Knowledge (XXG)

Near-field scanning optical microscope

Source 📝

160:, followed in 1984 by the first paper that used visible radiation for near field scanning. The near-field optical (NFO) microscope involved a sub-wavelength aperture at the apex of a metal coated sharply pointed transparent tip, and a feedback mechanism to maintain a constant distance of a few nanometers between the sample and the probe. Lewis et al. were also aware of the potential of an NFO microscope at this time. They reported first results in 1986 confirming super-resolution. In both experiments, details below 50 nm (about λ 40: 2055: 127:. His original idea, proposed in 1928, was based upon the usage of intense nearly planar light from an arc under pressure behind a thin, opaque metal film with a small orifice of about 100 nm. The orifice was to remain within 100 nm of the surface, and information was to be collected by point-by-point scanning. He foresaw the illumination and the detector movement being the biggest technical difficulties. 2156: 433:(SERS). This technique can be used in an apertureless shear-force NSOM setup, or by using an AFM tip coated with gold or silver. The Raman signal is found to be significantly enhanced under the AFM tip. This technique has been used to give local variations in the Raman spectra under a single-walled nanotube. A highly sensitive optoacoustic spectrometer must be used for the detection of the Raman signal. 296: 1713: 288: 2168: 308:, which has a square pyramid shape with two facets coated with a metal. Such a probe has a high signal collection efficiency (>90%) and no frequency cutoff. Another alternative is "active tip" schemes, where the tip is functionalized with active light sources such as a fluorescent dye or even a light emitting diode that enables fluorescence excitation. 28: 373: 272: 934: 480:. It is normally limited to surface studies; however, it can be applied for subsurface investigations within the corresponding depth of field. In shear force mode and other contact operation it is not conducive for studying soft materials. It has long scan times for large sample areas for high resolution imaging. 250:
and have intensities that drop off exponentially with distance from the object. Because of this, the detector must be placed very close to the sample in the near field zone, typically a few nanometers. As a result, near field microscopy remains primarily a surface inspection technique. The detector is then
422:
Direct local Raman NSOM is based on Raman spectroscopy. Aperture Raman NSOM is limited by very hot and blunt tips, and by long collection times. However, apertureless NSOM can be used to achieve high Raman scattering efficiency factors (around 40). Topological artifacts make it hard to implement this
93:
light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field (or near-field) on the far side of the aperture. When the sample is scanned at a small distance below the aperture, the optical resolution of transmitted or reflected light is
455:
The nanofocusing technique can create a nanometer-scale "white" light source at the tip apex, which can be used to illuminate a sample at near-field for spectroscopic analysis. The interband optical transitions in individual single-walled carbon nanotubes are imaged and a spatial resolution around 6
451:
method is a broadband nanoscale spectroscopy that combines apertureless NSOM with broadband illumination and FTIR detection to obtain a complete infrared spectrum at every spatial location. Sensitivity to a single molecular complex and nanoscale resolution up to 10 nm has been demonstrated with
418:
As the name implies, information is collected by spectroscopic means instead of imaging in the near field regime. Through near field spectroscopy (NFS), one can probe spectroscopically with sub-wavelength resolution. Raman SNOM and fluorescence SNOM are two of the most popular NFS techniques as they
172:
According to Abbe's theory of image formation, developed in 1873, the resolving capability of an optical component is ultimately limited by the spreading out of each image point due to diffraction. Unless the aperture of the optical component is large enough to collect all the diffracted light, the
311:
The merits of aperture and apertureless NSOM configurations can be merged in a hybrid probe design, which contains a metallic tip attached to the side of a tapered optical fiber. At visible range (400 nm to 900 nm), about 50% of the incident light can be focused to the tip apex, which is
249:
This treatment takes into account only the light diffracted into the far-field that propagates without any restrictions. NSOM makes use of evanescent or non propagating fields that exist only near the surface of the object. These fields carry the high frequency spatial information about the object
283:
Though there are many issues associated with the apertured tips (heating, artifacts, contrast, sensitivity, topology and interference among others), aperture mode remains more popular. This is primarily because apertureless mode is even more complex to set up and operate, and is not understood as
436:
Fluorescence NSOM is a highly popular and sensitive technique which makes use of fluorescence for near field imaging, and is especially suited for biological applications. The technique of choice here is apertureless back to the fiber emission in constant shear force mode. This technique uses
393:
from the returning reflected light. The scanning tip, depending upon the operation mode, is usually a pulled or stretched optical fiber coated with metal except at the tip or just a standard AFM cantilever with a hole in the center of the pyramidal tip. Standard optical detectors, such as
464:
NSOM can be vulnerable to artifacts that are not from the intended contrast mode. The most common root for artifacts in NSOM are tip breakage during scanning, striped contrast, displaced optical contrast, local far field light concentration, and topographic artifacts.
324:
Feedback mechanisms are usually used to achieve high resolution and artifact free images since the tip must be positioned within a few nanometers of the surfaces. Some of these mechanisms are constant force feedback and shear force feedback
384:
The primary components of an NSOM setup are the light source, feedback mechanism, the scanning tip, the detector and the piezoelectric sample stage. The light source is usually a laser focused into an optical fiber through a
335:
In shear force feedback mode, a tuning fork is mounted alongside the tip and made to oscillate at its resonance frequency. The amplitude is closely related to the tip-surface distance, and thus used as a feedback mechanism.
131:
also developed similar theories in 1956. He thought the moving of the pinhole or the detector when it is so close to the sample would be the most likely issue that could prevent the realization of such an instrument. It was
279:
There exist NSOM which can be operated in so-called aperture mode and NSOM for operation in a non-aperture mode. As illustrated, the tips used in the apertureless mode are very sharp and do not have a metal coating.
299:
Apertureless modes of operation: a) photon tunneling (PSTM) by a sharp transparent tip, b) PSTM by sharp opaque tip on smooth surface, and c) scanning interferometric apertureless microscopy with double
495:
utilize in-plane polarimetry to study physical properties inaccessible to near-field scanning optical microscopes including the spatial dependence of intramolecular vibrations in anisotropic molecules.
229: 1203:
Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, et al. (December 2012). "Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging".
989:
Lewis AM, Isaacson M, Harootunian A, Muray A (1984). "Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures".
173:
finer aspects of the image will not correspond exactly to the object. The minimum resolution (d) for the optical component is thus limited by its aperture size, and expressed by the
441:-based dyes embedded in an appropriate resin. Edge filters are used for removal of all primary laser light. Resolution as low as 10 nm can be achieved using this technique. 1406:
Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R (August 2012). "Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution".
1904: 1640: 344:
It is possible to take advantage of the various contrast techniques available to optical microscopy through NSOM but with much higher resolution. By using the change in the
2098: 284:
well. There are five primary modes of apertured NSOM operation and four primary modes of apertureless NSOM operation. The major ones are illustrated in the next figure.
2009: 1695: 468:
In apertureless NSOM, also known as scattering-type SNOM or s-SNOM, many of these artifacts are eliminated or can be avoided by proper technique application.
1937: 1700: 444:
Near field infrared spectrometry and near-field dielectric microscopy use near-field probes to combine sub-micron microscopy with localized IR spectroscopy.
94:
limited only by the diameter of the aperture. In particular, lateral resolution of 6 nm and vertical resolution of 2–5 nm have been demonstrated.
1391:
Pollock HM, Smith DA (2002). "The use of near-field probes for vibrational spectroscopy and photothermal imaging". In Chalmers JM, Griffiths PR (eds.).
242:
for the optical component (maximum 1.3–1.4 for modern objectives with a very high magnification factor). Thus, the resolution limit is usually around λ
348:
of light or the intensity of the light as a function of the incident wavelength, it is possible to make use of contrast enhancing techniques such as
364:. It is also possible to provide contrast using the change in refractive index, reflectivity, local stress and magnetic properties amongst others. 1683: 1633: 492: 1508:"6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source" 638:"6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source" 491:
of the scanning tip. Metallic scanning tips naturally orient the polarization state perpendicular to the sample surface. Other techniques, like
316:(TERS) at tip apex, and collect the Raman signals through the same fiber. The lens-free fiber-in-fiber-out STM-NSOM-TERS has been demonstrated. 2136: 2004: 1730: 1305:
Hoshino K, Gopal A, Glaz MS, Vanden Bout DA, Zhang X (2012). "Nanoscale fluorescence imaging with quantum dot near-field electroluminescence".
1170: 1117: 419:
allow for the identification of nanosized features with chemical contrast. Some of the common near-field spectroscopic techniques are below.
864: 1340:
Kim S, Yu N, Ma X, Zhu Y, Liu Q, Liu M, Yan R (2019). "High external-efficiency nanofocusing for lens-free near-field optical nanoscopy".
2103: 1812: 1807: 1792: 1755: 1678: 430: 2194: 2039: 2019: 1668: 1626: 376:
Block diagram of an apertureless reflection-back-to-the-fiber NSOM setup with shear-force distance control and cross-polarization; 1:
361: 291:
Apertured modes of operation: a) illumination, b) collection, c) illumination collection, d) reflection and e) reflection collection.
932:, Pohl DW, "optical near field scanning microscope", published 1987-04-22, issued 1982-12-27, assigned to IBM. 556:"Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide" 2083: 2079: 1930: 535: 1822: 1787: 426: 313: 128: 101:, chemical structure and local stress. Dynamic properties can also be studied at a sub-wavelength scale using this technique. 2108: 1802: 1782: 1777: 1740: 1073:
Harootunian A, Betzig E, Isaacson M, Lewis A (1986). "Super-resolution fluorescence near-field scanning optical microscopy".
119:
is given credit for conceiving and developing the idea for an imaging instrument that would image by exciting and collecting
1163:
Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces
183: 2204: 1745: 1690: 1608: 2172: 1563:
Ocelic N, Huber A, Hillenbrand R (2006-09-04). "Pseudoheterodyne detection for background-free near-field spectroscopy".
2214: 2160: 1923: 1842: 1837: 1254:
Michaelis J, Hettich C, Mlynek J, Sandoghdar V (May 2000). "Optical microscopy using a single-molecule light source".
258:
stage. The scanning can either be done at a constant height or with regulated height by using a feedback mechanism.
2126: 1858: 1772: 1712: 145: 79: 1999: 1868: 1832: 1827: 1750: 1735: 1649: 784:
Synge EH (1928). "A suggested method for extending the microscopic resolution into the ultramicroscopic region".
505: 357: 137: 124: 105: 1797: 1138: 97:
As in optical microscopy, the contrast mechanism can be easily adapted to study different properties, such as
35:, with the diffraction of light coming from NSOM fiber probe, showing wavelength of light and the near-field. 2087: 2069: 1984: 1863: 1663: 329: 312:
around 5 nm in radius. This hybrid probe can deliver the excitation light through the fiber to realize
157: 148:
using microwave radiation with a wavelength of 3 cm. A line grating was resolved with a resolution of λ
116: 1989: 484: 2199: 1994: 1817: 403: 87: 39: 929: 1572: 1519: 1462: 1415: 1349: 1314: 1263: 1212: 1082: 1029: 961: 887: 847: 756: 714: 659: 567: 395: 345: 44: 2209: 2074: 2014: 52: 1965: 1373: 1287: 1236: 911: 649: 407: 239: 174: 742:"Observation of nanostructure by scanning near-field optical microscope with small sphere probe" 1588: 1545: 1488: 1451:"Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy" 1431: 1365: 1279: 1228: 1166: 1113: 1055: 903: 687: 593: 515: 488: 32: 1449:
Amenabar I, Poly S, Nuansing W, Hubrich EH, Govyadinov AA, Huth F, et al. (2013-12-04).
332:(AFM). Experiments can be performed in contact, intermittent contact, and non-contact modes. 2054: 2044: 1873: 1580: 1535: 1527: 1478: 1470: 1423: 1357: 1322: 1271: 1220: 1090: 1045: 1037: 998: 969: 895: 820: 793: 764: 722: 677: 667: 583: 575: 255: 98: 83: 389:, a beam splitter and a coupler. The polarizer and the beam splitter would serve to remove 2131: 1612: 399: 305: 48: 1188: 1018:"Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications" 1576: 1523: 1466: 1419: 1353: 1318: 1267: 1216: 1086: 1033: 965: 891: 851: 760: 718: 663: 571: 2024: 1889: 1540: 1507: 1483: 1450: 1050: 1017: 682: 637: 588: 555: 477: 1041: 2188: 2093: 1377: 1002: 380:
and crossed polarizers; 2: shear-force arrangement; 3: sample mount on a piezo stage.
377: 1240: 1291: 915: 353: 878:
Ash EA, Nicholls G (June 1972). "Super-resolution aperture scanning microscope".
510: 438: 390: 295: 251: 120: 1531: 769: 741: 672: 27: 2029: 1958: 1946: 1899: 1894: 1361: 824: 797: 141: 75: 1592: 1369: 705:
Dürig U, Pohl DW, Rohner F (1986). "Near-field optical scanning microscopy".
1765: 1618: 1224: 448: 386: 287: 1549: 1492: 1435: 1283: 1232: 1059: 1016:
Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E (January 1986).
907: 691: 597: 328:
Constant force feedback mode is similar to the feedback mechanism used in
554:
Bao W, Borys NJ, Ko C, Suh J, Fan W, Thron A, et al. (August 2015).
349: 133: 740:
Oshikane Y, Kataoka T, Okuda M, Hara S, Inoue H, Nakano M (April 2007).
1474: 1192:
The Optics Laboratory, North Carolina State University. 12 October 2007
611: 579: 372: 1584: 1427: 1326: 476:
One limitation is a very short working distance and extremely shallow
271: 2034: 1915: 1673: 1275: 899: 811:
Synge EH (1932). "An application of piezoelectricity to microscopy".
726: 1506:
Ma X, Liu Q, Yu N, Xu D, Kim S, Liu Z, et al. (November 2021).
1094: 974: 949: 636:
Ma X, Liu Q, Yu N, Xu D, Kim S, Liu Z, et al. (November 2021).
78:
technique for nanostructure investigation that breaks the far field
17: 654: 537:
Optical Spectroscopy of Colloidal CdSe Semiconductor Nanostructures
410:
NSOM for example, have much more stringent detector requirements.
371: 294: 286: 270: 90: 38: 26: 275:
Sketch of a) typical metal-coated tip, and b) sharp uncoated tip.
1919: 1622: 483:
An additional limitation is the predominant orientation of the
865:"Brief History and Simple Description of NSOM/SNOM Technology" 1711: 950:"Optical stethoscopy: Image recording with resolution λ/20" 2099:
Total internal reflection fluorescence microscopy (TIRF)
616:
WITec Wissenschaftliche Instrumente und Technologie GmbH
224:{\displaystyle d=0.61{\frac {\lambda _{0}}{N\!A}}\;\!} 186: 43:
Comparison of photoluminescence maps recorded from a
2137:
Photo-activated localization microscopy (PALM/STORM)
2117: 2062: 1975: 1882: 1851: 1723: 1656: 406:, can be used. Highly specialized NSOM techniques, 223: 220: 212: 2040:Interference reflection microscopy (IRM/RICM) 1931: 1634: 1184: 1182: 8: 1133: 1131: 1129: 838:O'Keefe JA (1956). "Letters to the Editor". 749:Science and Technology of Advanced Materials 1938: 1924: 1916: 1641: 1627: 1619: 1156: 1154: 1152: 1150: 1148: 219: 1539: 1482: 1049: 973: 768: 681: 671: 653: 587: 543:(Ph.D. thesis). University of Notre Dame. 202: 196: 185: 2010:Differential interference contrast (DIC) 487:state of the interrogating light in the 246:/2 for conventional optical microscopy. 1139:Near-Field Scanning Optical Microscopy. 526: 493:anisotropic terahertz microspectroscopy 304:Some types of NSOM operation utilize a 238:is the wavelength in vacuum; NA is the 2005:Quantitative phase-contrast microscopy 1716:Typical atomic force microscopy set-up 68:scanning near-field optical microscopy 60:Near-field scanning optical microscopy 1142:Olympus America Inc. 12 October 2007. 7: 2167: 2132:Stimulated emission depletion (STED) 1393:Handbook of vibrational spectroscopy 152:/60. A decade later, a patent on an 431:surface enhanced Raman spectroscopy 267:Aperture and apertureless operation 156:near-field microscope was filed by 368:Instrumentation and standard setup 362:differential interference contrast 164:/10) in size could be recognized. 25: 2104:Lightsheet microscopy (LSFM/SPIM) 1112:. San Francisco: Addison Wesley. 2166: 2155: 2154: 2053: 1395:. Vol. 2. pp. 1472–92. 948:Pohl DW, Denk W, Lanz M (1984). 867:. Nanonics Inc. 12 October 2007. 82:by exploiting the properties of 1823:Scanning quantum dot microscopy 1615: (archived October 2, 2008) 427:Tip-enhanced Raman spectroscopy 314:tip-enhanced Raman spectroscopy 2109:Lattice light-sheet microscopy 2020:Second harmonic imaging (SHIM) 1778:Photothermal microspectroscopy 423:technique for rough surfaces. 140:who, in 1972, first broke the 1: 1042:10.1016/s0006-3495(86)83640-2 1003:10.1016/0304-3991(84)90201-8 1761:Near-field scanning optical 1731:Ballistic electron emission 55:(bottom). Scale bars: 1 μm. 2231: 1859:Scanning probe lithography 1532:10.1038/s41467-021-27216-5 770:10.1016/j.stam.2007.02.013 707:Journal of Applied Physics 673:10.1038/s41467-021-27216-5 254:across the sample using a 2195:Scanning probe microscopy 2150: 2051: 1953: 1869:Feature-oriented scanning 1833:Scanning SQUID microscopy 1828:Scanning SQUID microscope 1709: 1650:Scanning probe microscopy 1362:10.1038/s41566-019-0456-9 825:10.1080/14786443209461931 798:10.1080/14786440808564615 506:Fluorescence spectroscopy 429:(TERS) is an offshoot of 138:University College London 106:scanning probe microscopy 1813:Scanning joule expansion 1808:Scanning ion-conductance 1793:Scanning electrochemical 1756:Magnetic resonance force 1165:. Heidelberg: Springer. 47:flake using NSOM with a 2070:Fluorescence microscopy 2030:Structured illumination 1985:Bright-field microscopy 1864:Dip-pen nanolithography 1609:SNOM Scan Image Gallery 1565:Applied Physics Letters 1307:Applied Physics Letters 1225:10.1126/science.1227977 1075:Applied Physics Letters 954:Applied Physics Letters 456:nm has been reported. 414:Near-field spectroscopy 330:atomic force microscopy 117:Edward Hutchinson Synge 104:NSOM/SNOM is a form of 51:(top) and conventional 2142:Near-field (NSOM/SNOM) 2080:Multiphoton microscopy 1717: 381: 301: 292: 276: 225: 56: 36: 1995:Dark-field microscopy 1818:Scanning Kelvin probe 1715: 1512:Nature Communications 1455:Nature Communications 1190:Introduction to NSOM. 930:EP patent 0112401 642:Nature Communications 560:Nature Communications 375: 298: 290: 274: 226: 42: 31:Diagram illustrating 30: 2205:Laboratory equipment 2063:Fluorescence methods 1905:Vibrational analysis 1788:Scanning capacitance 396:avalanche photodiode 184: 45:molybdenum disulfide 2094:Image deconvolution 2075:Confocal microscopy 2015:Dispersion staining 1990:Köhler illumination 1803:Scanning Hall probe 1783:Piezoresponse force 1741:Electrostatic force 1577:2006ApPhL..89j1124O 1524:2021NatCo..12.6868M 1467:2013NatCo...4.2890A 1420:2012NanoL..12.3973H 1354:2019NaPho..13..636K 1319:2012ApPhL.101d3118H 1268:2000Natur.405..325M 1217:2012Sci...338.1317B 1211:(6112): 1317–1321. 1087:1986ApPhL..49..674H 1034:1986BpJ....49..269B 1022:Biophysical Journal 966:1984ApPhL..44..651P 892:1972Natur.237..510A 852:1956JOSA...46..359. 761:2007STAdM...8..181O 719:1986JAP....59.3318D 664:2021NatCo..12.6868M 572:2015NatCo...6.7993B 320:Feedback mechanisms 53:confocal microscopy 2215:Optical microscopy 1966:Optical microscopy 1947:Optical microscopy 1746:Kelvin probe force 1718: 1691:Scanning tunneling 1475:10.1038/ncomms3890 580:10.1038/ncomms8993 534:Herzog JB (2011). 382: 302: 293: 277: 262:Modes of operation 240:numerical aperture 221: 175:Rayleigh criterion 57: 37: 2182: 2181: 2127:Diffraction limit 1913: 1912: 1585:10.1063/1.2348781 1428:10.1021/nl301159v 1327:10.1063/1.4739235 1262:(6784): 325–328. 1172:978-3-540-28405-5 1119:978-0-19-510818-7 886:(5357): 510–512. 516:Near-field optics 217: 146:diffraction limit 33:near-field optics 16:(Redirected from 2222: 2170: 2169: 2158: 2157: 2120:limit techniques 2057: 1978:contrast methods 1976:Illumination and 1940: 1933: 1926: 1917: 1874:Millipede memory 1843:Scanning voltage 1838:Scanning thermal 1643: 1636: 1629: 1620: 1597: 1596: 1560: 1554: 1553: 1543: 1503: 1497: 1496: 1486: 1446: 1440: 1439: 1414:(8): 3973–3978. 1403: 1397: 1396: 1388: 1382: 1381: 1342:Nature Photonics 1337: 1331: 1330: 1302: 1296: 1295: 1276:10.1038/35012545 1251: 1245: 1244: 1200: 1194: 1186: 1177: 1176: 1161:Kaupp G (2006). 1158: 1143: 1135: 1124: 1123: 1108:Hecht E (2002). 1105: 1099: 1098: 1070: 1064: 1063: 1053: 1013: 1007: 1006: 986: 980: 979: 977: 945: 939: 938: 937: 933: 926: 920: 919: 900:10.1038/237510a0 875: 869: 868: 861: 855: 854: 835: 829: 828: 808: 802: 801: 781: 775: 774: 772: 746: 737: 731: 730: 727:10.1063/1.336848 702: 696: 695: 685: 675: 657: 633: 627: 626: 624: 623: 608: 602: 601: 591: 551: 545: 544: 542: 531: 230: 228: 227: 222: 218: 216: 207: 206: 197: 136:and Nicholls at 99:refractive index 84:evanescent waves 80:resolution limit 21: 2230: 2229: 2225: 2224: 2223: 2221: 2220: 2219: 2185: 2184: 2183: 2178: 2146: 2119: 2118:Sub-diffraction 2113: 2058: 2049: 1977: 1971: 1949: 1944: 1914: 1909: 1878: 1847: 1773:Photon scanning 1719: 1707: 1696:Electrochemical 1684:Photoconductive 1652: 1647: 1613:Wayback Machine 1605: 1600: 1562: 1561: 1557: 1505: 1504: 1500: 1448: 1447: 1443: 1405: 1404: 1400: 1390: 1389: 1385: 1339: 1338: 1334: 1304: 1303: 1299: 1253: 1252: 1248: 1202: 1201: 1197: 1187: 1180: 1173: 1160: 1159: 1146: 1136: 1127: 1120: 1107: 1106: 1102: 1095:10.1063/1.97565 1072: 1071: 1067: 1015: 1014: 1010: 991:Ultramicroscopy 988: 987: 983: 975:10.1063/1.94865 947: 946: 942: 935: 928: 927: 923: 877: 876: 872: 863: 862: 858: 840:J. Opt. Soc. Am 837: 836: 832: 810: 809: 805: 783: 782: 778: 744: 739: 738: 734: 704: 703: 699: 635: 634: 630: 621: 619: 612:"SNOM || WITec" 610: 609: 605: 553: 552: 548: 540: 533: 532: 528: 524: 502: 474: 462: 416: 400:photomultiplier 370: 342: 322: 306:campanile probe 269: 264: 245: 237: 208: 198: 182: 181: 170: 163: 151: 129:John A. O'Keefe 114: 86:. In SNOM, the 49:campanile probe 23: 22: 15: 12: 11: 5: 2228: 2226: 2218: 2217: 2212: 2207: 2202: 2197: 2187: 2186: 2180: 2179: 2177: 2176: 2164: 2151: 2148: 2147: 2145: 2144: 2139: 2134: 2129: 2123: 2121: 2115: 2114: 2112: 2111: 2106: 2101: 2096: 2091: 2077: 2072: 2066: 2064: 2060: 2059: 2052: 2050: 2048: 2047: 2042: 2037: 2032: 2027: 2025:4Pi microscope 2022: 2017: 2012: 2007: 2002: 2000:Phase contrast 1997: 1992: 1987: 1981: 1979: 1973: 1972: 1970: 1969: 1962: 1954: 1951: 1950: 1945: 1943: 1942: 1935: 1928: 1920: 1911: 1910: 1908: 1907: 1902: 1897: 1892: 1890:Nanotechnology 1886: 1884: 1880: 1879: 1877: 1876: 1871: 1866: 1861: 1855: 1853: 1849: 1848: 1846: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1775: 1770: 1769: 1768: 1758: 1753: 1751:Magnetic force 1748: 1743: 1738: 1736:Chemical force 1733: 1727: 1725: 1721: 1720: 1710: 1708: 1706: 1705: 1704: 1703: 1701:Spin polarized 1698: 1688: 1687: 1686: 1681: 1676: 1671: 1660: 1658: 1654: 1653: 1648: 1646: 1645: 1638: 1631: 1623: 1617: 1616: 1604: 1603:External links 1601: 1599: 1598: 1571:(10): 101124. 1555: 1498: 1441: 1398: 1383: 1348:(9): 636–643. 1332: 1297: 1246: 1195: 1178: 1171: 1144: 1125: 1118: 1100: 1065: 1028:(1): 269–279. 1008: 981: 940: 921: 870: 856: 830: 803: 776: 732: 697: 628: 603: 546: 525: 523: 520: 519: 518: 513: 508: 501: 498: 478:depth of field 473: 470: 461: 458: 415: 412: 402:tube (PMT) or 369: 366: 358:phase contrast 341: 338: 321: 318: 268: 265: 263: 260: 243: 235: 232: 231: 215: 211: 205: 201: 195: 192: 189: 169: 166: 161: 149: 113: 110: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2227: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2192: 2190: 2175: 2174: 2165: 2163: 2162: 2153: 2152: 2149: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2124: 2122: 2116: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2089: 2085: 2081: 2078: 2076: 2073: 2071: 2068: 2067: 2065: 2061: 2056: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1982: 1980: 1974: 1968: 1967: 1963: 1961: 1960: 1956: 1955: 1952: 1948: 1941: 1936: 1934: 1929: 1927: 1922: 1921: 1918: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1887: 1885: 1881: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1856: 1854: 1850: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1798:Scanning gate 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1767: 1764: 1763: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1728: 1726: 1722: 1714: 1702: 1699: 1697: 1694: 1693: 1692: 1689: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1666: 1665: 1662: 1661: 1659: 1655: 1651: 1644: 1639: 1637: 1632: 1630: 1625: 1624: 1621: 1614: 1610: 1607: 1606: 1602: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1559: 1556: 1551: 1547: 1542: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1502: 1499: 1494: 1490: 1485: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1445: 1442: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1402: 1399: 1394: 1387: 1384: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1333: 1328: 1324: 1320: 1316: 1313:(4): 043118. 1312: 1308: 1301: 1298: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1250: 1247: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1199: 1196: 1193: 1191: 1185: 1183: 1179: 1174: 1168: 1164: 1157: 1155: 1153: 1151: 1149: 1145: 1141: 1140: 1134: 1132: 1130: 1126: 1121: 1115: 1111: 1104: 1101: 1096: 1092: 1088: 1084: 1080: 1076: 1069: 1066: 1061: 1057: 1052: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1009: 1004: 1000: 996: 992: 985: 982: 976: 971: 967: 963: 959: 955: 951: 944: 941: 931: 925: 922: 917: 913: 909: 905: 901: 897: 893: 889: 885: 881: 874: 871: 866: 860: 857: 853: 849: 845: 841: 834: 831: 826: 822: 818: 814: 807: 804: 799: 795: 791: 787: 780: 777: 771: 766: 762: 758: 754: 750: 745:(free access) 743: 736: 733: 728: 724: 720: 716: 712: 708: 701: 698: 693: 689: 684: 679: 674: 669: 665: 661: 656: 651: 647: 643: 639: 632: 629: 618:. Ulm Germany 617: 613: 607: 604: 599: 595: 590: 585: 581: 577: 573: 569: 565: 561: 557: 550: 547: 539: 538: 530: 527: 521: 517: 514: 512: 509: 507: 504: 503: 499: 497: 494: 490: 486: 481: 479: 471: 469: 466: 459: 457: 453: 450: 445: 442: 440: 434: 432: 428: 424: 420: 413: 411: 409: 405: 401: 397: 392: 388: 379: 378:beam splitter 374: 367: 365: 363: 359: 355: 351: 347: 339: 337: 333: 331: 326: 319: 317: 315: 309: 307: 297: 289: 285: 281: 273: 266: 261: 259: 257: 256:piezoelectric 253: 247: 241: 213: 209: 203: 199: 193: 190: 187: 180: 179: 178: 176: 167: 165: 159: 155: 147: 143: 139: 135: 130: 126: 122: 118: 111: 109: 107: 102: 100: 95: 92: 89: 85: 81: 77: 73: 69: 65: 61: 54: 50: 46: 41: 34: 29: 19: 2200:Cell imaging 2171: 2159: 2141: 2088:Three-photon 1964: 1957: 1852:Applications 1760: 1664:Atomic force 1568: 1564: 1558: 1515: 1511: 1501: 1458: 1454: 1444: 1411: 1408:Nano Letters 1407: 1401: 1392: 1386: 1345: 1341: 1335: 1310: 1306: 1300: 1259: 1255: 1249: 1208: 1204: 1198: 1189: 1162: 1137: 1109: 1103: 1078: 1074: 1068: 1025: 1021: 1011: 994: 990: 984: 957: 953: 943: 924: 883: 879: 873: 859: 843: 839: 833: 816: 812: 806: 789: 785: 779: 752: 748: 735: 713:(10): 3318. 710: 706: 700: 645: 641: 631: 620:. Retrieved 615: 606: 563: 559: 549: 536: 529: 485:polarization 482: 475: 467: 463: 454: 446: 443: 435: 425: 421: 417: 383: 354:fluorescence 346:polarization 343: 334: 327: 323: 310: 303: 282: 278: 248: 233: 171: 153: 115: 103: 96: 71: 67: 63: 59: 58: 1679:Non-contact 1518:(1): 6868. 1081:(11): 674. 819:(83): 297. 792:(35): 356. 648:(1): 6868. 511:Nano-optics 472:Limitations 452:nano-FTIR. 439:merocyanine 391:stray light 300:modulation. 158:Dieter Pohl 121:diffraction 2210:Microscopy 2189:Categories 2084:Two-photon 1959:Microscope 1900:Microscopy 1895:Microscope 1669:Conductive 997:(3): 227. 960:(7): 651. 846:(5): 359. 755:(3): 181. 655:2006.04903 622:2017-04-06 522:References 489:near-field 125:near field 88:excitation 76:microscopy 1766:Nano-FTIR 1593:0003-6951 1378:256704795 1370:1749-4893 813:Phil. Mag 786:Phil. Mag 460:Artifacts 449:nano-FTIR 387:polarizer 200:λ 2161:Category 1883:See also 1674:Infrared 1550:34824270 1493:24301518 1461:: 2890. 1436:22703339 1284:10830956 1241:12220003 1233:23224550 1060:19431633 908:12635200 692:34824270 598:26269394 566:: 7993. 500:See also 350:staining 340:Contrast 252:rastered 2173:Commons 1611:at the 1573:Bibcode 1541:8617169 1520:Bibcode 1484:3863900 1463:Bibcode 1416:Bibcode 1350:Bibcode 1315:Bibcode 1292:1350535 1264:Bibcode 1213:Bibcode 1205:Science 1083:Bibcode 1051:1329633 1030:Bibcode 962:Bibcode 916:4144680 888:Bibcode 848:Bibcode 757:Bibcode 715:Bibcode 683:8617169 660:Bibcode 589:4557266 568:Bibcode 234:Here, λ 154:optical 123:in the 112:History 74:) is a 2035:Sarfus 1657:Common 1591:  1548:  1538:  1491:  1481:  1434:  1376:  1368:  1290:  1282:  1256:Nature 1239:  1231:  1169:  1116:  1110:Optics 1058:  1048:  936:  914:  906:  880:Nature 690:  680:  596:  586:  168:Theory 2045:Raman 1724:Other 1374:S2CID 1288:S2CID 1237:S2CID 912:S2CID 650:arXiv 541:(PDF) 408:Raman 91:laser 66:) or 1589:ISSN 1546:PMID 1489:PMID 1432:PMID 1366:ISSN 1280:PMID 1229:PMID 1167:ISBN 1114:ISBN 1056:PMID 904:PMID 688:PMID 594:PMID 447:The 360:and 194:0.61 142:Abbe 72:SNOM 64:NSOM 18:NSOM 1581:doi 1536:PMC 1528:doi 1479:PMC 1471:doi 1424:doi 1358:doi 1323:doi 1311:101 1272:doi 1260:405 1221:doi 1209:338 1091:doi 1046:PMC 1038:doi 999:doi 970:doi 896:doi 884:237 821:doi 794:doi 765:doi 723:doi 678:PMC 668:doi 584:PMC 576:doi 404:CCD 144:'s 134:Ash 2191:: 2086:, 1587:. 1579:. 1569:89 1567:. 1544:. 1534:. 1526:. 1516:12 1514:. 1510:. 1487:. 1477:. 1469:. 1457:. 1453:. 1430:. 1422:. 1412:12 1410:. 1372:. 1364:. 1356:. 1346:13 1344:. 1321:. 1309:. 1286:. 1278:. 1270:. 1258:. 1235:. 1227:. 1219:. 1207:. 1181:^ 1147:^ 1128:^ 1089:. 1079:49 1077:. 1054:. 1044:. 1036:. 1026:49 1024:. 1020:. 995:13 993:. 968:. 958:44 956:. 952:. 910:. 902:. 894:. 882:. 844:46 842:. 817:13 815:. 788:. 763:. 751:. 747:. 721:. 711:59 709:. 686:. 676:. 666:. 658:. 646:12 644:. 640:. 614:. 592:. 582:. 574:. 562:. 558:. 398:, 356:, 352:, 177:: 108:. 2090:) 2082:( 1939:e 1932:t 1925:v 1642:e 1635:t 1628:v 1595:. 1583:: 1575:: 1552:. 1530:: 1522:: 1495:. 1473:: 1465:: 1459:4 1438:. 1426:: 1418:: 1380:. 1360:: 1352:: 1329:. 1325:: 1317:: 1294:. 1274:: 1266:: 1243:. 1223:: 1215:: 1175:. 1122:. 1097:. 1093:: 1085:: 1062:. 1040:: 1032:: 1005:. 1001:: 978:. 972:: 964:: 918:. 898:: 890:: 850:: 827:. 823:: 800:. 796:: 790:6 773:. 767:: 759:: 753:8 729:. 725:: 717:: 694:. 670:: 662:: 652:: 625:. 600:. 578:: 570:: 564:6 244:0 236:0 214:A 210:N 204:0 191:= 188:d 162:0 150:0 70:( 62:( 20:)

Index

NSOM

near-field optics

molybdenum disulfide
campanile probe
confocal microscopy
microscopy
resolution limit
evanescent waves
excitation
laser
refractive index
scanning probe microscopy
Edward Hutchinson Synge
diffraction
near field
John A. O'Keefe
Ash
University College London
Abbe
diffraction limit
Dieter Pohl
Rayleigh criterion
numerical aperture
rastered
piezoelectric


Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.