Knowledge (XXG)

NOON state

Source đź“ť

535: = 4 NOON state without the need for postselection or zero photon detections, and has the same success probability of 3/64 as the more complicated circuit of Kok et al. Cable and Dowling proposed a method that has polynomial scaling in the success probability, which can therefore be called efficient. 530:
proposed the first general method based on post-selection via photodetection. The down-side of this method was its exponential scaling of the success probability of the protocol. Pryde and White subsequently introduced a simplified method using intensity-symmetric multiport beam splitters, single
565:
Super-resolution has previously been used as indicator of NOON state production, in 2005 Resch et al. showed that it could equally well be prepared by classical interferometry. They showed that only phase super-sensitivity is an unambiguous indicator of a NOON state; furthermore they introduced
186: 493: 1352:
Boto, Agedi N.; Kok, Pieter; Abrams, Daniel S.; Braunstein, Samuel L.; Williams, Colin P.; Dowling, Jonathan P. (2000). "Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit".
1153:
Slussarenko, Sergei; Weston, Morgan M.; Chrzanowski, Helen M.; Shalm, Lynden K.; Verma, Varun B.; Nam, Sae Woo; Pryde, Geoff J. (2017). "Unconditional violation of the shot-noise limit in photonic quantum metrology".
330: 43: 550:. Three- and four-photon NOON states cannot be created deterministically from single-photon states, but they have been created probabilistically via post-selection using 558:
and a classical laser beam on a 50:50 beam splitter, was used by I. Afek, O. Ambar, and Y. Silberberg to experimentally demonstrate the production of NOON states up to
1084:
Resch, K. J.; Pregnell, K. L.; Prevedel, R.; Gilchrist, A.; Pryde, G. J.; O’Brien, J. L.; White, A. G. (2007). "Time-Reversal and Super-Resolving Phase Measurements".
826:
Walther, Philip; Pan, Jian-Wei; Aspelmeyer, Markus; Ursin, Rupert; Gasparoni, Sara; Zeilinger, Anton (2004). "De Broglie wavelength of a non-local four-photon state".
409: 373: 401: 353: 555: 551: 181:{\displaystyle |\psi _{\text{NOON}}\rangle ={\frac {|N\rangle _{a}|0\rangle _{b}+e^{iN\theta }|{0}\rangle _{a}|{N}\rangle _{b}}{\sqrt {2}}},\,} 757:
Cable, Hugo; Dowling, Jonathan P. (2007). "Efficient Generation of Large Number-Path Entanglement Using Only Linear Optics and Feed-Forward".
566:
criteria for determining if it has been achieved based on the observed visibility and efficiency. Phase super sensitivity of NOON states with
1225:
Nagata, T.; Okamoto, R.; O'Brien, J. L.; Sasaki, K.; Takeuchi, S. (2007). "Beating the Standard Quantum Limit with Four-Entangled Photons".
237: 1489: 635:
Kok, Pieter; Lee, Hwang; Dowling, Jonathan P. (2002). "Creation of large-photon-number path entanglement conditioned on photodetection".
1023:
Israel, Y.; Afek, I.; Rosen, S.; Ambar, O.; Silberberg, Y. (2012). "Experimental tomography of NOON states with large photon numbers".
570: = 2 was demonstrated and super resolution, but not super sensitivity as the efficiency was too low, of NOON states up to 511: 895:
Mitchell, M. W.; Lundeen, J. S.; Steinberg, A. M. (2004). "Super-resolving phase measurements with a multiphoton entangled state".
543: 531:
photon inputs, and either heralded or conditional measurement. Their method, for example, allows heralded production of the
696:
Pryde, G. J.; White, A. G. (2003). "Creation of maximally entangled photon-number states using optical fiber multiports".
542: = 2, can be created deterministically from two identical photons and a 50:50 beam splitter. This is called the 1494: 964:
Afek, I.; Ambar, O.; Silberberg, Y. (2010). "High-NOON States by Mixing Quantum and Classical Light".
583: 1441: 1372: 1310: 1244: 1173: 1103: 1042: 973: 914: 845: 776: 715: 654: 34: 1422:
Lee, Hwang; Kok, Pieter; Dowling, Jonathan P. (2002). "A quantum Rosetta stone for interferometry".
603: 595: 587: 1295: 1465: 1431: 1404: 1362: 1276: 1234: 1207: 1163: 1135: 1093: 1066: 1032: 1005: 946: 904: 877: 835: 808: 766: 739: 705: 678: 644: 606:. The term "NOON state" first appeared in print as a footnote in a paper published by Hwang Lee, 591: 507: 488:{\displaystyle \Delta \theta ={\frac {\Delta A}{|d\langle A\rangle /d\theta |}}={\frac {1}{N}}.} 1457: 1396: 1388: 1334: 1326: 1268: 1260: 1199: 1127: 1119: 1058: 997: 989: 938: 930: 869: 861: 800: 792: 731: 670: 615: 220: 358: 1449: 1380: 1318: 1252: 1189: 1181: 1111: 1050: 981: 922: 853: 784: 723: 662: 611: 527: 499: 378: 224: 1296:"Quantum dynamics of the nonlinear rotator and the effects of continual spin measurement" 1445: 1376: 1314: 1248: 1177: 1107: 1046: 977: 918: 849: 780: 719: 658: 547: 338: 228: 22: 1483: 1070: 1009: 682: 554:. A different approach, involving the interference of non-classical light created by 503: 208: 1469: 1280: 1211: 812: 743: 1408: 1139: 950: 881: 1115: 788: 522:
There have been several theoretical proposals for creating photonic NOON states.
1453: 1384: 1054: 727: 666: 227:
for their ability to make precision phase measurements when used in an optical
1185: 607: 523: 1461: 1392: 1330: 1322: 1264: 1203: 1123: 1062: 993: 934: 865: 796: 735: 674: 1256: 985: 1400: 1272: 1131: 1001: 942: 873: 804: 1338: 1436: 1367: 1098: 909: 840: 710: 649: 1194: 926: 857: 325:{\displaystyle A=|N,0\rangle \langle 0,N|+|0,N\rangle \langle N,0|.\,} 204: 1168: 355:
for a system in a NOON state switches between +1 and −1 when
1239: 1037: 771: 599: 574: = 4 photons was also demonstrated experimentally. 594:
states. They were independently rediscovered in 2000 by
618:, where it was spelled N00N, with zeros instead of Os. 403:. Moreover, the error in the phase measurement becomes 602:, who introduced them as the basis for the concept of 412: 381: 361: 341: 240: 46: 487: 395: 367: 347: 324: 180: 502:, and gives a quadratic improvement over the 203:, and vice versa. Usually, the particles are 8: 447: 441: 301: 298: 264: 261: 157: 137: 98: 80: 62: 16:Quantum-mechanical many-body entangled state 1435: 1366: 1238: 1193: 1167: 1097: 1036: 908: 839: 770: 709: 648: 472: 461: 450: 433: 422: 411: 385: 380: 360: 340: 321: 313: 284: 276: 247: 239: 177: 160: 151: 146: 140: 131: 126: 114: 101: 89: 83: 71: 68: 56: 47: 45: 219:NOON states are an important concept in 627: 231:. For example, consider the observable 556:spontaneous parametric down-conversion 552:spontaneous parametric down-conversion 582:NOON states were first introduced by 506:. NOON states are closely related to 7: 191:which represents a superposition of 425: 413: 33:is a quantum-mechanical many-body 14: 518:Towards experimental realization 538:Two-photon NOON states, where 462: 434: 314: 285: 277: 248: 147: 127: 90: 72: 48: 1: 1116:10.1103/PhysRevLett.98.223601 789:10.1103/PhysRevLett.99.163604 514:, and are extremely fragile. 199:with zero particles in mode 1490:Quantum information science 1454:10.1080/0950034021000011536 1385:10.1103/PhysRevLett.85.2733 586:in the context of studying 1511: 1294:Sanders, Barry C. (1989). 1055:10.1103/PhysRevA.85.022115 728:10.1103/PhysRevA.68.052315 667:10.1103/PhysRevA.65.052104 1186:10.1038/s41566-017-0011-5 335:The expectation value of 211:can support NOON states. 1424:Journal of Modern Optics 1323:10.1103/PhysRevA.40.2417 1355:Physical Review Letters 1257:10.1126/science.1138007 1086:Physical Review Letters 986:10.1126/science.1188172 759:Physical Review Letters 578:History and terminology 368:{\displaystyle \theta } 207:, but in principle any 504:standard quantum limit 498:This is the so-called 489: 397: 396:{\displaystyle \pi /N} 369: 349: 326: 182: 544:Hong–Ou–Mandel effect 490: 398: 370: 350: 327: 183: 1430:(14–15): 2325–2338. 410: 379: 359: 339: 238: 44: 1446:2002JMOp...49.2325L 1377:2000PhRvL..85.2733B 1315:1989PhRvA..40.2417S 1249:2007Sci...316..726N 1178:2017NaPho..11..700S 1108:2007PhRvL..98v3601R 1047:2012PhRvA..85b2115I 978:2010Sci...328..879A 927:10.1038/nature02493 919:2004Natur.429..161M 858:10.1038/nature02552 850:2004Natur.429..158W 781:2007PhRvL..99p3604C 720:2003PhRvA..68e2315P 659:2002PhRvA..65e2104K 604:quantum lithography 596:Jonathan P. Dowling 588:quantum decoherence 485: 393: 375:changes from 0 to 365: 345: 322: 195:particles in mode 178: 1361:(13): 2733–2736. 1303:Physical Review A 1233:(5825): 726–729. 1025:Physical Review A 972:(5980): 879–881. 903:(6988): 161–164. 834:(6988): 158–161. 698:Physical Review A 637:Physical Review A 616:quantum metrology 526:, Hwang Lee, and 480: 467: 348:{\displaystyle A} 221:quantum metrology 172: 171: 59: 1502: 1474: 1473: 1439: 1437:quant-ph/0202133 1419: 1413: 1412: 1370: 1368:quant-ph/9912052 1349: 1343: 1342: 1309:(5): 2417–2427. 1300: 1291: 1285: 1284: 1242: 1222: 1216: 1215: 1197: 1171: 1156:Nature Photonics 1150: 1144: 1143: 1101: 1099:quant-ph/0511214 1081: 1075: 1074: 1040: 1020: 1014: 1013: 961: 955: 954: 912: 910:quant-ph/0312186 892: 886: 885: 843: 841:quant-ph/0312197 823: 817: 816: 774: 754: 748: 747: 713: 711:quant-ph/0304135 693: 687: 686: 652: 650:quant-ph/0112002 632: 612:Jonathan Dowling 584:Barry C. Sanders 562: = 5. 528:Jonathan Dowling 500:Heisenberg limit 494: 492: 491: 486: 481: 473: 468: 466: 465: 454: 437: 431: 423: 402: 400: 399: 394: 389: 374: 372: 371: 366: 354: 352: 351: 346: 331: 329: 328: 323: 317: 288: 280: 251: 187: 185: 184: 179: 173: 167: 166: 165: 164: 155: 150: 145: 144: 135: 130: 125: 124: 106: 105: 93: 88: 87: 75: 69: 61: 60: 57: 51: 1510: 1509: 1505: 1504: 1503: 1501: 1500: 1499: 1480: 1479: 1478: 1477: 1421: 1420: 1416: 1351: 1350: 1346: 1298: 1293: 1292: 1288: 1224: 1223: 1219: 1162:(11): 700–703. 1152: 1151: 1147: 1083: 1082: 1078: 1022: 1021: 1017: 963: 962: 958: 894: 893: 889: 825: 824: 820: 756: 755: 751: 695: 694: 690: 634: 633: 629: 624: 592:Schrödinger cat 580: 520: 508:Schrödinger cat 432: 424: 408: 407: 377: 376: 357: 356: 337: 336: 236: 235: 225:quantum sensing 217: 156: 136: 110: 97: 79: 70: 52: 42: 41: 35:entangled state 17: 12: 11: 5: 1508: 1506: 1498: 1497: 1495:Quantum states 1492: 1482: 1481: 1476: 1475: 1414: 1344: 1286: 1217: 1145: 1092:(22): 223601. 1076: 1015: 956: 887: 818: 765:(16): 163604. 749: 688: 626: 625: 623: 620: 579: 576: 548:quantum optics 519: 516: 496: 495: 484: 479: 476: 471: 464: 460: 457: 453: 449: 446: 443: 440: 436: 430: 427: 421: 418: 415: 392: 388: 384: 364: 344: 333: 332: 320: 316: 312: 309: 306: 303: 300: 297: 294: 291: 287: 283: 279: 275: 272: 269: 266: 263: 260: 257: 254: 250: 246: 243: 229:interferometer 216: 213: 189: 188: 176: 170: 163: 159: 154: 149: 143: 139: 134: 129: 123: 120: 117: 113: 109: 104: 100: 96: 92: 86: 82: 78: 74: 67: 64: 55: 50: 23:quantum optics 15: 13: 10: 9: 6: 4: 3: 2: 1507: 1496: 1493: 1491: 1488: 1487: 1485: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1438: 1433: 1429: 1425: 1418: 1415: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1369: 1364: 1360: 1356: 1348: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1297: 1290: 1287: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1241: 1236: 1232: 1228: 1221: 1218: 1213: 1209: 1205: 1201: 1196: 1191: 1187: 1183: 1179: 1175: 1170: 1165: 1161: 1157: 1149: 1146: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1100: 1095: 1091: 1087: 1080: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1039: 1034: 1031:(2): 022115. 1030: 1026: 1019: 1016: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 967: 960: 957: 952: 948: 944: 940: 936: 932: 928: 924: 920: 916: 911: 906: 902: 898: 891: 888: 883: 879: 875: 871: 867: 863: 859: 855: 851: 847: 842: 837: 833: 829: 822: 819: 814: 810: 806: 802: 798: 794: 790: 786: 782: 778: 773: 768: 764: 760: 753: 750: 745: 741: 737: 733: 729: 725: 721: 717: 712: 707: 704:(5): 052315. 703: 699: 692: 689: 684: 680: 676: 672: 668: 664: 660: 656: 651: 646: 643:(5): 052104. 642: 638: 631: 628: 621: 619: 617: 613: 609: 605: 601: 597: 593: 589: 585: 577: 575: 573: 569: 563: 561: 557: 553: 549: 545: 541: 536: 534: 529: 525: 517: 515: 513: 509: 505: 501: 482: 477: 474: 469: 458: 455: 451: 444: 438: 428: 419: 416: 406: 405: 404: 390: 386: 382: 362: 342: 318: 310: 307: 304: 295: 292: 289: 281: 273: 270: 267: 258: 255: 252: 244: 241: 234: 233: 232: 230: 226: 222: 214: 212: 210: 209:bosonic field 206: 202: 198: 194: 174: 168: 161: 152: 141: 132: 121: 118: 115: 111: 107: 102: 94: 84: 76: 65: 53: 40: 39: 38: 36: 32: 28: 24: 19: 1427: 1423: 1417: 1358: 1354: 1347: 1306: 1302: 1289: 1230: 1226: 1220: 1195:10072/369032 1159: 1155: 1148: 1089: 1085: 1079: 1028: 1024: 1018: 969: 965: 959: 900: 896: 890: 831: 827: 821: 762: 758: 752: 701: 697: 691: 640: 636: 630: 598:'s group at 581: 571: 567: 564: 559: 539: 537: 532: 521: 497: 334: 218: 215:Applications 200: 196: 192: 190: 30: 26: 20: 18: 510:states and 1484:Categories 1169:1707.08977 622:References 608:Pieter Kok 524:Pieter Kok 512:GHZ states 31:N00N state 27:NOON state 1462:0950-0340 1393:0031-9007 1331:0556-2791 1265:0036-8075 1240:0708.1385 1204:1749-4885 1124:0031-9007 1071:118485412 1063:1050-2947 1038:1112.4371 1010:206525962 994:0036-8075 935:0028-0836 866:0028-0836 797:0031-9007 772:0704.0678 736:1050-2947 683:118995886 675:1050-2947 459:θ 448:⟩ 442:⟨ 426:Δ 417:θ 414:Δ 383:π 363:θ 302:⟨ 299:⟩ 265:⟨ 262:⟩ 158:⟩ 138:⟩ 122:θ 99:⟩ 81:⟩ 63:⟩ 54:ψ 1470:38966183 1401:10991220 1281:14597941 1273:17478715 1212:51684888 1132:17677842 1002:20466927 943:15141206 874:15141205 813:18816777 805:17995252 744:53981408 1442:Bibcode 1409:7373285 1373:Bibcode 1339:9902422 1311:Bibcode 1245:Bibcode 1227:Science 1174:Bibcode 1140:6923254 1104:Bibcode 1043:Bibcode 974:Bibcode 966:Science 951:4303598 915:Bibcode 882:4354232 846:Bibcode 777:Bibcode 716:Bibcode 655:Bibcode 205:photons 1468:  1460:  1407:  1399:  1391:  1337:  1329:  1279:  1271:  1263:  1210:  1202:  1138:  1130:  1122:  1069:  1061:  1008:  1000:  992:  949:  941:  933:  897:Nature 880:  872:  864:  828:Nature 811:  803:  795:  742:  734:  681:  673:  610:, and 1466:S2CID 1432:arXiv 1405:S2CID 1363:arXiv 1299:(PDF) 1277:S2CID 1235:arXiv 1208:S2CID 1164:arXiv 1136:S2CID 1094:arXiv 1067:S2CID 1033:arXiv 1006:S2CID 947:S2CID 905:arXiv 878:S2CID 836:arXiv 809:S2CID 767:arXiv 740:S2CID 706:arXiv 679:S2CID 645:arXiv 1458:ISSN 1397:PMID 1389:ISSN 1335:PMID 1327:ISSN 1269:PMID 1261:ISSN 1200:ISSN 1128:PMID 1120:ISSN 1059:ISSN 998:PMID 990:ISSN 939:PMID 931:ISSN 870:PMID 862:ISSN 801:PMID 793:ISSN 732:ISSN 671:ISSN 223:and 58:NOON 25:, a 1450:doi 1381:doi 1319:doi 1253:doi 1231:316 1190:hdl 1182:doi 1112:doi 1051:doi 982:doi 970:328 923:doi 901:429 854:doi 832:429 785:doi 724:doi 663:doi 614:on 600:JPL 590:in 546:in 29:or 21:In 1486:: 1464:. 1456:. 1448:. 1440:. 1428:49 1426:. 1403:. 1395:. 1387:. 1379:. 1371:. 1359:85 1357:. 1333:. 1325:. 1317:. 1307:40 1305:. 1301:. 1275:. 1267:. 1259:. 1251:. 1243:. 1229:. 1206:. 1198:. 1188:. 1180:. 1172:. 1160:11 1158:. 1134:. 1126:. 1118:. 1110:. 1102:. 1090:98 1088:. 1065:. 1057:. 1049:. 1041:. 1029:85 1027:. 1004:. 996:. 988:. 980:. 968:. 945:. 937:. 929:. 921:. 913:. 899:. 876:. 868:. 860:. 852:. 844:. 830:. 807:. 799:. 791:. 783:. 775:. 763:99 761:. 738:. 730:. 722:. 714:. 702:68 700:. 677:. 669:. 661:. 653:. 641:65 639:. 37:: 1472:. 1452:: 1444:: 1434:: 1411:. 1383:: 1375:: 1365:: 1341:. 1321:: 1313:: 1283:. 1255:: 1247:: 1237:: 1214:. 1192:: 1184:: 1176:: 1166:: 1142:. 1114:: 1106:: 1096:: 1073:. 1053:: 1045:: 1035:: 1012:. 984:: 976:: 953:. 925:: 917:: 907:: 884:. 856:: 848:: 838:: 815:. 787:: 779:: 769:: 746:. 726:: 718:: 708:: 685:. 665:: 657:: 647:: 572:N 568:N 560:N 540:N 533:N 483:. 478:N 475:1 470:= 463:| 456:d 452:/ 445:A 439:d 435:| 429:A 420:= 391:N 387:/ 343:A 319:. 315:| 311:0 308:, 305:N 296:N 293:, 290:0 286:| 282:+ 278:| 274:N 271:, 268:0 259:0 256:, 253:N 249:| 245:= 242:A 201:b 197:a 193:N 175:, 169:2 162:b 153:N 148:| 142:a 133:0 128:| 119:N 116:i 112:e 108:+ 103:b 95:0 91:| 85:a 77:N 73:| 66:= 49:|

Index

quantum optics
entangled state
photons
bosonic field
quantum metrology
quantum sensing
interferometer
Heisenberg limit
standard quantum limit
Schrödinger cat
GHZ states
Pieter Kok
Jonathan Dowling
Hong–Ou–Mandel effect
quantum optics
spontaneous parametric down-conversion
spontaneous parametric down-conversion
Barry C. Sanders
quantum decoherence
Schrödinger cat
Jonathan P. Dowling
JPL
quantum lithography
Pieter Kok
Jonathan Dowling
quantum metrology
arXiv
quant-ph/0112002
Bibcode
2002PhRvA..65e2104K

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑