 2997: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2962: 2961: 2959: 2955: 2947: 2944: 2943: 2942: 2939: 2937: 2934: 2930: 2927: 2926: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2864: 2863: 2860: 2858: 2855: 2854: 2852: 2848: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2810: 2807: 2806: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2783: 2780: 2779: 2778: 2775: 2773: 2770: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2750: 2748: 2745: 2743: 2740: 2738: 2735: 2734: 2732: 2728: 2724: 2717: 2712: 2710: 2705: 2703: 2698: 2697: 2694: 2686: 2682: 2678: 2676:3-540-64310-9 2672: 2668: 2664: 2663: 2657: 2653: 2649: 2645: 2643:3-7643-3719-2 2639: 2634: 2633: 2626: 2622: 2620:0-201-53082-1 2616: 2612: 2608: 2604: 2600: 2597: 2591: 2587: 2583: 2581:1-84628-297-7 2577: 2573: 2569: 2565: 2561: 2556: 2552: 2548: 2546: 2545:0-19-508591-4 2542: 2539: 2537: 2532: 2528: 2524: 2520: 2518:3-540-59436-1 2514: 2510: 2506: 2501: 2497: 2493: 2489: 2483: 2479: 2475: 2471: 2467: 2466: 2462: 2453: 2449: 2445: 2441: 2436: 2431: 2427: 2423: 2416: 2414: 2405: 2402: 2396: 2394: 2390: 2385: 2381: 2377: 2373: 2366: 2363: 2357: 2354: 2348: 2346: 2342: 2336: 2333: 2322: 2318: 2311: 2304: 2301: 2295: 2293: 2291: 2287: 2281: 2278: 2273: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2238: 2235: 2230: 2226: 2221: 2216: 2212: 2208: 2204: 2197: 2194: 2189: 2185: 2181: 2177: 2170: 2167: 2160: 2158: 2156: 2150: 2148: 2140: 2122: 2118: 2100: 2096: 2081: 2078: 2074: 2069: 2061: 2053: 2045: 2041: 2038:for circuits 2036: 2032: 2027: 2023: 2020: 2016: 2008: 2004: 1996: 1992: 1988: 1984: 1970: 1963: 1959: 1958: 1957: 1955: 1951: 1947: 1943: 1938: 1934: 1927: 1923: 1918: 1910: 1895: 1892: 1888: 1884: 1864: 1862: 1858: 1846: 1841: 1827: 1821: 1816: 1806: 1791: 1787: 1775: 1773: 1768: 1766: 1756: 1754: 1749: 1743: 1739: 1736: 1732: 1728: 1724: 1722: 1717: 1715: 1710: 1708: 1704: 1700: 1696: 1691: 1689: 1685: 1667: 1663: 1659: 1656: 1634: 1630: 1626: 1623: 1601: 1597: 1593: 1590: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1468: 1466: 1458: 1456: 1429: 1426: 1421: 1418: 1415: 1400: 1397: 1394: 1389: 1374: 1371: 1368: 1363: 1344: 1320: 1317: 1312: 1309: 1306: 1291: 1288: 1285: 1280: 1265: 1262: 1259: 1254: 1235: 1234: 1233: 1231: 1227: 1208: 1205: 1200: 1185: 1180: 1161: 1160: 1159: 1157: 1153: 1149: 1145: 1142: ≥  1141: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1105: 1103: 1084: 1078: 1070: 1067: 1064: 1053: 1049: 1045: 1041: 1036: 1034: 1030: 1026: 1007: 1002: 999: 996: 981: 976: 961: 956: 937: 936: 935: 933: 914: 904: 899: 884: 879: 864: 851: 841: 836: 817: 816: 815: 813: 812: 807: 806: 801: 800: 795: 790: 788: 759: 756: 751: 736: 733: 730: 725: 710: 705: 686: 685: 684: 682: 678: 672: 668: 663: 656: 654: 635: 631: 627: 622: 618: 608: 600: 596: 589: 584: 580: 568: 550: 546: 523: 519: 492: 486: 483: 480: 474: 466: 445: 441: 437: 434: 431: 426: 423: 418: 415: 409: 402: 393: 390: 385: 381: 378: 375: 370: 366: 359: 354: 350: 346: 343: 340: 335: 331: 322: 313: 311: 309: 305: 301: 297: 289: 287: 283: 280: 276: 273: 270: 269: 268: 266: 262: 258: 250: 248: 246: 242: 238: 236: 232: 228: 224: 220: 215: 213: 209: 205: 201: 196: 194: 191:, when using 190: 189: 184: 183: 178: 174: 170: 166: 162: 158: 154: 153: 147: 145: 141: 135: 131: 124: 120: 119: 113: 109: 105: 101: 97: 93: 90:decidable in 89: 85: 81: 74: 46: 43: 2788: 2661: 2631: 2610: 2606: 2595: 2567: 2554: 2535: 2504: 2473: 2425: 2421: 2412: 2404: 2375: 2371: 2365: 2356: 2335: 2324:. Retrieved 2316: 2303: 2280: 2247: 2237: 2210: 2206: 2196: 2188:the original 2183: 2179: 2169: 2154: 2152: 2146: 2138: 2127: 2120: 2116: 2098: 2094: 2079: 2076: 2072: 2067: 2059: 2051: 2043: 2039: 2034: 2030: 2025: 2018: 2014: 2013:-computing ¬ 2006: 2002: 1994: 1990: 1986: 1965: 1961: 1953: 1949: 1945: 1941: 1936: 1932: 1925: 1921: 1919: 1916: 1893: 1890: 1886: 1866: 1860: 1856: 1842: 1825: 1823: 1814: 1804: 1789: 1785: 1777: 1771: 1769: 1764: 1762: 1750: 1737: 1730: 1726: 1725: 1720: 1718: 1713: 1711: 1706: 1702: 1698: 1694: 1692: 1687: 1683: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1474: 1464: 1462: 1454: 1229: 1225: 1223: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1109: 1054:) space and 1051: 1047: 1039: 1037: 1032: 1028: 1024: 1022: 931: 929: 809: 803: 797: 793: 791: 789:-hierarchy. 786: 784: 680: 676: 670: 666: 661: 660: 317: 293: 264: 260: 256: 254: 244: 240: 239: 230: 226: 218: 216: 207: 199: 197: 192: 186: 180: 176: 172: 168: 164: 160: 150: 148: 140:Stephen Cook 133: 129: 122: 116: 111: 107: 103: 99: 83: 82:, the class 77: 2929:#P-complete 2867:NP-complete 2782:NL-complete 2250:: 307–311. 2213:(1): 2–22. 2124:by Lemma 1. 2114:-computing 2092:-computing 2001:-computing 1733:is exactly 1487:and length 465:binary tree 182:NP-complete 3105:Categories 2984:ELEMENTARY 2809:P-complete 2685:0931.68055 2652:0816.68086 2590:1102.68025 2527:1016.94046 2496:1193.68112 2463:References 2452:0667.68059 2326:2021-11-11 2102:. Because 1883:commutator 1735:nonuniform 1729:says that 934:, we have 467:of length 188:P-complete 2979:2-EXPTIME 2444:0022-0000 2264:0272-5428 2229:0019-9958 2066:-compute 2058:-compute 2050:-compute 1989:outputs ¬ 1845:conjugate 1660:∈ 1627:⊂ 1594:⊂ 1430:⋯ 1398:⋯ 1375:⊂ 1372:⋯ 1369:⊂ 1321:⋯ 1318:⊂ 1292:⊂ 1289:⋯ 1286:⊂ 1266:⊂ 1263:⋯ 1260:⊂ 1209:⋯ 1206:⊆ 1186:⊆ 1126:for some 1068:⁡ 982:⊆ 962:⊆ 905:⊆ 885:⊆ 865:⊆ 852:⊆ 842:⊆ 760:⋯ 757:⊆ 737:⊆ 734:⋯ 731:⊆ 711:⊆ 628:∧ 615:¬ 609:∨ 593:¬ 590:∧ 435:⋯ 379:⋯ 344:⋯ 2974:EXPSPACE 2969:NEXPTIME 2737:DLOGTIME 2566:(2006). 2553:(1992). 2028:outputs 1709:inputs. 1515:≤ 1507:) where 1138:for all 321:addition 255:As with 2964:EXPTIME 2872:NP-hard 2272:7029313 1868:Lemma 2 1779:Lemma 1 1581:accepts 1519:), and 1130:, then 314:Example 306:with a 281:, rank; 279:inverse 233:) with 68:⁠ 24:⁠ 3071:NSPACE 3066:DSPACE 2941:PSPACE 2683:  2673:  2650:  2640:  2617:  2588:  2578:  2543:  2525:  2515:  2494:  2484:  2450:  2442:  2270:  2262:  2227:  1682:is in 1583:a set 679:((log 669:((log 159:), so 127:using 121:((log 102:is in 3061:NTIME 3056:DTIME 2877:co-NP 2418:(PDF) 2313:(PDF) 2268:S2CID 2161:Notes 1931:,..., 1914:Proof 1836:when 1577:yield 1563:) or 1479:with 1050:(log 1035:= 0. 94:on a 2889:TFNP 2671:ISBN 2638:ISBN 2615:ISBN 2576:ISBN 2541:ISBN 2513:ISBN 2482:ISBN 2440:ISSN 2260:ISSN 2225:ISSN 2106:and 2042:and 1731:BWBP 1721:BWBP 1690:. 1523:and 808:and 802:and 538:and 298:and 212:PRAM 204:PRAM 110:and 3004:ALL 2904:QMA 2894:FNP 2836:APX 2831:BQP 2826:BPP 2816:ZPP 2747:ACC 2681:Zbl 2648:Zbl 2609:". 2586:Zbl 2523:Zbl 2492:Zbl 2448:Zbl 2430:doi 2380:doi 2376:318 2252:doi 2215:doi 2077:γδγ 1944:of 1891:γδγ 1810:or 1555:to 1065:log 241:RNC 78:In 3107:: 2999:RE 2989:PR 2936:IP 2924:#P 2919:PP 2914:⊕P 2909:PH 2899:AM 2862:NP 2857:UP 2841:FP 2821:RP 2799:CC 2794:SC 2789:NC 2777:NL 2772:FL 2767:RL 2762:SL 2752:TC 2742:AC 2679:. 2669:. 2646:. 2607:NC 2596:NC 2584:. 2574:. 2521:. 2511:. 2490:. 2480:. 2476:. 2446:. 2438:. 2426:38 2424:. 2420:. 2413:NC 2392:^ 2374:. 2344:^ 2319:. 2315:. 2289:^ 2266:. 2258:. 2246:. 2223:. 2211:64 2205:. 2184:27 2182:. 2178:. 2062:, 2054:, 1956:. 1877:, 1851:, 1772:NC 1767:. 1765:NC 1748:. 1738:NC 1547:, 1543:, 1503:, 1499:, 1475:A 1465:NC 1459:NC 1226:NC 1156:NC 1152:NC 1150:= 1148:NC 1136:NC 1134:= 1132:NC 1124:NC 1122:= 1120:NC 1116:NC 1040:NC 1029:AC 1027:= 1025:NC 814:. 811:AC 805:NL 794:NC 787:NC 673:)) 662:NC 653:. 310:. 265:NC 263:. 261:NC 245:NC 219:NC 208:NC 193:NC 175:= 173:NC 165:NC 161:NC 125:)) 104:NC 84:NC 2994:R 2804:P 2757:L 2715:e 2708:t 2701:v 2687:. 2654:. 2623:. 2592:. 2557:. 2538:. 2529:. 2498:. 2454:. 2432:: 2415:" 2386:. 2382:: 2329:. 2274:. 2254:: 2231:. 2217:: 2155:d 2147:C 2142:5 2139:S 2137:∈ 2135:α 2130:α 2121:B 2119:∧ 2117:A 2112:α 2108:α 2104:ε 2099:B 2097:∧ 2095:A 2090:ε 2086:ε 2080:δ 2075:= 2073:ε 2068:A 2064:γ 2060:B 2056:δ 2052:A 2048:γ 2044:B 2040:A 2035:B 2033:∧ 2031:A 2026:C 2021:. 2019:C 2017:= 2015:A 2011:α 2007:A 2003:A 1999:α 1995:A 1991:A 1987:C 1980:α 1975:i 1973:x 1968:i 1966:x 1962:C 1954:C 1950:D 1946:C 1942:D 1937:n 1933:x 1929:1 1926:x 1922:C 1907:ε 1903:δ 1899:γ 1894:δ 1889:= 1887:ε 1879:δ 1875:γ 1861:C 1857:C 1853:β 1849:α 1838:C 1834:α 1830:C 1826:C 1818:α 1815:Q 1812:β 1808:α 1805:P 1802:β 1798:β 1794:α 1790:Q 1786:P 1746:5 1714:L 1707:n 1703:n 1699:n 1695:n 1688:F 1684:A 1668:n 1664:2 1657:x 1635:k 1631:k 1624:F 1602:n 1598:2 1591:A 1573:i 1569:x 1567:( 1565:q 1561:x 1559:( 1557:p 1553:x 1549:q 1545:p 1541:i 1537:k 1533:k 1529:k 1525:q 1521:p 1517:n 1513:i 1509:i 1505:q 1501:p 1497:i 1493:m 1489:m 1485:k 1481:n 1438:C 1435:N 1427:= 1422:j 1419:+ 1416:i 1410:C 1407:N 1401:= 1395:= 1390:i 1384:C 1381:N 1364:1 1358:C 1355:N 1329:C 1326:N 1313:j 1310:+ 1307:i 1301:C 1298:N 1281:i 1275:C 1272:N 1255:1 1249:C 1246:N 1230:i 1201:2 1195:C 1192:N 1181:1 1175:C 1172:N 1144:i 1140:j 1128:i 1088:) 1085:1 1082:( 1079:O 1075:) 1071:n 1062:( 1052:n 1048:O 1033:i 1008:. 1003:1 1000:+ 997:i 991:C 988:N 977:i 971:C 968:A 957:i 951:C 948:N 932:i 915:. 910:P 900:2 894:C 891:N 880:1 874:C 871:A 860:L 857:N 847:L 837:1 831:C 828:N 799:L 768:C 765:N 752:i 746:C 743:N 726:2 720:C 717:N 706:1 700:C 697:N 681:n 677:O 671:n 667:O 641:) 636:j 632:x 623:i 619:x 612:( 606:) 601:j 597:x 585:i 581:x 577:( 551:j 547:x 524:i 520:x 499:) 496:) 493:n 490:( 487:g 484:o 481:l 478:( 475:O 451:) 446:n 442:x 438:+ 432:+ 427:1 424:+ 419:2 416:n 410:x 406:( 403:+ 400:) 394:2 391:n 386:x 382:+ 376:+ 371:1 367:x 363:( 360:= 355:n 351:x 347:+ 341:+ 336:1 332:x 257:P 231:n 227:n 202:( 177:P 169:P 152:P 136:) 134:n 132:( 130:O 123:n 118:O 112:k 108:c 100:n 54:P 47:? 44:= 37:C 34:N 20::

Index

(more unsolved problems in computer science)
computational complexity theory
decision problems
polylogarithmic time
parallel computer
O
Stephen Cook
Nick Pippenger
P
Cobham's thesis
NP-complete
P-complete
PRAM
PRAM
uniform Boolean circuit
polylogarithmic
Matrix multiplication
inverse
Sylvester matrix
Gaussian elimination
Euclidean algorithm
ripple carry adder
carry-lookahead adder
addition
binary tree
logical operators
L
NL
AC
alternating Turing machine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.