Knowledge (XXG)

Nuclear magnetic resonance quantum computer

Source đź“ť

2098: 130:
exploit these spin-spin interactions to perform 2-qubit gates such as CNOTs that are necessary for universal quantum computation. In addition to the spin-spin interactions native to the molecule an external magnetic field can be applied (in NMR laboratories) and these impose single qubit gates. By exploiting the fact that different spins will experience different local fields we have control over the individual spins.
2088: 31: 138:. The other significant issue with regards to working close to thermal equilibrium is the mixedness of the state. This required the introduction of ensemble quantum processing, whose principal limitation is that as we introduce more logical qubits into our system we require larger samples in order to attain discernable signals during measurement. 647:
frequencies only, and therefore affects only that spin; and "hard" or nonselective pulses whose frequency range is broad enough to contain both resonant frequencies and therefore these pulses couple to both spins. For detailed examples of the effects of pulses on such a spin system, the reader is referred to Section 2 of work by Cory et al.
886:
Cory, David G.; Fahmy, Amr F.; Havel, Timothy F. (1996). "Nuclear Magnetic Resonance Spectroscopy: An Experimentally Accessible Paradigm for Quantum Computing". Phys-Comp 96, Proceedings of the Fourth Workshop on Physics and Computation, edited by T.Toffoli, M.Biafore, and J.Leao (New England Complex
646:
Control of a spin system can be realized by means of selective RF pulses applied perpendicular to the quantization axis. In the case of a two spin system as described above, we can distinguish two types of pulses: "soft" or spin-selective pulses, whose frequency range encompasses one of the resonant
146:
Solid state NMR (SSNMR), unlike LSNMR uses a solid state sample, for example a nitrogen vacancy diamond lattice rather than a liquid sample. This has many advantages such as lack of molecular diffusion decoherence, lower temperatures can be achieved to the point of suppressing phonon decoherence and
133:
The picture described above is far from realistic since we are treating a single molecule. NMR is performed on an ensemble of molecules, usually with as many as 10^15 molecules. This introduces complications to the model, one of which is introduction of decoherence. In particular we have the problem
386:
the temperature. That the initial state in NMR quantum computing is in thermal equilibrium is one of the main differences compared to other quantum computing techniques, where they are initialized in a pure state. Nevertheless, suitable mixed states are capable of reflecting quantum dynamics which
129:
systems. Depending on which nuclei we are considering they will have different energy levels and different interaction with its neighbours and so we can treat them as distinguishable qubits. In this system we tend to consider the inter-atomic bonds as the source of interactions between qubits and
147:
a greater variety of control operations that allow us to overcome one of the major problems of LSNMR that is initialisation. Moreover, as in a crystal structure we can localize precisely the qubits, we can measure each qubit individually, instead of having an ensemble measurement as in LSNMR.
134:
of an open quantum system interacting with a macroscopic number of particles near thermal equilibrium (~mK to ~300 K). This has led the development of decoherence suppression techniques that have spread to other disciplines such as
288: 641: 401:
Consider applying a magnetic field along the z axis, fixing this as the principal quantization axis, on a liquid sample. The Hamiltonian for a single spin would be given by the Zeeman or chemical shift term:
100:
Initially the approach was to use the spin properties of atoms of particular molecules in a liquid sample as qubits - this is known as liquid state NMR (LSNMR). This approach has since been superseded by
455: 337: 1029:
Vandersypen LM, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance".
175:
in 1997. Some early success was obtained in performing quantum algorithms in NMR systems due to the relative maturity of NMR technology. For instance, in 2001 researchers at
183:
in a 7-qubit NMR quantum computer. However, even from the early days, it was recognized that NMR quantum computers would never be very useful due to the poor scaling of the
505: 1287: 485: 195:, thought to be required for quantum computation. Hence NMR quantum computing experiments are likely to have been only classical simulations of a quantum computer. 1249: 384: 360: 113:
The ideal picture of liquid state NMR (LSNMR) quantum information processing (QIP) is based on a molecule in which some of its atom's nuclei behave as spin-
1880: 1541: 217: 1442: 1767: 86: 532: 2122: 2091: 1277: 2127: 2049: 1625: 1178:
Cory D.; et al. (1998). "Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing".
2101: 1989: 1242: 1575: 1917: 85:. The quantum states are probed through the nuclear magnetic resonances, allowing the system to be implemented as a variation of 1912: 1640: 1620: 1419: 1907: 1940: 1762: 1665: 1326: 204: 1945: 1813: 1404: 1235: 1725: 1585: 1359: 1969: 1314: 1258: 1414: 1117:
Menicucci NC, Caves CM (2002). "Local realistic model for the dynamics of bulk-ensemble NMR information processing".
1841: 1713: 1610: 1486: 1321: 395: 42: 191:
and others, shows that all experiments in liquid state bulk ensemble NMR quantum computing to date do not possess
1650: 1615: 1511: 1454: 1735: 1349: 1823: 1796: 1772: 1526: 1459: 1394: 1379: 1272: 408: 303: 163:. Manipulation of nuclear spins for quantum computing using liquid state NMR was introduced independently by 1974: 1708: 1600: 1570: 1369: 2044: 1808: 1801: 1548: 977: 394:(RF) pulses applied perpendicular to a strong, static magnetic field, created by a very large magnet. See 164: 1964: 1516: 1481: 656: 184: 1590: 1754: 1503: 1354: 1197: 1136: 1048: 911: 822: 758: 706: 192: 1856: 2073: 2026: 1630: 1384: 1364: 1299: 1294: 982: 180: 102: 1789: 1437: 1374: 1213: 1187: 1160: 1126: 1072: 1038: 1011: 846: 812: 782: 363: 1635: 968:
Gershenfeld, Neil A.; Chuang, Isaac L. (1997-01-17). "Bulk Spin-Resonance Quantum Computation".
2053: 1698: 1605: 1562: 1493: 1409: 1389: 1344: 1304: 1282: 1152: 1064: 1003: 995: 947: 929: 838: 774: 732: 526:
nuclei, the system Hamiltonian will have two chemical shift terms and a dipole coupling term:
507:
is the resonance frequency of the spin, which is proportional to the applied magnetic field.
490: 1720: 1670: 1447: 1205: 1144: 1099: 1056: 987: 937: 919: 864: 830: 800: 766: 714: 188: 168: 160: 94: 90: 74: 463: 1846: 1784: 1474: 1469: 391: 1201: 1140: 1052: 915: 826: 762: 710: 1955: 1932: 1899: 1703: 1580: 369: 345: 208: 78: 50: 1209: 718: 2116: 1777: 1595: 1521: 942: 899: 53: 17: 1164: 786: 1997: 1922: 1076: 1015: 850: 172: 1217: 1148: 1103: 770: 676: 30: 991: 691: 2007: 1861: 1399: 283:{\displaystyle \rho ={\frac {e^{-\beta H}}{\operatorname {Tr} (e^{-\beta H})}},} 2068: 2002: 1866: 1227: 746: 156: 999: 933: 834: 1851: 1156: 1068: 924: 778: 1007: 951: 842: 2036: 2012: 1871: 1836: 1192: 1131: 1043: 817: 636:{\displaystyle H=\omega _{1}I_{z1}+\omega _{2}I_{z2}+2J_{12}I_{z1}I_{z2}} 487:
is the operator for the z component of the nuclear angular momentum, and
135: 34: 2063: 1680: 38: 155:
The use of nuclear spins for quantum computing was first discussed by
2040: 1536: 203:
The ensemble is initialized to be the thermal equilibrium state (see
97:
of systems, in this case molecules, rather than a single pure state.
57: 1060: 510:
Considering the molecules in the liquid sample to contain two spin-
1309: 387:
lead to Gershenfeld and Chuang to term them "pseudo-pure states".
82: 46: 803:(1995). "A Two-bit gates are universal for quantum computation". 2058: 1531: 1464: 60: 1231: 898:
Cory, David G.; Fahmy, Amr F.; Havel, Timothy F. (1997-03-04).
73:) is one of the several proposed approaches for constructing a 1675: 1660: 176: 1090:
Warren WS (1997). "The usefulness of NMR quantum computing".
297:
is the hamiltonian matrix of an individual molecule and
207:). In mathematical parlance, this state is given by the 677:"Nuclear Magnetic Resonance Quantum Computing (NMRQC)" 749:(1993). "A Potentially Realizable Quantum Computer". 535: 493: 466: 411: 372: 348: 306: 220: 2025: 1988: 1954: 1931: 1898: 1889: 1822: 1751: 1689: 1649: 1561: 1502: 1428: 1337: 1265: 187:in such systems. More recent work, particularly by 27:
Proposed spin-based quantum computer implementation
635: 499: 479: 449: 378: 354: 331: 282: 390:Operations are performed on the ensemble through 900:"Ensemble quantum computing by NMR spectroscopy" 904:Proceedings of the National Academy of Sciences 105:NMR (SSNMR) as a means of quantum computation. 1243: 8: 89:. NMR differs from other implementations of 67:Nuclear magnetic resonance quantum computing 1895: 1499: 1250: 1236: 1228: 690:Neil Gershenfeld; Isaac L. Chuang (1998). 179:reported the successful implementation of 1191: 1130: 1042: 981: 941: 923: 816: 624: 611: 601: 582: 572: 556: 546: 534: 492: 471: 465: 438: 425: 410: 371: 347: 322: 313: 305: 259: 233: 227: 219: 450:{\displaystyle H=\mu B_{z}=I_{z}\omega } 332:{\displaystyle \beta ={\frac {1}{k\,T}}} 29: 1768:Continuous-variable quantum information 733:"Diamond Sparkles in Quantum Computing" 668: 87:nuclear magnetic resonance spectroscopy 81:states of nuclei within molecules as 45:implementation of quantum computing. 7: 963: 961: 887:Systems Institute. pp. 87–91. 692:"Quantum computing with molecules" 25: 719:10.1038/scientificamerican0698-66 2097: 2096: 2087: 2086: 867:(1995). "Quantum computation". 271: 252: 1: 1763:Adiabatic quantum computation 1210:10.1016/S0167-2789(98)00046-3 1149:10.1103/PhysRevLett.88.167901 1104:10.1126/science.277.5332.1688 771:10.1126/science.261.5128.1569 205:quantum statistical mechanics 1814:Topological quantum computer 992:10.1126/science.275.5298.350 2123:Quantum information science 2092:Quantum information science 1259:Quantum information science 199:Mathematical representation 2144: 2128:Nuclear magnetic resonance 1487:quantum gate teleportation 396:nuclear magnetic resonance 2082: 1616:Quantum Fourier transform 1512:Post-quantum cryptography 1455:Entanglement distillation 2102:Quantum mechanics topics 1797:Quantum machine learning 1773:One-way quantum computer 1626:Quantum phase estimation 1527:Quantum key distribution 1460:Monogamy of entanglement 835:10.1103/PhysRevA.51.1015 1709:Randomized benchmarking 1571:Amplitude amplification 1119:Physical Review Letters 500:{\displaystyle \omega } 1809:Quantum Turing machine 1802:quantum neural network 1549:Quantum secret sharing 925:10.1073/pnas.94.5.1634 637: 501: 481: 451: 380: 356: 333: 284: 167:, Fahmy and Havel and 63: 1881:Entanglement-assisted 1842:quantum convolutional 1517:Quantum coin flipping 1482:Quantum teleportation 1443:entanglement-assisted 1273:DiVincenzo's criteria 657:Kane quantum computer 638: 502: 482: 480:{\displaystyle I_{z}} 452: 381: 357: 334: 285: 185:signal-to-noise ratio 33: 18:NMR quantum computing 1692:processor benchmarks 1621:Quantum optimization 1504:Quantum cryptography 1315:physical vs. logical 533: 491: 464: 409: 370: 346: 304: 218: 193:quantum entanglement 1405:Quantum speed limit 1300:Quantum programming 1295:Quantum information 1202:1998PhyD..120...82C 1141:2002PhRvL..88p7901M 1098:(5332): 1688–1689. 1053:2001Natur.414..883V 916:1997PNAS...94.1634C 827:1995PhRvA..51.1015D 763:1993Sci...261.1569L 757:(5128): 1569–1571. 711:1998SciAm.278f..66G 699:Scientific American 93:in that it uses an 49:are implemented by 2054:Forest/Rigetti QCS 1790:quantum logic gate 1576:Bernstein–Vazirani 1563:Quantum algorithms 1438:Classical capacity 1322:Quantum processors 1305:Quantum simulation 633: 497: 477: 447: 376: 364:Boltzmann constant 352: 329: 280: 64: 2110: 2109: 2021: 2020: 1918:Linear optical QC 1699:Quantum supremacy 1653:complexity theory 1606:Quantum annealing 1557: 1556: 1494:Superdense coding 1283:Quantum computing 1037:(6866): 883–887. 976:(5298): 350–356. 379:{\displaystyle T} 355:{\displaystyle k} 327: 275: 91:quantum computers 16:(Redirected from 2135: 2100: 2099: 2090: 2089: 1896: 1826:error correction 1755:computing models 1721:Relaxation times 1611:Quantum counting 1500: 1448:quantum capacity 1395:No-teleportation 1380:No-communication 1252: 1245: 1238: 1229: 1222: 1221: 1195: 1193:quant-ph/9709001 1175: 1169: 1168: 1134: 1132:quant-ph/0111152 1114: 1108: 1107: 1087: 1081: 1080: 1046: 1044:quant-ph/0112176 1026: 1020: 1019: 985: 965: 956: 955: 945: 927: 910:(5): 1634–1639. 895: 889: 888: 883: 877: 876: 865:David DiVincenzo 861: 855: 854: 820: 818:cond-mat/9407022 811:(2): 1015–1022. 801:David DiVincenzo 797: 791: 790: 743: 737: 736: 729: 723: 722: 696: 687: 681: 680: 673: 642: 640: 639: 634: 632: 631: 619: 618: 606: 605: 590: 589: 577: 576: 564: 563: 551: 550: 525: 523: 522: 519: 516: 506: 504: 503: 498: 486: 484: 483: 478: 476: 475: 456: 454: 453: 448: 443: 442: 430: 429: 385: 383: 382: 377: 361: 359: 358: 353: 338: 336: 335: 330: 328: 326: 314: 289: 287: 286: 281: 276: 274: 270: 269: 244: 243: 228: 181:Shor's algorithm 161:David DiVincenzo 128: 126: 125: 122: 119: 109:Liquid state NMR 77:, that uses the 75:quantum computer 21: 2143: 2142: 2138: 2137: 2136: 2134: 2133: 2132: 2113: 2112: 2111: 2106: 2078: 2028: 2017: 1990:Superconducting 1984: 1950: 1941:Neutral atom QC 1933:Ultracold atoms 1927: 1892:implementations 1891: 1885: 1825: 1818: 1785:Quantum circuit 1753: 1747: 1741: 1731: 1691: 1685: 1652: 1645: 1601:Hidden subgroup 1553: 1542:other protocols 1498: 1475:quantum network 1470:Quantum channel 1430: 1424: 1370:No-broadcasting 1360:Gottesman–Knill 1333: 1261: 1256: 1226: 1225: 1186:(1–2): 82–101. 1177: 1176: 1172: 1116: 1115: 1111: 1089: 1088: 1084: 1061:10.1038/414883a 1028: 1027: 1023: 967: 966: 959: 897: 896: 892: 885: 884: 880: 863: 862: 858: 799: 798: 794: 745: 744: 740: 731: 730: 726: 694: 689: 688: 684: 675: 674: 670: 665: 653: 620: 607: 597: 578: 568: 552: 542: 531: 530: 520: 517: 514: 513: 511: 489: 488: 467: 462: 461: 434: 421: 407: 406: 392:radio frequency 368: 367: 344: 343: 318: 302: 301: 255: 245: 229: 216: 215: 201: 153: 144: 142:Solid state NMR 123: 120: 117: 116: 114: 111: 28: 23: 22: 15: 12: 11: 5: 2141: 2139: 2131: 2130: 2125: 2115: 2114: 2108: 2107: 2105: 2104: 2094: 2083: 2080: 2079: 2077: 2076: 2074:many others... 2071: 2066: 2061: 2056: 2047: 2033: 2031: 2023: 2022: 2019: 2018: 2016: 2015: 2010: 2005: 2000: 1994: 1992: 1986: 1985: 1983: 1982: 1977: 1972: 1967: 1961: 1959: 1952: 1951: 1949: 1948: 1946:Trapped-ion QC 1943: 1937: 1935: 1929: 1928: 1926: 1925: 1920: 1915: 1910: 1904: 1902: 1900:Quantum optics 1893: 1887: 1886: 1884: 1883: 1878: 1877: 1876: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1830: 1828: 1820: 1819: 1817: 1816: 1811: 1806: 1805: 1804: 1794: 1793: 1792: 1782: 1781: 1780: 1770: 1765: 1759: 1757: 1749: 1748: 1746: 1745: 1744: 1743: 1739: 1733: 1729: 1718: 1717: 1716: 1706: 1704:Quantum volume 1701: 1695: 1693: 1687: 1686: 1684: 1683: 1678: 1673: 1668: 1663: 1657: 1655: 1647: 1646: 1644: 1643: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1603: 1598: 1593: 1588: 1583: 1581:Boson sampling 1578: 1573: 1567: 1565: 1559: 1558: 1555: 1554: 1552: 1551: 1546: 1545: 1544: 1539: 1534: 1524: 1519: 1514: 1508: 1506: 1497: 1496: 1491: 1490: 1489: 1479: 1478: 1477: 1467: 1462: 1457: 1452: 1451: 1450: 1445: 1434: 1432: 1426: 1425: 1423: 1422: 1417: 1415:Solovay–Kitaev 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1341: 1339: 1335: 1334: 1332: 1331: 1330: 1329: 1319: 1318: 1317: 1307: 1302: 1297: 1292: 1291: 1290: 1280: 1275: 1269: 1267: 1263: 1262: 1257: 1255: 1254: 1247: 1240: 1232: 1224: 1223: 1170: 1125:(16): 167901. 1109: 1082: 1021: 983:10.1.1.28.8877 957: 890: 878: 856: 792: 738: 724: 682: 667: 666: 664: 661: 660: 659: 652: 649: 644: 643: 630: 627: 623: 617: 614: 610: 604: 600: 596: 593: 588: 585: 581: 575: 571: 567: 562: 559: 555: 549: 545: 541: 538: 496: 474: 470: 458: 457: 446: 441: 437: 433: 428: 424: 420: 417: 414: 375: 351: 340: 339: 325: 321: 317: 312: 309: 291: 290: 279: 273: 268: 265: 262: 258: 254: 251: 248: 242: 239: 236: 232: 226: 223: 209:density matrix 200: 197: 152: 149: 143: 140: 110: 107: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2140: 2129: 2126: 2124: 2121: 2120: 2118: 2103: 2095: 2093: 2085: 2084: 2081: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2051: 2048: 2046: 2042: 2038: 2035: 2034: 2032: 2030: 2024: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1995: 1993: 1991: 1987: 1981: 1978: 1976: 1973: 1971: 1970:Spin qubit QC 1968: 1966: 1963: 1962: 1960: 1957: 1953: 1947: 1944: 1942: 1939: 1938: 1936: 1934: 1930: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1905: 1903: 1901: 1897: 1894: 1888: 1882: 1879: 1875: 1874: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1834: 1832: 1831: 1829: 1827: 1821: 1815: 1812: 1810: 1807: 1803: 1800: 1799: 1798: 1795: 1791: 1788: 1787: 1786: 1783: 1779: 1778:cluster state 1776: 1775: 1774: 1771: 1769: 1766: 1764: 1761: 1760: 1758: 1756: 1750: 1742: 1738: 1734: 1732: 1728: 1724: 1723: 1722: 1719: 1715: 1712: 1711: 1710: 1707: 1705: 1702: 1700: 1697: 1696: 1694: 1688: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1658: 1656: 1654: 1648: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1586:Deutsch–Jozsa 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1568: 1566: 1564: 1560: 1550: 1547: 1543: 1540: 1538: 1535: 1533: 1530: 1529: 1528: 1525: 1523: 1522:Quantum money 1520: 1518: 1515: 1513: 1510: 1509: 1507: 1505: 1501: 1495: 1492: 1488: 1485: 1484: 1483: 1480: 1476: 1473: 1472: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1449: 1446: 1444: 1441: 1440: 1439: 1436: 1435: 1433: 1431:communication 1427: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1342: 1340: 1336: 1328: 1325: 1324: 1323: 1320: 1316: 1313: 1312: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1289: 1286: 1285: 1284: 1281: 1279: 1276: 1274: 1271: 1270: 1268: 1264: 1260: 1253: 1248: 1246: 1241: 1239: 1234: 1233: 1230: 1219: 1215: 1211: 1207: 1203: 1199: 1194: 1189: 1185: 1181: 1174: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1133: 1128: 1124: 1120: 1113: 1110: 1105: 1101: 1097: 1093: 1086: 1083: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1045: 1040: 1036: 1032: 1025: 1022: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 984: 979: 975: 971: 964: 962: 958: 953: 949: 944: 939: 935: 931: 926: 921: 917: 913: 909: 905: 901: 894: 891: 882: 879: 874: 870: 866: 860: 857: 852: 848: 844: 840: 836: 832: 828: 824: 819: 814: 810: 806: 802: 796: 793: 788: 784: 780: 776: 772: 768: 764: 760: 756: 752: 748: 742: 739: 734: 728: 725: 720: 716: 712: 708: 704: 700: 693: 686: 683: 678: 672: 669: 662: 658: 655: 654: 650: 648: 628: 625: 621: 615: 612: 608: 602: 598: 594: 591: 586: 583: 579: 573: 569: 565: 560: 557: 553: 547: 543: 539: 536: 529: 528: 527: 508: 494: 472: 468: 444: 439: 435: 431: 426: 422: 418: 415: 412: 405: 404: 403: 399: 397: 393: 388: 373: 365: 349: 323: 319: 315: 310: 307: 300: 299: 298: 296: 277: 266: 263: 260: 256: 249: 246: 240: 237: 234: 230: 224: 221: 214: 213: 212: 210: 206: 198: 196: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 150: 148: 141: 139: 137: 131: 108: 106: 104: 98: 96: 92: 88: 84: 80: 76: 72: 68: 62: 59: 56:of the black 55: 52: 48: 44: 40: 36: 32: 19: 1998:Charge qubit 1979: 1923:KLM protocol 1872: 1736: 1726: 1420:Purification 1350:Eastin–Knill 1183: 1179: 1173: 1122: 1118: 1112: 1095: 1091: 1085: 1034: 1030: 1024: 973: 969: 907: 903: 893: 881: 872: 868: 859: 808: 805:Phys. Rev. A 804: 795: 754: 750: 741: 727: 705:(6): 66–71. 702: 698: 685: 671: 645: 509: 459: 400: 389: 341: 294: 292: 202: 154: 145: 136:trapped ions 132: 112: 99: 70: 66: 65: 2029:programming 2008:Phase qubit 1913:Circuit QED 1385:No-deleting 1327:cloud-based 169:Gershenfeld 103:solid state 2117:Categories 2069:libquantum 2003:Flux qubit 1908:Cavity QED 1857:Bacon–Shor 1847:stabilizer 1375:No-cloning 747:Seth Lloyd 663:References 157:Seth Lloyd 1975:NV center 1410:Threshold 1390:No-hiding 1355:Gleason's 1180:Physica D 1000:0036-8075 978:CiteSeerX 934:0027-8424 570:ω 544:ω 495:ω 445:ω 419:μ 308:β 264:β 261:− 250:⁡ 238:β 235:− 222:ρ 2037:OpenQASM 2013:Transmon 1890:Physical 1690:Quantum 1591:Grover's 1365:Holevo's 1338:Theorems 1288:timeline 1278:NISQ era 1165:14583916 1157:11955265 1069:11780055 787:38100483 779:17798117 651:See also 95:ensemble 41:used in 35:Molecule 2027:Quantum 1965:Kane QC 1824:Quantum 1752:Quantum 1681:PostBQP 1651:Quantum 1636:Simon's 1429:Quantum 1266:General 1198:Bibcode 1137:Bibcode 1092:Science 1077:4400832 1049:Bibcode 1016:2262147 1008:8994025 970:Science 952:9050830 912:Bibcode 875:(5234). 869:Science 851:2317415 843:9911679 823:Bibcode 759:Bibcode 751:Science 707:Bibcode 524:⁠ 512:⁠ 362:is the 159:and by 151:History 127:⁠ 115:⁠ 39:alanine 2045:IBM QX 2041:Qiskit 1980:NMR QC 1958:-based 1862:Steane 1833:Codes 1631:Shor's 1537:SARG04 1345:Bell's 1218:219400 1216:  1163:  1155:  1075:  1067:  1031:Nature 1014:  1006:  998:  980:  950:  940:  932:  849:  841:  785:  777:  460:where 342:where 293:where 173:Chuang 83:qubits 58:carbon 54:states 47:Qubits 1867:Toric 1310:Qubit 1214:S2CID 1188:arXiv 1161:S2CID 1127:arXiv 1073:S2CID 1039:arXiv 1012:S2CID 943:19968 847:S2CID 813:arXiv 783:S2CID 695:(PDF) 189:Caves 71:NMRQC 61:atoms 2059:Cirq 2050:Quil 1956:Spin 1852:Shor 1532:BB84 1465:LOCC 1153:PMID 1065:PMID 1004:PMID 996:ISSN 948:PMID 930:ISSN 839:PMID 775:PMID 366:and 171:and 165:Cory 79:spin 51:spin 1873:gnu 1837:CSS 1714:XEB 1676:QMA 1671:QIP 1666:EQP 1661:BQP 1641:VQE 1596:HHL 1400:PBR 1206:doi 1184:120 1145:doi 1100:doi 1096:277 1057:doi 1035:414 988:doi 974:275 938:PMC 920:doi 873:270 831:doi 767:doi 755:261 715:doi 703:278 177:IBM 43:NMR 37:of 2119:: 2064:Q# 1212:. 1204:. 1196:. 1182:. 1159:. 1151:. 1143:. 1135:. 1123:88 1121:. 1094:. 1071:. 1063:. 1055:. 1047:. 1033:. 1010:. 1002:. 994:. 986:. 972:. 960:^ 946:. 936:. 928:. 918:. 908:94 906:. 902:. 871:. 845:. 837:. 829:. 821:. 809:51 807:. 781:. 773:. 765:. 753:. 713:. 701:. 697:. 603:12 398:. 247:Tr 211:: 2052:– 2043:– 2039:– 1740:2 1737:T 1730:1 1727:T 1251:e 1244:t 1237:v 1220:. 1208:: 1200:: 1190:: 1167:. 1147:: 1139:: 1129:: 1106:. 1102:: 1079:. 1059:: 1051:: 1041:: 1018:. 990:: 954:. 922:: 914:: 853:. 833:: 825:: 815:: 789:. 769:: 761:: 735:. 721:. 717:: 709:: 679:. 629:2 626:z 622:I 616:1 613:z 609:I 599:J 595:2 592:+ 587:2 584:z 580:I 574:2 566:+ 561:1 558:z 554:I 548:1 540:= 537:H 521:2 518:/ 515:1 473:z 469:I 440:z 436:I 432:= 427:z 423:B 416:= 413:H 374:T 350:k 324:T 320:k 316:1 311:= 295:H 278:, 272:) 267:H 257:e 253:( 241:H 231:e 225:= 124:2 121:/ 118:1 69:( 20:)

Index

NMR quantum computing

Molecule
alanine
NMR
Qubits
spin
states
carbon
atoms
quantum computer
spin
qubits
nuclear magnetic resonance spectroscopy
quantum computers
ensemble
solid state
trapped ions
Seth Lloyd
David DiVincenzo
Cory
Gershenfeld
Chuang
IBM
Shor's algorithm
signal-to-noise ratio
Caves
quantum entanglement
quantum statistical mechanics
density matrix

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑