Knowledge (XXG)

Molecular machine

Source 📝

441: 590: 874: 938: 745: 771: 856: 838: 706: 896: 5768: 95: 5743: 5780: 107: 793: 972: 959:) attached to the four corners. In 2011, Feringa and co-workers synthesized the first motorized nanocar which had molecular motors attached to the chassis as rotating wheels. The authors were able to demonstrate directional motion of the nanocar on a copper surface by providing energy from a scanning tunneling microscope tip. Later, in 2017, the world's first-ever 5755: 653:) to switch molecules between different states. However, this comes with the issue of practically regulating the delivery of the chemical fuel and the removal of waste generated to maintain the efficiency of the machine as in biological systems. Though some AMMs have found ways to circumvent this, more recently waste-free reactions such based on 701:, and steric and dispersion interactions. The distinct conformers of a molecular balance can show different interactions with the same molecule, such that analyzing the ratio of the conformers and the energies for these interactions can enable quantification of different properties (such as CH-π or arene-arene interactions, see image). 300:
mimic functions that occur at the macroscopic level. A few prime requirements for a molecule to be considered a "molecular machine" are: the presence of moving parts, the ability to consume energy, and the ability to perform a task. Molecular machines differ from other stimuli-responsive compounds that can produce motion (such as
645:
desired. This led to the addition of stimuli-responsive moieties in AMM design, so that externally applied non-thermal sources of energy could drive molecular motion and hence allow control over the properties. Chemical energy (or "chemical fuels") was an attractive option at the beginning, given the broad array of
1191:
AMMs are gradually moving from the conventional solution-phase chemistry to surfaces and interfaces. For instance, AMM-immobilized surfaces (AMMISs) are a novel class of functional materials consisting of AMMs attached to inorganic surfaces forming features like self-assembled monolayers; this gives
765:
examination, metal ion detection, and pharmaceutical studies. The first example of a molecular logic gate was reported in 1993, featuring a receptor (see image) where the emission intensity could be treated as a tunable output if the concentrations of protons and sodium ions were to be considered as
612:
to produce molecular switches, featuring two distinct configurations for the molecule to convert between. This has been perceived as a step forward from the original molecular shuttle which consisted of two identical sites for the ring to move between without any preference, in a manner analogous to
299:
Several definitions describe a "molecular machine" as a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli. The expression is often more generally applied to molecules that simply
1148:
The construction of more complex molecular machines is an active area of theoretical and experimental research. Though a diverse variety of AMMs are known today, experimental studies of these molecules are inhibited by the lack of methods to construct these molecules. In this context, theoretical
868:
A molecule capable of shuttling molecules or ions from one location to another. This is schematically depicted in the image on the right, where a ring (in green) can bind to either one of the yellow sites on the blue macrocyclic backbone. A common molecular shuttle consists of a rotaxane where the
850:
A molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers (see schematic image on right). It has several molecular-scale blades attached at a certain pitch angle around the circumference of a nanoscale shaft. Propellers have been
573:
can also produce curved shapes. Another common mode of movement is the circumrotation of rings relative to one another as observed in mechanically interlocked molecules (primarily catenanes). While this type of rotation can not be accessed beyond the molecule itself (because the rings are confined
364:
What would be the utility of such machines? Who knows? I cannot see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a molecular scale we will get an enormously greater range of possible properties that substances can have, and of the
157:
are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are
644:
Various energy sources are employed to drive molecular machines today, but this was not the case during the early years of AMM development. Though the movements in AMMs were regulated relative to the random thermal motion generally seen in molecules, they could not be controlled or manipulated as
1195:
Most of these applications remain at the proof-of-concept level, and need major modifications to be adapted to the industrial scale. Challenges in streamlining macroscale applications include autonomous operation, the complexity of the machines, stability in the synthesis of the machines and the
886:
A molecule that can be reversibly shifted between two or more stable states in response to certain stimuli. This change of states influences the properties of the molecule according to the state it occupies at the moment. Unlike a molecular motor, any mechanical work done due to the motion in a
388:
to analyze complex chemical structures, in the 1950s gave rise to the idea of understanding and controlling relative motion within molecular components for further applications. This led to the design of "proto-molecular machines" featuring conformational changes such as cog-wheeling of the
869:
macrocycle can move between two sites or stations along the dumbbell backbone; controlling the properties of either site and by regulating conditions like pH can enable control over which site is selected for binding. This has led to novel applications in catalysis and drug delivery.
330:
This definition generally applies to synthetic molecular machines, which have historically gained inspiration from the naturally occurring biological molecular machines (also referred to as "nanomachines"). Biological machines are considered to be nanoscale devices (such as molecular
4356:
Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; Maciá, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L. (10 November 2011). "Electrically driven directional motion of a four-wheeled molecule on a metal surface".
950:
Single-molecule vehicles that resemble macroscopic automobiles and are important for understanding how to control molecular diffusion on surfaces. The image on the right shows an example with wheels made of fullerene molecules. The first nanocars were synthesized by
383:
Biological molecular machines have been known and studied for years given their vital role in sustaining life, and have served as inspiration for synthetically designed systems with similar useful functionality. The advent of conformational analysis, or the study of
2413:
Thomas, C. R.; Ferris, D. P.; Lee, J.-H.; Choi, E.; Cho, M. H.; Kim, E. S.; Stoddart, J. F.; Shin, J.-S.; Cheon, J.; Zink, J. I. (2010). "Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles".
803:
A class of mechanically interlocked molecules derived from catenanes where a large macrocycle backbone connects at least three small rings in the shape of a necklace (see image for example). A molecular necklace consisting of a large macrocycle threaded by
3650: 4606:
Amrute-Nayak, M.; Diensthuber, R. P.; Steffen, W.; Kathmann, D.; Hartmann, F. K.; Fedorov, R.; Urbanke, C.; Manstein, D. J.; Brenner, B.; Tsiavaliaris, G. (2010). "Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices".
210: 720:-like motion around a rigid axis, such as a double bond or aromatic ring, to switch between reversible configurations. Such configurations must have distinguishable geometries; for instance, azobenzene groups in a linear molecule may undergo 787:
have also been produced. Single bond rotary motors are generally activated by chemical reactions whereas double bond rotary motors are generally fueled by light. The rotation speed of the motor can also be tuned by careful molecular design.
182:. For the last several decades, scientists have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world. The first example of an artificial molecular machine (AMM) was reported in 1994, featuring a 3915:
Simpson, Christopher D.; Mattersteig, Gunter; Martin, Kai; Gherghel, Lileta; Bauer, Roland E.; Räder, Hans Joachim; Müllen, Klaus (March 2004). "Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers".
2543:
Paliwal, S.; Geib, S.; Wilcox, C. S. (1994). "Molecular Torsion Balance for Weak Molecular Recognition Forces. Effects of "Tilted-T" Edge-to-Face Aromatic Interactions on Conformational Selection and Solid-State Structure".
467:
Though these events served as inspiration for the field, the actual breakthrough in practical approaches to synthesize artificial molecular machines (AMMs) took place in 1991 with the invention of a "molecular shuttle" by
603:
isomerization. c) Translational motion of a ring (blue) between two possible binding sites (red) along the dumbbell-like rotaxane axis (purple). d) Rotation of interlocked rings (depicted as blue and red rectangles) in a
327:, and other materials that produce a movement due to external stimuli on a macro-scale are generally not included, since despite the molecular origin of the motion the effects are not useable on the molecular scale. 908:
Host molecules capable of holding items between their two arms. The open cavity of the molecular tweezers binds items using non-covalent bonding including hydrogen bonding, metal coordination, hydrophobic forces,
1483:
Shinkai, S.; Nakaji, T.; Nishida, Y.; Ogawa, T.; Manabe, O. (1980). "Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers".
820:
chain backbone; the authors connected this to the idea of a "molecular abacus" proposed by Stoddart and coworkers around the same time. Several interesting applications have emerged for these molecules, such as
661:). Eventually, several different forms of energy (electric, magnetic, optical and so on) have become the primary energy sources used to power AMMs, even producing autonomous systems such as light-driven motors. 492:
units). This design realized the well-defined motion of a molecular unit across the length of the molecule for the first time. In 1994, an improved design allowed control over the motion of the ring by
3845:
Li, S.-L.; Lan, Y.-Q.; Sakurai, H.; Xu, Q. (2012). "Unusual Regenerable Porous Metal-Organic Framework Based on a New Triple Helical Molecular Necklace for Separating Organosulfur Compounds".
4884:
Tabacchi, G.; Silvi, S.; Venturi, M.; Credi, A.; Fois, E. (2016). "Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation".
1654:
Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kintzinger, J. P. (1983). "Une nouvelle famille de molecules : les metallo-catenanes" [A new family of molecules: metallo-catenanes].
2035:
Jiang, X.; Rodríguez-Molina, B.; Nazarian, N.; Garcia-Garibay, M. A. (2014). "Rotation of a Bulky Triptycene in the Solid State: Toward Engineered Nanoscale Artificial Molecular Machines".
509:
unit; the cationic ring typically prefers staying over the benzidine ring, but moves over to the biphenol group when the benzidine gets protonated at low pH or if it gets electrochemically
3099:
Dumy, P.; Keller, M.; Ryan, D. E.; Rohwedder, B.; Wöhr, T.; Mutter, M. (1997). "Pseudo-Prolines as a Molecular Hinge: Reversible Induction of cis Amide Bonds into Peptide Backbones".
689:
A molecule that can interconvert between two or more conformational or configurational states in response to the dynamic of multiple intra- and intermolecular driving forces, such as
434: 574:
within one another), rotaxanes can overcome this as the rings can undergo translational movements along a dumbbell-like axis. Another line of AMMs consists of biomolecules such as
4184:
Klärner, Frank-Gerrit; Kahlert, Björn (December 2003). "Molecular Tweezers and Clips as Synthetic Receptors. Molecular Recognition and Dynamics in Receptor−Substrate Complexes".
397:. By 1980, scientists could achieve desired conformations using external stimuli and utilize this for different applications. A major example is the design of a photoresponsive 3880:
Seo, J.; Kim, B.; Kim, M.-S.; Seo, J.-H. (2021). "Optimization of Anisotropic Crystalline Structure of Molecular Necklace-like Polyrotaxane for Tough Piezoelectric Elastomer".
2070:
Kai, H.; Nara, S.; Kinbara, K.; Aida, T. (2008). "Toward Long-Distance Mechanical Communication: Studies on a Ternary Complex Interconnected by a Bridging Rotary Module".
137: 5128:
Terao, F.; Morimoto, M.; Irie, M. (2012). "Light-Driven Molecular-Crystal Actuators: Rapid and Reversible Bending of Rodlike Mixed Crystals of Diarylethene Derivatives".
2688:
L., Ping; Z., Chen; Smith, M. D.; Shimizu, K. D. (2013). "Comprehensive Experimental Study of N-Heterocyclic π-Stacking Interactions of Neutral and Cationic Pyridines".
4313:
Shirai, Yasuhiro; Osgood, Andrew J.; Zhao, Yuming; Kelly, Kevin F.; Tour, James M. (November 2005). "Directional Control in Thermally Driven Single-Molecule Nanocars".
633:. This switching behavior has been further optimized to acquire useful work that gets lost when a typical switch returns to its original state. Inspired by the use of 3185:
Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A. C.; Gunnlaugsson, T.; James, T. D.; Yoon, J.; Akkaya, E. U. (2018). "Molecular logic gates: the past, present and future".
4119: 4262:
Yurke, Bernard; Turberfield, Andrew J.; Mills, Allen P.; Simmel, Friedrich C.; Neumann, Jennifer L. (10 August 2000). "A DNA-fuelled molecular machine made of DNA".
1053:. "n effect, the is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines ... 4935:
Ikejiri, S.; Takashima, Y.; Osaki, M.; Yamaguchi, H.; Harada, A. (2018). "Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines".
1751:
Gimzewski, J. K.; Joachim, C.; Schlittler, R. R.; Langlais, V.; Tang, H.; Johannsen, I. (1998). "Rotation of a Single Molecule Within a Supramolecular Bearing".
240:
methods have been outlined better. A major starting point for the design of AMMs is to exploit the existing modes of motion in molecules, such as rotation about
4784:
Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand (2005-06-10). "Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products".
634: 3037:
Garcia-Amorós, J.; Reig, M.; Cuadrado, A.; Ortega, M.; Nonell, S.; Velasco, D. (2014). "A photoswitchable bis-azo derivative with a high temporal resolution".
4518:
Kinbara, Kazushi; Aida, Takuzo (2005-04-01). "Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies".
4083:
Chatterjee, M. N.; Kay, E. R.; Leigh, D. A. (2006). "Beyond Switches: Ratcheting a Particle Energetically Uphill with a Compartmentalized Molecular Machine".
537:
methods have been outlined more clearly. A major starting point for the design of AMMs is to exploit the existing modes of motion in molecules. For instance,
425:
alluded to the idea and applications of molecular devices designed artificially by manipulating matter at the atomic level. This was further substantiated by
4040:
Bissell, Richard A; Córdova, Emilio; Kaifer, Angel E.; Stoddart, J. Fraser (12 May 1994). "A chemically and electrochemically switchable molecular shuttle".
3479:
Fennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (24 July 2003). "Rotational actuators based on carbon nanotubes".
887:
switch is generally undone once the molecule returns to its original state unless it is part of a larger motor-like system. The image on the right shows a
669:
Various AMMs have been designed with a broad range of functions and applications, several of which have been tabulated below along with indicative images:
444:
The first example of an artificial molecular machine (a switchable molecular shuttle). The positively charged ring (blue) is initially positioned over the
4408: 761:, these molecules have slowly replaced the conventional silicon-based machinery. Several applications have come forth, such as water quality examination, 783:
A molecule that is capable of directional rotary motion around a single or double bond and produce useful work as a result (as depicted in the image).
5499: 4693:
Balasubramanian, S.; Kagan, D.; Jack Hu, C. M.; Campuzano, S.; Lobo-Castañon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M.; Zhang, L.; Wang, J. (2011).
2764:
Carroll, W. R.; Zhao, C.; Smith, M. D.; Pellechia, P. J.; Shimizu, K. D. (2011). "A Molecular Balance for Measuring Aliphatic CH−π Interactions".
593:
Some common types of motion seen in some simple components of artificial molecular machines. a) Rotation around single bonds and in sandwich-like
5239:"Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis" 732:, triggering a reversible transition to a bent or V-shaped conformation (see image). Molecular hinges have been adapted for applications such as 417: 375: 2572: 1364:
Kinbara, K.; Aida, T. (2005). "Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies".
130: 2913:"Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer" 1180:
catalysis. AMMs have been pivotal in the design of several stimuli-responsive smart materials, such as 2D and 3D self-assembled materials and
1681:
Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kern, J. M. (May 1984). "Templated synthesis of interlocked macrocyclic ligands: the catenands".
986: 5529: 5163:
Vogelsberg, C. S.; Garcia-Garibay, M. A. (2012). "Crystalline molecular machines: function, phase order, dimensionality, and composition".
534: 237: 5278:
Corra, S.; Curcio, M.; Baroncini, M.; Silvi, S.; Credi, A. (2020). "Photoactivated Artificial Molecular Machines that Can Perform Tasks".
517:. Over the following decade, a broad variety of AMMs responding to various stimuli were invented for different applications. In 2016, the 2970:
Hada, M.; Yamaguchi, D.; Ishikawa, T.; Sawa, T.; Tsuruta, K.; Ishikawa, K.; Koshihara, S.-y.; Hayashi, Y.; Kato, T. (13 September 2019).
2972:"Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules" 1140:, introduced into the body, to repair or detect damages and infections, but these are considered to be far beyond current capabilities. 646: 2799:
Carroll, W. R.; Pellechia, P.; Shimizu, K. D. (2008). "A Rigid Molecular Balance for Measuring Face-to-Face Arene−Arene Interactions".
1708:
Bissell, R. A; Córdova, E.; Kaifer, A. E.; Stoddart, J. F. (1994). "A chemically and electrochemically switchable molecular shuttle".
5810: 5619: 5397:
Zhang, Q.; Qu, D.-H. (2016). "Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials".
4582: 4445: 929:
molecule, termed "buckycatcher". Examples of molecular tweezers have been reported that are constructed from DNA and are considered
255:
to create switches. A broad range of AMMs has been designed, featuring different properties and applications; some of these include
123: 1807: 1245: 3530:
Kelly, T. Ross; De Silva, Harshani; Silva, Richard A. (9 September 1999). "Unidirectional rotary motion in a molecular system".
4219:
Sygula, A.; Fronczek, F. R.; Sygula, R.; Rabideau, P. W.; Olmstead, M. M. (2007). "A Double Concave Hydrocarbon Buckycatcher".
3072:
Hamilton, A. D.; Van Engen, D. (1987). "Induced fit in synthetic receptors: nucleotide base recognition by a molecular hinge".
3651:"Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification" 3314:
de Silva, P. A.; Gunaratne, N. H. Q.; McCoy, C. P. (1993). "A molecular photoionic AND gate based on fluorescent signalling".
637:
to produce work in natural processes, molecular motors are designed to have a continuous energy influx to keep them away from
5553: 484:
in the early 1980s, this shuttle features a rotaxane with a ring that can move across an "axle" between two ends or possible
5700: 5492: 3581:
Koumura, Nagatoshi; Zijlstra, Robert W. J.; van Delden, Richard A.; Harada, Nobuyuki; Feringa, Ben L. (9 September 1999).
514: 4650:
Patel, G. M.; Patel, G. C.; Patel, R. B.; Patel, J. K.; Patel, M. (2006). "Nanorobot: A versatile tool in nanomedicine".
757:
A molecule that performs a logical operation on one or more logic inputs and produces a single logic output. Modelled on
625:, this can give rise to weak or strong recognition sites as in biological systems — such AMMs have found applications in 5576: 5081:"Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks" 3745:
Harada, A.; Li, J.; Kamachi, M. (1992). "The molecular necklace: a rotaxane containing many threaded α-cyclodextrins".
1136:, biological machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these 513:. In 1998, a study could capture the rotary motion of a decacyclene molecule on a copper-base metallic surface using a 5815: 5672: 4978:
Iwaso, K.; Takashima, Y.; Harada, A. (2016). "Fast response dry-type artificial molecular muscles with daisy chains".
3788:
Wu, G.-Y.; Shi, X.; Phan, H.; Qu, H.; Hu, Y.-X.; Yin, G.-Q.; Zhao, X.-L.; Li, X.; Xu, L.; Yu, Q.; Yang, H.-B. (2020).
2386:
Le Poul, N.; Colasson, B. (2015). "Electrochemically and Chemically Induced Redox Processes in Molecular Machines".
415:
isomers on exposure to light and hence tune the cation-binding properties of the ether. In his seminal 1959 lecture
1173: 608:
AMM designs have diversified significantly since the early days of the field. A major route is the introduction of
851:
shown to have interesting properties, such as variations in pumping rates for hydrophilic and hydrophobic fluids.
5759: 5687: 5539: 5534: 5524: 5516: 2834:
Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A. (2017).
2347:"Waste Management of Chemically Activated Switches: Using a Photoacid To Eliminate Accumulation of Side Products" 784: 638: 5022: 5710: 5654: 5639: 5549: 5485: 1125: 518: 430: 385: 191: 38: 4413: 4157:
Chen, C. W.; Whitlock, H. W. (July 1978). "Molecular tweezers: a simple model of bifunctional intercalation".
1879: 599: 407: 245: 2657: 2600: 5805: 5747: 5695: 5644: 5631: 990: 873: 340: 301: 5340: 4846: 3357:
Lancia, F.; Ryabchun, A.; Katsonis, N. (2019). "Life-like motion driven by artificial molecular machines".
650: 2876:
Bandara, H. M. Dhammika; Burdette, S. C. (2012). "Photoisomerization in different classes of azobenzene".
2484:
Balzani, V.; Clemente-León, M.; Credi, A.; Ferrer, B.; Venturi, M.; Flood, A. H.; Stoddart, J. F. (2006).
1516:"Molecular engineering: An approach to the development of general capabilities for molecular manipulation" 1078: 994: 69: 5199: 4562: 1005:
are dark blue, and the other proteins involved are light blue. The produced peptide is released into the
5820: 4569:. Advances in Protein Chemistry and Structural Biology. Vol. 83. Academic Press. pp. 163–221. 2105:
Kamiya, Y.; Asanuma, H. (2014). "Light-Driven DNA Nanomachine with a Photoresponsive Molecular Engine".
1907: 1177: 1006: 335:) in a living system that convert various forms of energy to mechanical work in order to drive crucial 3618: 3456: 2302:
Biagini, C.; Di Stefano, S. (2020). "Abiotic Chemical Fuels for the Operation of Molecular Machines".
937: 533:
Over the past few decades, AMMs have diversified rapidly and their design principles, properties, and
5571: 5355: 5287: 5037: 4987: 4803: 4758: 4616: 4366: 4322: 4271: 4049: 4003: 3960: 3801: 3754: 3701: 3597: 3539: 3488: 3323: 3139: 2983: 2924: 2497: 1760: 1717: 1527: 1169: 926: 812:
rings) is represented as MN. The first molecular necklace was synthesized in 1992, featuring several
752: 284: 264: 236:
AMMs have diversified rapidly over the past few decades and their design principles, properties, and
3392:
Mickler, M.; Schleiff, E.; Hugel, T. (2008). "From Biological towards Artificial Molecular Motors".
2140:
Morimoto, M.; Irie, M. (2010). "A Diarylethene Cocrystal that Converts Light into Mechanical Work".
1574: 5718: 5607: 1133: 1074: 910: 845: 817: 481: 195: 80: 54: 3790:"Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity" 440: 251:. Different AMMs are produced by introducing various functionalities, such as the introduction of 5649: 5379: 5321: 5219: 5061: 4960: 4917: 4827: 4793: 4675: 4390: 4295: 4244: 4065: 3770: 3631: 3563: 3512: 3461: 3374: 3339: 2613: 2327: 2284: 1733: 1636: 1305: 903: 344: 336: 221: 159: 5023:"Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals" 1232:
Vincenzo, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. (2000). "Artificial Molecular Machines".
589: 267:. A wide range of applications have been demonstrated for AMMs, including those integrated into 5198:
van Dijk, L.; Tilby, M. J.; Szpera, R.; Smith, O. A.; Bunce, H. A. P.; Fletcher, S. P. (2018).
5079:
Hou, J.; Long, G.; Zhao, W.; Zhou, G.; Liu, D.; Broer, D. J.; Feringa, B. L.; Chen, J. (2022).
4118:
Kassem, S.; van Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.; Leigh, D. A. (2017).
3428: 1794:
Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. (2000). "Artificial Molecular Machines".
770: 5784: 5463: 5414: 5371: 5313: 5260: 5180: 5145: 5110: 5053: 5003: 4952: 4909: 4866: 4819: 4724: 4667: 4632: 4588: 4578: 4543: 4535: 4500: 4451: 4441: 4382: 4338: 4287: 4236: 4201: 4139: 4100: 4019: 3976: 3933: 3897: 3862: 3827: 3727: 3670: 3623: 3555: 3504: 3409: 3296: 3247: 3212: 3167: 3054: 3019: 3001: 2952: 2893: 2858: 2816: 2781: 2746: 2705: 2670: 2662: 2605: 2525: 2466: 2431: 2368: 2319: 2276: 2241: 2192: 2157: 2122: 2087: 2052: 2017: 1968: 1860: 1811: 1776: 1628: 1555: 1465: 1406: 1381: 1343: 1297: 1249: 1156:
A wide range of applications have been demonstrated for AMMs, including those integrated into
1117:
are far more complex than any molecular machines that have yet been artificially constructed.
1110: 863: 813: 717: 654: 312: 288: 280: 111: 3582: 2632: 5728: 5453: 5445: 5406: 5363: 5303: 5295: 5250: 5211: 5172: 5137: 5100: 5092: 5045: 4995: 4944: 4901: 4893: 4858: 4811: 4766: 4714: 4706: 4659: 4624: 4570: 4527: 4490: 4482: 4374: 4330: 4279: 4228: 4193: 4166: 4131: 4092: 4057: 4011: 3968: 3925: 3889: 3854: 3817: 3809: 3762: 3717: 3709: 3662: 3613: 3605: 3547: 3496: 3451: 3443: 3401: 3366: 3331: 3286: 3278: 3239: 3202: 3194: 3157: 3147: 3108: 3081: 3046: 3009: 2991: 2942: 2932: 2885: 2850: 2808: 2773: 2736: 2697: 2652: 2644: 2595: 2587: 2553: 2515: 2505: 2458: 2423: 2395: 2358: 2311: 2268: 2231: 2223: 2184: 2149: 2114: 2079: 2044: 2007: 1999: 1958: 1950: 1884: 1850: 1842: 1803: 1768: 1725: 1690: 1663: 1618: 1545: 1535: 1493: 1455: 1447: 1373: 1335: 1287: 1241: 1114: 1066: 881: 837: 830: 690: 622: 498: 453: 324: 320: 260: 229: 225: 49: 3688:
Zhang, Z.; Zhao, J.; Guo, Z.; Zhang, H.; Pan, H.; Wu, Q.; You, W.; Yu, W.; Yan, X. (2022).
705: 5677: 5664: 5602: 2835: 1937:
Erbas-Cakmak, Sundus; Leigh, David A.; McTernan, Charlie T.; Nussbaumer, Alina L. (2015).
1511: 1402: 1205: 1129: 1082: 1054: 1045:, which moves cargo inside cells towards the nucleus and produces the axonemal beating of 1014: 895: 826: 778: 583: 469: 426: 422: 370: 316: 315:) and the presence of a clear external stimulus to regulate the movements (as compared to 256: 199: 179: 163: 5359: 5291: 5041: 5021:
Orlova, T.; Lancia, F.; Loussert, C.; Iamsaard, S.; Katsonis, N.; Brasselet, E. (2018).
4991: 4807: 4762: 4620: 4370: 4326: 4275: 4053: 4007: 3964: 3805: 3758: 3705: 3601: 3543: 3492: 3327: 3143: 2987: 2928: 2501: 2259:
Saper, G.; Hess, H. (2020). "Synthetic Systems Powered by Biological Molecular Motors".
1764: 1721: 1531: 1192:
rise to tunable properties such as fluorescence, aggregation and drug-release activity.
744: 5772: 5566: 5508: 5458: 5433: 5105: 5080: 4719: 4694: 4574: 4495: 4470: 3951:
Wang, Boyang; Král, Petr (2007). "Chemically Tunable Nanoscale Propellers of Liquids".
3822: 3789: 3722: 3689: 3429:"Controlled rotary motion of light-driven molecular motors assembled on a gold surface" 3291: 3266: 3162: 3127: 3014: 2971: 2947: 2912: 2520: 2485: 2236: 2211: 2012: 1987: 1963: 1938: 1912: 1855: 1830: 1460: 1435: 1161: 1090: 1086: 1058: 1018: 914: 698: 348: 272: 99: 64: 4862: 2911:
Wang, J.; Jiang, Q.; Hao, X.; Yan, H.; Peng, H.; Xiong, B.; Liao, Y.; Xie, X. (2020).
1667: 1550: 1515: 1013:
The most complex macromolecular machines are found within cells, often in the form of
5799: 5586: 5383: 5325: 5223: 4964: 3378: 2331: 2288: 1309: 1150: 1094: 952: 918: 630: 352: 4831: 4743: 4679: 4248: 4069: 3465: 3343: 1737: 1640: 1326:
Huang, T. J.; Juluri, B. K. (2008). "Biological and biomimetic molecular machines".
553:
isomerization in response to certain stimuli (typically irradiation with a suitable
5767: 5723: 5614: 5561: 5065: 4921: 4394: 4299: 3774: 3635: 3567: 3516: 3128:"A platinum(II) molecular hinge with motions visualized by phosphorescence changes" 1181: 1137: 1121: 1070: 1038: 1034: 1002: 985: 960: 570: 562: 489: 485: 187: 167: 94: 74: 4815: 4015: 3972: 2617: 855: 3994:
Wang, B.; Král, P. (2007). "Chemically Tunable Nanoscale Propellers of Liquids".
3893: 1772: 501:
methods, making it the first example of an AMM. Here the two binding sites are a
2725:"Distance-Dependent Attractive and Repulsive Interactions of Bulky Alkyl Groups" 2449:
Balzani, V.; Credi, A.; Venturi, M. (2009). "Light powered molecular machines".
2272: 1954: 1846: 1185: 1098: 1069:." Other biological machines are responsible for energy production, for example 930: 922: 792: 762: 729: 694: 618: 609: 594: 546: 542: 538: 522: 398: 390: 252: 241: 217: 203: 5449: 3813: 3713: 2996: 5779: 5049: 4663: 4486: 3370: 3126:
Ai, Y.; Chan, M. H.-Y.; Chan, A. K.-W.; Ng, M.; Li, Y.; Yam, V. W.-W. (2019).
956: 822: 758: 733: 566: 554: 402: 394: 209: 106: 4870: 4695:"Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media" 4539: 4455: 3282: 3005: 2666: 1339: 621:. If these two sites are different from each other in terms of features like 5594: 5215: 4563:"Proteins MOVE! Protein dynamics and long-range allostery in cell signaling" 3152: 2510: 1062: 888: 626: 614: 502: 445: 17: 5467: 5418: 5410: 5375: 5367: 5317: 5299: 5264: 5184: 5149: 5141: 5114: 5057: 5007: 4956: 4913: 4897: 4823: 4728: 4710: 4671: 4636: 4628: 4592: 4547: 4504: 4386: 4342: 4291: 4240: 4205: 4143: 4104: 4023: 3980: 3937: 3901: 3866: 3858: 3831: 3731: 3674: 3627: 3559: 3508: 3413: 3405: 3300: 3251: 3243: 3216: 3171: 3058: 3023: 2956: 2897: 2862: 2820: 2785: 2750: 2741: 2724: 2709: 2674: 2609: 2529: 2470: 2435: 2399: 2372: 2323: 2315: 2280: 2245: 2227: 2196: 2161: 2126: 2091: 2056: 2021: 1972: 1864: 1829:
Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. (2015).
1815: 1632: 1559: 1540: 1469: 1451: 1385: 1347: 1301: 1292: 1275: 1253: 4770: 1908:"3 Makers of 'World's Smallest Machines' Awarded Nobel Prize in Chemistry" 1808:
10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
1780: 1575:"Drexler and Smalley make the case for and against 'molecular assemblers'" 1246:
10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
1081:, the energy currency of a cell. Still other machines are responsible for 1061:
connected by them to recruit their binding partners and induce long-range
5096: 4948: 4905: 4798: 2648: 2003: 1106: 1050: 998: 964: 921:
effects. For instance, the image on the right depicts tweezers formed by
658: 558: 506: 477: 473: 449: 183: 175: 5308: 4378: 4170: 3690:"Mechanically interlocked networks cross-linked by a molecular necklace" 3500: 3085: 2557: 1694: 1623: 1606: 1497: 1124:. For example, they could be used to identify and destroy cancer cells. 5255: 5238: 5176: 4999: 4409:"NanoCar Race : la course de petites voitures pour grands savants" 4135: 3447: 3207: 3198: 3050: 2937: 2889: 2854: 1579: 1165: 1157: 1030: 945: 737: 579: 332: 311:) in their relatively larger amplitude of movement (potentially due to 276: 268: 213: 171: 4531: 4440:. Voet, Judith G. (4th ed.). Hoboken, NJ: John Wiley & Sons. 4334: 4232: 4197: 4096: 3929: 3112: 2812: 2777: 2701: 2427: 2363: 2346: 2153: 2118: 2083: 2048: 1377: 472:. Building upon the assembly of mechanically linked molecules such as 452:
unit (red) when the benzidine gets protonated (purple) as a result of
5339:
Moulin, E.; Faour, L.; Carmona-Vargas, C. C.; Giuseppone, N. (2020).
4411:[NanoCar Race: the race of small cars for great scientists]. 4283: 4061: 3766: 3666: 3335: 2591: 2462: 2188: 1729: 1102: 1042: 1026: 1022: 545:
complexes. Bending or V-like shapes can be achieved by incorporating
1132:
subfield of nanotechnology regarding the possibility of engineering
971: 178:
are examples of molecular machines, and they often take the form of
2633:"Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions" 3609: 3551: 1046: 588: 510: 456: 439: 5477: 657:
or isomerization have gained attention (such as redox-responsive
2175:
Stoddart, J. F. (2009). "The chemistry of the mechanical bond".
1932: 1930: 5481: 716:
A molecular hinge is a molecule that can typically rotate in a
3427:
Carroll, GT; Pollard, MM; van Delden, RA; Feringa, BL (2010).
2573:"Molecular balances for quantifying non-covalent interactions" 955:
in 2005. They had an H-shaped chassis and 4 molecular wheels (
575: 433:
such as nanoscale "assemblers", though their feasibility was
494: 460: 5341:"From Molecular Machines to Stimuli-Responsive Materials" 4744:"Current Status of Nanomedicine and Medical Nanorobotics" 1149:
modeling has emerged as a pivotal tool to understand the
3649:
Vicario, Javier; Meetsma, Auke; Feringa, Ben L. (2005).
2723:
Hwang, J.; Li, P.; Smith, M. D.; Shimizu, K. D. (2016).
1184:-based systems, for versatile applications ranging from 3230:
de Silva, A. P. (2011). "Molecular Logic Gate Arrays".
891:-based switch that switches in response to pH changes. 582:
as part of their design, making use of phenomena like
2486:"Autonomous artificial nanomotor powered by sunlight" 4751:
Journal of Computational and Theoretical Nanoscience
1605:
Anelli, P. L.; Spencer, N.; Stoddart, J. F. (1991).
1176:, utilizing noncovalent interactions and biomimetic 1017:. Important examples of biological machines include 525:
for the design and synthesis of molecular machines.
5709: 5686: 5663: 5630: 5585: 5548: 5515: 4035: 4033: 3267:"Advances in Applications of Molecular Logic Gates" 2210:Mao, X.; Liu, M.; Li, Q.; Fan, C.; Zuo, X. (2022). 1120:Biological machines have potential applications in 206:
for the design and synthesis of molecular machines.
1077:to drive a turbine-like motion used to synthesise 4742:Freitas, Robert A. Jr.; Havukkala, Ilkka (2005). 2658:20.500.11820/604343eb-04aa-4d90-82d2-0998898400d2 2631:Y., Lixu; A., Catherine; Cockroft, S. L. (2015). 2601:20.500.11820/7ce18ff7-1196-48a1-8c67-3bc3f6b46946 2345:Tatum, L. A.; Foy, J. T.; Aprahamian, I. (2014). 1988:"Molecular Machines: putting the pieces together" 1172:is a prominent example, especially in areas like 740:modifications, and visualizing molecular motion. 541:can be visualized as axes of rotation, as can be 3132:Proceedings of the National Academy of Sciences 2490:Proceedings of the National Academy of Sciences 1906:Chang, Kenneth; Chan, Sewell (5 October 2016). 1520:Proceedings of the National Academy of Sciences 1033:, which moves cargo inside cells away from the 429:during the 1970s, who developed ideas based on 362: 27:Molecular-scale artificial or biological device 3583:"Light-driven monodirectional molecular rotor" 1227: 1225: 1223: 1221: 565:and -closing reactions such as those seen for 5493: 1359: 1357: 557:), as seen in numerous designs consisting of 131: 8: 2571:Mati, Ioulia K.; Cockroft, Scott L. (2010). 1153:or -disassembly processes in these systems. 4471:"Structure and function of mammalian cilia" 1583:. Vol. 81, no. 48. pp. 37–42 1321: 1319: 1269: 1267: 1265: 1263: 5500: 5486: 5478: 3619:11370/d8399fe7-11be-4282-8cd0-7c0adf42c96f 3457:11370/4fb63d6d-d764-45e3-b3cb-32a4c629b942 970: 936: 894: 872: 854: 836: 791: 769: 743: 704: 138: 124: 29: 5457: 5307: 5254: 5104: 4797: 4718: 4494: 3821: 3721: 3617: 3455: 3290: 3265:Liu, L.; Liu, P.; Ga, L.; Ai, J. (2021). 3206: 3161: 3151: 3013: 2995: 2946: 2936: 2740: 2656: 2599: 2519: 2509: 2362: 2235: 2011: 1962: 1854: 1622: 1600: 1598: 1549: 1539: 1459: 1429: 1427: 1397: 1395: 1291: 5085:Journal of the American Chemical Society 4937:Journal of the American Chemical Society 4221:Journal of the American Chemical Society 4159:Journal of the American Chemical Society 4085:Journal of the American Chemical Society 3918:Journal of the American Chemical Society 3101:Journal of the American Chemical Society 3074:Journal of the American Chemical Society 2637:Journal of the American Chemical Society 2546:Journal of the American Chemical Society 2416:Journal of the American Chemical Society 2351:Journal of the American Chemical Society 2142:Journal of the American Chemical Society 2072:Journal of the American Chemical Society 2037:Journal of the American Chemical Society 1683:Journal of the American Chemical Society 1611:Journal of the American Chemical Society 1486:Journal of the American Chemical Society 984: 671: 208: 5130:Angewandte Chemie International Edition 4699:Angewandte Chemie International Edition 2729:Angewandte Chemie International Edition 2304:Angewandte Chemie International Edition 1796:Angewandte Chemie International Edition 1440:Angewandte Chemie International Edition 1234:Angewandte Chemie International Edition 1217: 186:with a ring and two different possible 37: 4469:Satir, P.; Christensen, S. T. (2008). 1407:"There's Plenty of Room at the Bottom" 521:was awarded to Sauvage, Stoddart, and 279:systems for varied functions (such as 1276:"Wholly Synthetic Molecular Machines" 649:chemical reactions (heavily based on 7: 5754: 4847:"Building molecular machine systems" 1986:Nogales, E.; Grigorieff, N. (2001). 418:There's Plenty of Room at the Bottom 376:There's Plenty of Room at the Bottom 5237:Neal, E. A.; Goldup, S. M. (2014). 1880:"The Nobel Prize in Chemistry 2016" 1274:Cheng, C.; Stoddart, J. F. (2016). 728:isomerization when irradiated with 5434:"The Future of Molecular Machines" 5200:"Molecular machines for catalysis" 4575:10.1016/B978-0-12-381262-9.00005-7 25: 1434:Kay, E. R.; Leigh, D. A. (2015). 1075:proton gradients across membranes 993:and membrane targeting stages of 561:and azobenzene units. Similarly, 405:unit, which could switch between 5778: 5766: 5753: 5742: 5741: 2690:The Journal of Organic Chemistry 1436:"Rise of the molecular machines" 448:unit (green), but shifts to the 105: 93: 4845:Drexler, K. Eric (1999-01-01). 4475:Histochemistry and Cell Biology 1939:"Artificial Molecular Machines" 1831:"Artificial Molecular Machines" 33:Part of a series of articles on 4567:Protein Structure and Diseases 4417:(in French). November 30, 2017 2212:"DNA-Based Molecular Machines" 1168:systems for varied functions. 1: 5701:Scanning tunneling microscope 4863:10.1016/S0167-7799(98)01278-5 4816:10.1103/PhysRevLett.94.220801 4186:Accounts of Chemical Research 4120:"Artificial molecular motors" 4016:10.1103/PhysRevLett.98.266102 3973:10.1103/PhysRevLett.98.266102 3847:Chemistry: A European Journal 2836:"Artificial molecular motors" 2107:Accounts of Chemical Research 1668:10.1016/S0040-4039(00)94050-4 981:Biological molecular machines 529:Artificial molecular machines 515:scanning tunneling microscope 3894:10.1021/acsmacrolett.1c00567 1773:10.1126/science.281.5376.531 1573:Baum, R. (1 December 2003). 1073:which harnesses energy from 5673:Molecular scale electronics 3232:Chemistry: An Asian Journal 2273:10.1021/acs.chemrev.9b00249 1992:The Journal of Cell Biology 1955:10.1021/acs.chemrev.5b00146 1847:10.1021/acs.chemrev.5b00146 1113:. These machines and their 1025:, which is responsible for 808:-1 rings (hence comprising 365:different things we can do. 5837: 5450:10.1021/acscentsci.0c00064 4561:Bu Z, Callaway DJ (2011). 3814:10.1038/s41467-020-16940-z 3714:10.1038/s41467-022-29141-7 2997:10.1038/s41467-019-12116-6 989:A ribosome performing the 785:Carbon nanotube nanomotors 5737: 5688:Scanning probe microscopy 5050:10.1038/s41565-017-0059-x 4664:10.1080/10611860600612862 4652:Journal of Drug Targeting 4487:10.1007/s00418-008-0416-9 3371:10.1038/s41570-019-0122-2 1144:Research and applications 1001:is green and yellow, the 697:or hydrophobic effects, 5811:Supramolecular chemistry 5711:Molecular nanotechnology 5655:Solid lipid nanoparticle 5640:Self-assembled monolayer 5204:Nature Reviews Chemistry 5165:Chemical Society Reviews 4124:Chemical Society Reviews 3359:Nature Reviews Chemistry 3283:10.1021/acsomega.1c02912 3187:Chemical Society Reviews 2878:Chemical Society Reviews 2843:Chemical Society Reviews 2580:Chemical Society Reviews 2451:Chemical Society Reviews 2177:Chemical Society Reviews 1878:Staff (5 October 2016). 1340:10.2217/17435889.3.1.107 1126:Molecular nanotechnology 519:Nobel Prize in Chemistry 431:molecular nanotechnology 192:Nobel Prize in Chemistry 5696:Atomic force microscope 5645:Supramolecular assembly 5632:Molecular self-assembly 5432:Aprahamian, I. (2020). 5243:Chemical Communications 5216:10.1038/s41570-018-0117 4851:Trends in Biotechnology 4786:Physical Review Letters 3996:Physical Review Letters 3953:Physical Review Letters 3655:Chemical Communications 3153:10.1073/pnas.1908034116 3039:Chemical Communications 2511:10.1073/pnas.0509011103 1414:Engineering and Science 1067:protein domain dynamics 1015:multi-protein complexes 341:intracellular transport 226:protein domain dynamics 180:multi-protein complexes 5411:10.1002/cphc.201501048 5368:10.1002/adma.201906036 5300:10.1002/adma.201906064 5142:10.1002/anie.201105585 4898:10.1002/cphc.201501160 4711:10.1002/anie.201100115 4629:10.1002/ange.200905200 3859:10.1002/chem.201203093 3406:10.1002/cphc.200800216 3244:10.1002/asia.201000603 2742:10.1002/anie.201602752 2400:10.1002/celc.201402399 2316:10.1002/anie.201912659 2228:10.1021/jacsau.2c00292 1541:10.1073/pnas.78.9.5275 1452:10.1002/anie.201503375 1293:10.1002/cphc.201501155 1059:mobile protein domains 1010: 605: 464: 381: 233: 200:Sir J. Fraser Stoddart 158:responsible for vital 70:Productive nanosystems 5785:Technology portal 5030:Nature Nanotechnology 4771:10.1166/jctn.2005.001 4436:Donald, Voet (2011). 3794:Nature Communications 3694:Nature Communications 2976:Nature Communications 1607:"A molecular shuttle" 1111:synthesising proteins 1089:for replicating DNA, 1007:endoplasmic reticulum 988: 592: 443: 317:random thermal motion 212: 112:Technology portal 5572:Green nanotechnology 5097:10.1021/jacs.2c01060 4949:10.1021/jacs.8b11351 2649:10.1021/jacs.5b05736 2004:10.1083/jcb.152.1.f1 1196:working conditions. 1174:asymmetric synthesis 1170:Homogenous catalysis 1134:molecular assemblers 911:van der Waals forces 753:Molecular logic gate 617:in an unsubstituted 597:. b) Bending due to 337:biological processes 285:homogenous catalysis 5719:Molecular assembler 5438:ACS Central Science 5360:2020AdM....3206036M 5292:2020AdM....3206064C 5042:2018NatNa..13..304O 4992:2016NatCh...8..625I 4943:(49): 17308–17315. 4808:2005PhRvL..94v0801G 4763:2005JCTN....2..471K 4621:2010AngCh.122..322A 4379:10.1038/nature10587 4371:2011Natur.479..208K 4327:2005NanoL...5.2330S 4276:2000Natur.406..605Y 4171:10.1021/ja00483a063 4054:1994Natur.369..133B 4008:2007PhRvL..98z6102W 3965:2007PhRvL..98z6102W 3853:(51): 16302–16309. 3806:2020NatCo..11.3178W 3759:1992Natur.356..325H 3706:2022NatCo..13.1393Z 3602:1999Natur.401..152K 3544:1999Natur.401..150K 3501:10.1038/nature01823 3493:2003Natur.424..408F 3328:1993Natur.364...42D 3277:(45): 30189–30204. 3144:2019PNAS..11613856A 3138:(28): 13856–13861. 3086:10.1021/ja00250a052 3045:(78): 11462–11464. 2988:2019NatCo..10.4159H 2929:2020RSCAd..10.3726W 2643:(32): 10084–10087. 2558:10.1021/ja00089a057 2502:2006PNAS..103.1178B 2422:(31): 10623–10625. 2357:(50): 17438–17441. 2148:(40): 14172–14178. 1949:(18): 10081–10206. 1841:(18): 10081–10206. 1765:1998Sci...281..531G 1722:1994Natur.369..133B 1695:10.1021/ja00322a055 1656:Tetrahedron Letters 1624:10.1021/ja00013a096 1532:1981PNAS...78.5275D 1498:10.1021/ja00538a026 1446:(35): 10080–10088. 995:protein translation 925:pincers clasping a 846:Molecular propeller 818:polyethylene glycol 800:Molecular necklace 651:acid-base chemistry 549:, that can undergo 482:Jean-Pierre Sauvage 470:Sir Fraser Stoddart 459:or lowering of the 345:muscle contractions 196:Jean-Pierre Sauvage 81:Engines of Creation 55:Molecular assembler 5816:Molecular machines 5773:Science portal 5650:DNA nanotechnology 5348:Advanced Materials 5280:Advanced Materials 5256:10.1039/C3CC47842D 5177:10.1039/c1cs15197e 5000:10.1038/nchem.2513 4414:La Dépêche du Midi 4136:10.1039/C7CS00245A 3448:10.1039/C0SC00162G 3199:10.1039/C7CS00491E 3051:10.1039/C4CC05331A 2938:10.1039/C9RA10161F 2890:10.1039/c1cs15179g 2855:10.1039/C7CS00245A 1188:to drug delivery. 1115:nanoscale dynamics 1011: 904:Molecular tweezers 686:Molecular balance 655:electron transfers 606: 523:Bernard L. Feringa 465: 313:chemical reactions 234: 222:biological machine 204:Bernard L. Feringa 155:Molecular machines 100:Science portal 5793: 5792: 5405:(12): 1759–1768. 5249:(40): 5128–5142. 5091:(15): 6851–6860. 4892:(12): 1913–1919. 4705:(18): 4161–4164. 4609:Angewandte Chemie 4532:10.1021/cr030071r 4365:(7372): 208–211. 4335:10.1021/nl051915k 4321:(11): 2330–2334. 4270:(6796): 605–608. 4233:10.1021/ja070616p 4227:(13): 3842–3843. 4198:10.1021/ar0200448 4165:(15): 4921–4922. 4097:10.1021/ja057664z 4091:(12): 4058–4073. 4048:(6476): 133–137. 3930:10.1021/ja036732j 3924:(10): 3139–3147. 3888:(11): 1371–1376. 3882:ACS Macro Letters 3753:(6367): 325–327. 3596:(6749): 152–155. 3538:(6749): 150–152. 3487:(6947): 408–410. 3400:(11): 1503–1509. 3113:10.1021/ja962780a 3080:(16): 5035–5036. 2813:10.1021/ol801286k 2807:(16): 3547–3550. 2778:10.1021/ol201657p 2772:(16): 4320–4323. 2735:(28): 8086–8089. 2702:10.1021/jo400370e 2696:(11): 5303–5313. 2586:(11): 4195–4205. 2552:(10): 4497–4498. 2428:10.1021/ja1022267 2364:10.1021/ja511135k 2310:(22): 8344–8354. 2222:(11): 2381–2399. 2154:10.1021/ja105356w 2119:10.1021/ar400308f 2084:10.1021/ja801646b 2078:(21): 6725–6727. 2049:10.1021/ja503467e 2043:(25): 8871–8874. 1802:(19): 3348–3391. 1759:(5376): 531–533. 1716:(6476): 133–137. 1689:(10): 3043–3045. 1662:(46): 5095–5098. 1617:(13): 5131–5133. 1492:(18): 5860–5865. 1378:10.1021/cr030071r 1286:(12): 1780–1793. 1240:(19): 3348–3391. 978: 977: 864:Molecular shuttle 730:ultraviolet light 641:to deliver work. 289:surface chemistry 148: 147: 60:Molecular machine 16:(Redirected from 5828: 5783: 5782: 5771: 5770: 5757: 5756: 5745: 5744: 5729:Mechanosynthesis 5620:characterization 5502: 5495: 5488: 5479: 5472: 5471: 5461: 5429: 5423: 5422: 5394: 5388: 5387: 5345: 5336: 5330: 5329: 5311: 5275: 5269: 5268: 5258: 5234: 5228: 5227: 5195: 5189: 5188: 5171:(5): 1892–1910. 5160: 5154: 5153: 5125: 5119: 5118: 5108: 5076: 5070: 5069: 5027: 5018: 5012: 5011: 4980:Nature Chemistry 4975: 4969: 4968: 4932: 4926: 4925: 4881: 4875: 4874: 4842: 4836: 4835: 4801: 4799:cond-mat/0701169 4781: 4775: 4774: 4748: 4739: 4733: 4732: 4722: 4690: 4684: 4683: 4647: 4641: 4640: 4603: 4597: 4596: 4558: 4552: 4551: 4526:(4): 1377–1400. 4520:Chemical Reviews 4515: 4509: 4508: 4498: 4466: 4460: 4459: 4433: 4427: 4426: 4424: 4422: 4405: 4399: 4398: 4353: 4347: 4346: 4310: 4304: 4303: 4284:10.1038/35020524 4259: 4253: 4252: 4216: 4210: 4209: 4181: 4175: 4174: 4154: 4148: 4147: 4130:(9): 2592–2621. 4115: 4109: 4108: 4080: 4074: 4073: 4062:10.1038/369133a0 4037: 4028: 4027: 3991: 3985: 3984: 3948: 3942: 3941: 3912: 3906: 3905: 3877: 3871: 3870: 3842: 3836: 3835: 3825: 3785: 3779: 3778: 3767:10.1038/356325a0 3742: 3736: 3735: 3725: 3685: 3679: 3678: 3667:10.1039/B507264F 3646: 3640: 3639: 3621: 3587: 3578: 3572: 3571: 3527: 3521: 3520: 3476: 3470: 3469: 3459: 3436:Chemical Science 3433: 3424: 3418: 3417: 3389: 3383: 3382: 3354: 3348: 3347: 3336:10.1038/364042a0 3311: 3305: 3304: 3294: 3262: 3256: 3255: 3227: 3221: 3220: 3210: 3193:(7): 2228–2248. 3182: 3176: 3175: 3165: 3155: 3123: 3117: 3116: 3096: 3090: 3089: 3069: 3063: 3062: 3034: 3028: 3027: 3017: 2999: 2967: 2961: 2960: 2950: 2940: 2923:(7): 3726–3733. 2908: 2902: 2901: 2884:(5): 1809–1825. 2873: 2867: 2866: 2849:(9): 2592–2621. 2840: 2831: 2825: 2824: 2796: 2790: 2789: 2761: 2755: 2754: 2744: 2720: 2714: 2713: 2685: 2679: 2678: 2660: 2628: 2622: 2621: 2603: 2592:10.1039/B822665M 2577: 2568: 2562: 2561: 2540: 2534: 2533: 2523: 2513: 2496:(5): 1178–1183. 2481: 2475: 2474: 2463:10.1039/B806328C 2457:(6): 1542–1550. 2446: 2440: 2439: 2410: 2404: 2403: 2383: 2377: 2376: 2366: 2342: 2336: 2335: 2299: 2293: 2292: 2261:Chemical Reviews 2256: 2250: 2249: 2239: 2207: 2201: 2200: 2189:10.1039/B819333A 2183:(6): 1802–1820. 2172: 2166: 2165: 2137: 2131: 2130: 2113:(6): 1663–1672. 2102: 2096: 2095: 2067: 2061: 2060: 2032: 2026: 2025: 2015: 1983: 1977: 1976: 1966: 1943:Chemical Reviews 1934: 1925: 1924: 1922: 1920: 1903: 1897: 1896: 1894: 1892: 1885:Nobel Foundation 1875: 1869: 1868: 1858: 1835:Chemical Reviews 1826: 1820: 1819: 1791: 1785: 1784: 1748: 1742: 1741: 1730:10.1038/369133a0 1705: 1699: 1698: 1678: 1672: 1671: 1651: 1645: 1644: 1626: 1602: 1593: 1592: 1590: 1588: 1570: 1564: 1563: 1553: 1543: 1526:(9): 5275–5278. 1508: 1502: 1501: 1480: 1474: 1473: 1463: 1431: 1422: 1421: 1411: 1399: 1390: 1389: 1372:(4): 1377–1400. 1366:Chemical Reviews 1361: 1352: 1351: 1323: 1314: 1313: 1295: 1271: 1258: 1257: 1229: 1055:Flexible linkers 974: 940: 898: 882:Molecular switch 876: 858: 840: 831:piezoelectricity 795: 773: 747: 713:Molecular hinge 708: 691:hydrogen bonding 672: 623:electron density 535:characterization 480:as developed by 379: 325:magnetostrictive 257:molecular motors 238:characterization 220:is a molecular 160:living processes 140: 133: 126: 110: 109: 98: 97: 50:Mechanosynthesis 30: 21: 5836: 5835: 5831: 5830: 5829: 5827: 5826: 5825: 5796: 5795: 5794: 5789: 5777: 5765: 5733: 5705: 5682: 5678:Nanolithography 5665:Nanoelectronics 5659: 5626: 5581: 5544: 5535:Popular culture 5511: 5506: 5476: 5475: 5431: 5430: 5426: 5396: 5395: 5391: 5354:(20): 1906036. 5343: 5338: 5337: 5333: 5286:(20): 1906064. 5277: 5276: 5272: 5236: 5235: 5231: 5197: 5196: 5192: 5162: 5161: 5157: 5127: 5126: 5122: 5078: 5077: 5073: 5025: 5020: 5019: 5015: 4977: 4976: 4972: 4934: 4933: 4929: 4883: 4882: 4878: 4844: 4843: 4839: 4783: 4782: 4778: 4746: 4741: 4740: 4736: 4692: 4691: 4687: 4649: 4648: 4644: 4605: 4604: 4600: 4585: 4560: 4559: 4555: 4517: 4516: 4512: 4468: 4467: 4463: 4448: 4435: 4434: 4430: 4420: 4418: 4407: 4406: 4402: 4355: 4354: 4350: 4312: 4311: 4307: 4261: 4260: 4256: 4218: 4217: 4213: 4192:(12): 919–932. 4183: 4182: 4178: 4156: 4155: 4151: 4117: 4116: 4112: 4082: 4081: 4077: 4039: 4038: 4031: 3993: 3992: 3988: 3950: 3949: 3945: 3914: 3913: 3909: 3879: 3878: 3874: 3844: 3843: 3839: 3787: 3786: 3782: 3744: 3743: 3739: 3687: 3686: 3682: 3648: 3647: 3643: 3585: 3580: 3579: 3575: 3529: 3528: 3524: 3478: 3477: 3473: 3431: 3426: 3425: 3421: 3391: 3390: 3386: 3356: 3355: 3351: 3322:(6432): 42–44. 3313: 3312: 3308: 3264: 3263: 3259: 3229: 3228: 3224: 3184: 3183: 3179: 3125: 3124: 3120: 3098: 3097: 3093: 3071: 3070: 3066: 3036: 3035: 3031: 2969: 2968: 2964: 2910: 2909: 2905: 2875: 2874: 2870: 2838: 2833: 2832: 2828: 2801:Organic Letters 2798: 2797: 2793: 2766:Organic Letters 2763: 2762: 2758: 2722: 2721: 2717: 2687: 2686: 2682: 2630: 2629: 2625: 2575: 2570: 2569: 2565: 2542: 2541: 2537: 2483: 2482: 2478: 2448: 2447: 2443: 2412: 2411: 2407: 2388:ChemElectroChem 2385: 2384: 2380: 2344: 2343: 2339: 2301: 2300: 2296: 2258: 2257: 2253: 2209: 2208: 2204: 2174: 2173: 2169: 2139: 2138: 2134: 2104: 2103: 2099: 2069: 2068: 2064: 2034: 2033: 2029: 1985: 1984: 1980: 1936: 1935: 1928: 1918: 1916: 1905: 1904: 1900: 1890: 1888: 1877: 1876: 1872: 1828: 1827: 1823: 1793: 1792: 1788: 1750: 1749: 1745: 1707: 1706: 1702: 1680: 1679: 1675: 1653: 1652: 1648: 1604: 1603: 1596: 1586: 1584: 1572: 1571: 1567: 1510: 1509: 1505: 1482: 1481: 1477: 1433: 1432: 1425: 1409: 1401: 1400: 1393: 1363: 1362: 1355: 1325: 1324: 1317: 1273: 1272: 1261: 1231: 1230: 1219: 1214: 1202: 1146: 1091:RNA polymerases 1087:DNA polymerases 1083:gene expression 983: 827:desulfurization 814:α-cyclodextrins 779:Molecular motor 667: 635:kinetic control 586:and unfolding. 584:protein folding 531: 499:electrochemical 454:electrochemical 423:Richard Feynman 380: 371:Richard Feynman 369: 361: 297: 194:was awarded to 190:. In 2016 the 164:DNA replication 144: 104: 92: 40: 28: 23: 22: 15: 12: 11: 5: 5834: 5832: 5824: 5823: 5818: 5813: 5808: 5806:Nanotechnology 5798: 5797: 5791: 5790: 5788: 5787: 5775: 5763: 5751: 5738: 5735: 5734: 5732: 5731: 5726: 5721: 5715: 5713: 5707: 5706: 5704: 5703: 5698: 5692: 5690: 5684: 5683: 5681: 5680: 5675: 5669: 5667: 5661: 5660: 5658: 5657: 5652: 5647: 5642: 5636: 5634: 5628: 5627: 5625: 5624: 5623: 5622: 5612: 5611: 5610: 5605: 5597: 5591: 5589: 5583: 5582: 5580: 5579: 5574: 5569: 5567:Nanotoxicology 5564: 5558: 5556: 5546: 5545: 5543: 5542: 5537: 5532: 5527: 5521: 5519: 5513: 5512: 5509:Nanotechnology 5507: 5505: 5504: 5497: 5490: 5482: 5474: 5473: 5444:(3): 347–358. 5424: 5389: 5331: 5270: 5229: 5190: 5155: 5136:(4): 901–904. 5120: 5071: 5036:(4): 304–308. 5013: 4986:(6): 625–632. 4970: 4927: 4876: 4837: 4792:(22): 220801. 4776: 4734: 4685: 4642: 4615:(2): 322–326. 4598: 4583: 4553: 4510: 4481:(6): 687–693. 4461: 4446: 4428: 4400: 4348: 4305: 4254: 4211: 4176: 4149: 4110: 4075: 4029: 4002:(26): 266102. 3986: 3959:(26): 266102. 3943: 3907: 3872: 3837: 3780: 3737: 3680: 3661:(47): 5910–2. 3641: 3573: 3522: 3471: 3419: 3384: 3365:(9): 536–551. 3349: 3306: 3257: 3238:(3): 750–766. 3222: 3177: 3118: 3107:(5): 918–925. 3091: 3064: 3029: 2962: 2903: 2868: 2826: 2791: 2756: 2715: 2680: 2623: 2563: 2535: 2476: 2441: 2405: 2394:(4): 475–496. 2378: 2337: 2294: 2267:(1): 288–309. 2251: 2202: 2167: 2132: 2097: 2062: 2027: 1978: 1926: 1913:New York Times 1898: 1870: 1821: 1786: 1743: 1700: 1673: 1646: 1594: 1565: 1512:Drexler, K. E. 1503: 1475: 1423: 1391: 1353: 1334:(1): 107–124. 1315: 1259: 1216: 1215: 1213: 1210: 1209: 1208: 1201: 1198: 1162:liquid crystal 1145: 1142: 1093:for producing 1019:motor proteins 982: 979: 976: 975: 968: 963:took place in 948: 942: 941: 934: 915:π interactions 906: 900: 899: 892: 884: 878: 877: 870: 866: 860: 859: 852: 848: 842: 841: 834: 829:of fuels, and 801: 797: 796: 789: 781: 775: 774: 767: 755: 749: 748: 741: 714: 710: 709: 702: 699:π interactions 687: 683: 682: 679: 676: 666: 663: 530: 527: 401:containing an 391:aromatic rings 367: 360: 357: 349:ATP generation 296: 293: 273:liquid crystal 152: 151: 146: 145: 143: 142: 135: 128: 120: 117: 116: 115: 114: 102: 87: 86: 85: 84: 77: 72: 67: 65:Brownian motor 62: 57: 52: 44: 43: 41:nanotechnology 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5833: 5822: 5819: 5817: 5814: 5812: 5809: 5807: 5804: 5803: 5801: 5786: 5781: 5776: 5774: 5769: 5764: 5762: 5761: 5752: 5750: 5749: 5740: 5739: 5736: 5730: 5727: 5725: 5722: 5720: 5717: 5716: 5714: 5712: 5708: 5702: 5699: 5697: 5694: 5693: 5691: 5689: 5685: 5679: 5676: 5674: 5671: 5670: 5668: 5666: 5662: 5656: 5653: 5651: 5648: 5646: 5643: 5641: 5638: 5637: 5635: 5633: 5629: 5621: 5618: 5617: 5616: 5615:Nanoparticles 5613: 5609: 5606: 5604: 5601: 5600: 5598: 5596: 5593: 5592: 5590: 5588: 5587:Nanomaterials 5584: 5578: 5575: 5573: 5570: 5568: 5565: 5563: 5560: 5559: 5557: 5555: 5551: 5547: 5541: 5538: 5536: 5533: 5531: 5530:Organizations 5528: 5526: 5523: 5522: 5520: 5518: 5514: 5510: 5503: 5498: 5496: 5491: 5489: 5484: 5483: 5480: 5469: 5465: 5460: 5455: 5451: 5447: 5443: 5439: 5435: 5428: 5425: 5420: 5416: 5412: 5408: 5404: 5400: 5393: 5390: 5385: 5381: 5377: 5373: 5369: 5365: 5361: 5357: 5353: 5349: 5342: 5335: 5332: 5327: 5323: 5319: 5315: 5310: 5305: 5301: 5297: 5293: 5289: 5285: 5281: 5274: 5271: 5266: 5262: 5257: 5252: 5248: 5244: 5240: 5233: 5230: 5225: 5221: 5217: 5213: 5209: 5205: 5201: 5194: 5191: 5186: 5182: 5178: 5174: 5170: 5166: 5159: 5156: 5151: 5147: 5143: 5139: 5135: 5131: 5124: 5121: 5116: 5112: 5107: 5102: 5098: 5094: 5090: 5086: 5082: 5075: 5072: 5067: 5063: 5059: 5055: 5051: 5047: 5043: 5039: 5035: 5031: 5024: 5017: 5014: 5009: 5005: 5001: 4997: 4993: 4989: 4985: 4981: 4974: 4971: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4938: 4931: 4928: 4923: 4919: 4915: 4911: 4907: 4906:11383/2057447 4903: 4899: 4895: 4891: 4887: 4880: 4877: 4872: 4868: 4864: 4860: 4856: 4852: 4848: 4841: 4838: 4833: 4829: 4825: 4821: 4817: 4813: 4809: 4805: 4800: 4795: 4791: 4787: 4780: 4777: 4772: 4768: 4764: 4760: 4756: 4752: 4745: 4738: 4735: 4730: 4726: 4721: 4716: 4712: 4708: 4704: 4700: 4696: 4689: 4686: 4681: 4677: 4673: 4669: 4665: 4661: 4657: 4653: 4646: 4643: 4638: 4634: 4630: 4626: 4622: 4618: 4614: 4610: 4602: 4599: 4594: 4590: 4586: 4584:9780123812629 4580: 4576: 4572: 4568: 4564: 4557: 4554: 4549: 4545: 4541: 4537: 4533: 4529: 4525: 4521: 4514: 4511: 4506: 4502: 4497: 4492: 4488: 4484: 4480: 4476: 4472: 4465: 4462: 4457: 4453: 4449: 4447:9780470570951 4443: 4439: 4432: 4429: 4416: 4415: 4410: 4404: 4401: 4396: 4392: 4388: 4384: 4380: 4376: 4372: 4368: 4364: 4360: 4352: 4349: 4344: 4340: 4336: 4332: 4328: 4324: 4320: 4316: 4309: 4306: 4301: 4297: 4293: 4289: 4285: 4281: 4277: 4273: 4269: 4265: 4258: 4255: 4250: 4246: 4242: 4238: 4234: 4230: 4226: 4222: 4215: 4212: 4207: 4203: 4199: 4195: 4191: 4187: 4180: 4177: 4172: 4168: 4164: 4160: 4153: 4150: 4145: 4141: 4137: 4133: 4129: 4125: 4121: 4114: 4111: 4106: 4102: 4098: 4094: 4090: 4086: 4079: 4076: 4071: 4067: 4063: 4059: 4055: 4051: 4047: 4043: 4036: 4034: 4030: 4025: 4021: 4017: 4013: 4009: 4005: 4001: 3997: 3990: 3987: 3982: 3978: 3974: 3970: 3966: 3962: 3958: 3954: 3947: 3944: 3939: 3935: 3931: 3927: 3923: 3919: 3911: 3908: 3903: 3899: 3895: 3891: 3887: 3883: 3876: 3873: 3868: 3864: 3860: 3856: 3852: 3848: 3841: 3838: 3833: 3829: 3824: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3791: 3784: 3781: 3776: 3772: 3768: 3764: 3760: 3756: 3752: 3748: 3741: 3738: 3733: 3729: 3724: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3684: 3681: 3676: 3672: 3668: 3664: 3660: 3656: 3652: 3645: 3642: 3637: 3633: 3629: 3625: 3620: 3615: 3611: 3610:10.1038/43646 3607: 3603: 3599: 3595: 3591: 3584: 3577: 3574: 3569: 3565: 3561: 3557: 3553: 3552:10.1038/43639 3549: 3545: 3541: 3537: 3533: 3526: 3523: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3475: 3472: 3467: 3463: 3458: 3453: 3449: 3445: 3442:(1): 97–101. 3441: 3437: 3430: 3423: 3420: 3415: 3411: 3407: 3403: 3399: 3395: 3388: 3385: 3380: 3376: 3372: 3368: 3364: 3360: 3353: 3350: 3345: 3341: 3337: 3333: 3329: 3325: 3321: 3317: 3310: 3307: 3302: 3298: 3293: 3288: 3284: 3280: 3276: 3272: 3268: 3261: 3258: 3253: 3249: 3245: 3241: 3237: 3233: 3226: 3223: 3218: 3214: 3209: 3204: 3200: 3196: 3192: 3188: 3181: 3178: 3173: 3169: 3164: 3159: 3154: 3149: 3145: 3141: 3137: 3133: 3129: 3122: 3119: 3114: 3110: 3106: 3102: 3095: 3092: 3087: 3083: 3079: 3075: 3068: 3065: 3060: 3056: 3052: 3048: 3044: 3040: 3033: 3030: 3025: 3021: 3016: 3011: 3007: 3003: 2998: 2993: 2989: 2985: 2981: 2977: 2973: 2966: 2963: 2958: 2954: 2949: 2944: 2939: 2934: 2930: 2926: 2922: 2918: 2914: 2907: 2904: 2899: 2895: 2891: 2887: 2883: 2879: 2872: 2869: 2864: 2860: 2856: 2852: 2848: 2844: 2837: 2830: 2827: 2822: 2818: 2814: 2810: 2806: 2802: 2795: 2792: 2787: 2783: 2779: 2775: 2771: 2767: 2760: 2757: 2752: 2748: 2743: 2738: 2734: 2730: 2726: 2719: 2716: 2711: 2707: 2703: 2699: 2695: 2691: 2684: 2681: 2676: 2672: 2668: 2664: 2659: 2654: 2650: 2646: 2642: 2638: 2634: 2627: 2624: 2619: 2615: 2611: 2607: 2602: 2597: 2593: 2589: 2585: 2581: 2574: 2567: 2564: 2559: 2555: 2551: 2547: 2539: 2536: 2531: 2527: 2522: 2517: 2512: 2507: 2503: 2499: 2495: 2491: 2487: 2480: 2477: 2472: 2468: 2464: 2460: 2456: 2452: 2445: 2442: 2437: 2433: 2429: 2425: 2421: 2417: 2409: 2406: 2401: 2397: 2393: 2389: 2382: 2379: 2374: 2370: 2365: 2360: 2356: 2352: 2348: 2341: 2338: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2298: 2295: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2262: 2255: 2252: 2247: 2243: 2238: 2233: 2229: 2225: 2221: 2217: 2213: 2206: 2203: 2198: 2194: 2190: 2186: 2182: 2178: 2171: 2168: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2133: 2128: 2124: 2120: 2116: 2112: 2108: 2101: 2098: 2093: 2089: 2085: 2081: 2077: 2073: 2066: 2063: 2058: 2054: 2050: 2046: 2042: 2038: 2031: 2028: 2023: 2019: 2014: 2009: 2005: 2001: 1997: 1993: 1989: 1982: 1979: 1974: 1970: 1965: 1960: 1956: 1952: 1948: 1944: 1940: 1933: 1931: 1927: 1915: 1914: 1909: 1902: 1899: 1887: 1886: 1881: 1874: 1871: 1866: 1862: 1857: 1852: 1848: 1844: 1840: 1836: 1832: 1825: 1822: 1817: 1813: 1809: 1805: 1801: 1797: 1790: 1787: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1744: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1704: 1701: 1696: 1692: 1688: 1684: 1677: 1674: 1669: 1665: 1661: 1658:(in French). 1657: 1650: 1647: 1642: 1638: 1634: 1630: 1625: 1620: 1616: 1612: 1608: 1601: 1599: 1595: 1582: 1581: 1576: 1569: 1566: 1561: 1557: 1552: 1547: 1542: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1507: 1504: 1499: 1495: 1491: 1487: 1479: 1476: 1471: 1467: 1462: 1457: 1453: 1449: 1445: 1441: 1437: 1430: 1428: 1424: 1419: 1415: 1408: 1404: 1398: 1396: 1392: 1387: 1383: 1379: 1375: 1371: 1367: 1360: 1358: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1322: 1320: 1316: 1311: 1307: 1303: 1299: 1294: 1289: 1285: 1281: 1277: 1270: 1268: 1266: 1264: 1260: 1255: 1251: 1247: 1243: 1239: 1235: 1228: 1226: 1224: 1222: 1218: 1211: 1207: 1204: 1203: 1199: 1197: 1193: 1189: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1154: 1152: 1151:self-assembly 1143: 1141: 1139: 1135: 1131: 1127: 1123: 1118: 1116: 1112: 1108: 1104: 1101:for removing 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1029:contraction, 1028: 1024: 1020: 1016: 1008: 1004: 1000: 996: 992: 987: 980: 973: 969: 966: 962: 958: 954: 953:James M. Tour 949: 947: 944: 943: 939: 935: 932: 928: 927:C60 fullerene 924: 920: 919:electrostatic 916: 912: 907: 905: 902: 901: 897: 893: 890: 885: 883: 880: 879: 875: 871: 867: 865: 862: 861: 857: 853: 849: 847: 844: 843: 839: 835: 832: 828: 824: 823:antibacterial 819: 815: 811: 807: 802: 799: 798: 794: 790: 786: 782: 780: 777: 776: 772: 768: 764: 760: 756: 754: 751: 750: 746: 742: 739: 736:recognition, 735: 731: 727: 723: 719: 715: 712: 711: 707: 703: 700: 696: 692: 688: 685: 684: 680: 677: 674: 673: 670: 664: 662: 660: 656: 652: 648: 642: 640: 636: 632: 631:drug delivery 628: 624: 620: 616: 611: 602: 601: 596: 591: 587: 585: 581: 577: 572: 568: 564: 560: 556: 552: 548: 544: 540: 536: 528: 526: 524: 520: 516: 512: 508: 504: 500: 497:variation or 496: 491: 487: 486:binding sites 483: 479: 475: 471: 462: 458: 455: 451: 447: 442: 438: 436: 432: 428: 424: 420: 419: 414: 410: 409: 404: 400: 396: 392: 387: 378: 377: 372: 366: 358: 356: 354: 353:cell division 350: 346: 342: 338: 334: 328: 326: 322: 321:Piezoelectric 318: 314: 310: 308: 304: 294: 292: 290: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 249:isomerization 248: 243: 239: 231: 227: 223: 219: 216:walking on a 215: 211: 207: 205: 201: 197: 193: 189: 188:binding sites 185: 181: 177: 173: 169: 168:ATP synthesis 165: 161: 156: 150: 149: 141: 136: 134: 129: 127: 122: 121: 119: 118: 113: 108: 103: 101: 96: 91: 90: 89: 88: 83: 82: 78: 76: 73: 71: 68: 66: 63: 61: 58: 56: 53: 51: 48: 47: 46: 45: 42: 36: 32: 31: 19: 5821:Nanomachines 5758: 5746: 5724:Nanorobotics 5562:Nanomedicine 5554:applications 5441: 5437: 5427: 5402: 5399:ChemPhysChem 5398: 5392: 5351: 5347: 5334: 5309:11585/718295 5283: 5279: 5273: 5246: 5242: 5232: 5207: 5203: 5193: 5168: 5164: 5158: 5133: 5129: 5123: 5088: 5084: 5074: 5033: 5029: 5016: 4983: 4979: 4973: 4940: 4936: 4930: 4889: 4886:ChemPhysChem 4885: 4879: 4854: 4850: 4840: 4789: 4785: 4779: 4754: 4750: 4737: 4702: 4698: 4688: 4655: 4651: 4645: 4612: 4608: 4601: 4566: 4556: 4523: 4519: 4513: 4478: 4474: 4464: 4438:Biochemistry 4437: 4431: 4419:. Retrieved 4412: 4403: 4362: 4358: 4351: 4318: 4315:Nano Letters 4314: 4308: 4267: 4263: 4257: 4224: 4220: 4214: 4189: 4185: 4179: 4162: 4158: 4152: 4127: 4123: 4113: 4088: 4084: 4078: 4045: 4041: 3999: 3995: 3989: 3956: 3952: 3946: 3921: 3917: 3910: 3885: 3881: 3875: 3850: 3846: 3840: 3797: 3793: 3783: 3750: 3746: 3740: 3697: 3693: 3683: 3658: 3654: 3644: 3593: 3589: 3576: 3535: 3531: 3525: 3484: 3480: 3474: 3439: 3435: 3422: 3397: 3394:ChemPhysChem 3393: 3387: 3362: 3358: 3352: 3319: 3315: 3309: 3274: 3270: 3260: 3235: 3231: 3225: 3190: 3186: 3180: 3135: 3131: 3121: 3104: 3100: 3094: 3077: 3073: 3067: 3042: 3038: 3032: 2979: 2975: 2965: 2920: 2917:RSC Advances 2916: 2906: 2881: 2877: 2871: 2846: 2842: 2829: 2804: 2800: 2794: 2769: 2765: 2759: 2732: 2728: 2718: 2693: 2689: 2683: 2640: 2636: 2626: 2583: 2579: 2566: 2549: 2545: 2538: 2493: 2489: 2479: 2454: 2450: 2444: 2419: 2415: 2408: 2391: 2387: 2381: 2354: 2350: 2340: 2307: 2303: 2297: 2264: 2260: 2254: 2219: 2215: 2205: 2180: 2176: 2170: 2145: 2141: 2135: 2110: 2106: 2100: 2075: 2071: 2065: 2040: 2036: 2030: 1998:(1): F1-10. 1995: 1991: 1981: 1946: 1942: 1917:. Retrieved 1911: 1901: 1889:. Retrieved 1883: 1873: 1838: 1834: 1824: 1799: 1795: 1789: 1756: 1752: 1746: 1713: 1709: 1703: 1686: 1682: 1676: 1659: 1655: 1649: 1614: 1610: 1585:. Retrieved 1578: 1568: 1523: 1519: 1506: 1489: 1485: 1478: 1443: 1439: 1417: 1413: 1369: 1365: 1331: 1328:Nanomedicine 1327: 1283: 1280:ChemPhysChem 1279: 1237: 1233: 1206:Technorganic 1194: 1190: 1182:nanoparticle 1155: 1147: 1122:nanomedicine 1119: 1085:, including 1071:ATP synthase 1047:motile cilia 1039:microtubules 1012: 961:nanocar race 931:DNA machines 816:on a single 809: 805: 725: 721: 668: 643: 607: 598: 595:metallocenes 571:diarylethene 563:ring-opening 550: 547:double bonds 539:single bonds 532: 490:hydroquinone 466: 427:Eric Drexler 416: 412: 406: 382: 374: 363: 329: 306: 302: 298: 246: 242:single bonds 235: 154: 153: 79: 75:Nanorobotics 59: 18:Nanomachines 5210:(3): 0117. 4658:(2): 63–7. 4421:December 2, 3800:(1): 3178. 3700:(1): 1393. 3208:11693/50034 2982:(1): 4159. 1420:(5): 22–36. 1403:Feynman, R. 1186:3D printing 1166:crystalline 1130:speculative 1099:spliceosome 923:corannulene 763:food safety 759:logic gates 695:solvophobic 639:equilibrium 619:cyclohexane 610:bistability 543:metallocene 399:crown ether 395:triptycenes 295:Terminology 277:crystalline 265:logic gates 253:bistability 218:microtubule 5800:Categories 5608:Non-carbon 5599:Nanotubes 5595:Fullerenes 5577:Regulation 4857:(1): 5–7. 4757:(4): 471. 1587:16 January 1212:References 1178:allosteric 1138:nanorobots 1105:, and the 1057:allow the 991:elongation 957:fullerenes 825:activity, 734:nucleobase 647:reversible 567:spiropyran 555:wavelength 403:azobenzene 386:conformers 283:research, 230:nanoscales 5384:209343354 5326:210830979 5224:139606220 4965:207195871 4871:0167-7799 4540:0009-2665 4456:690489261 3379:199661943 3271:ACS Omega 3006:2041-1723 2667:0002-7863 2332:209676880 2289:202562979 1919:5 October 1891:5 October 1310:205704375 1158:polymeric 1063:allostery 889:hydrazone 659:viologens 627:catalysis 615:ring flip 604:catenane. 600:cis-trans 551:cis-trans 503:benzidine 478:rotaxanes 474:catenanes 457:oxidation 446:benzidine 281:materials 269:polymeric 247:cis-trans 176:ribosomes 39:Molecular 5748:Category 5517:Overview 5468:32232135 5419:26717523 5376:31833132 5318:31957172 5265:24434901 5185:22012174 5150:22028196 5115:35380815 5058:29434262 5008:27219709 4957:30415536 4914:26918775 4832:18989399 4824:16090376 4729:21472835 4680:25551052 4672:16608733 4637:19921669 4593:21570668 4548:15826015 4505:18365235 4387:22071765 4343:16277478 4292:10949296 4249:25154754 4241:17348661 4206:14674783 4144:28426052 4105:16551115 4070:44926804 4024:17678108 3981:17678108 3938:15012144 3902:35549010 3867:23168579 3832:32576814 3732:35296669 3675:16317472 3628:10490022 3560:10490021 3509:12879064 3466:97346507 3414:18618534 3344:38260349 3301:34805654 3252:21290607 3217:29493684 3172:31243146 3059:25132052 3024:31519876 2957:35492656 2898:22008710 2863:28426052 2821:18630926 2786:21797218 2751:27159670 2710:23675885 2675:26159869 2610:20844782 2530:16432207 2471:19587950 2436:20681678 2373:25474221 2324:31898850 2281:31509383 2246:36465542 2197:19587969 2162:20858003 2127:24617966 2092:18447353 2057:24911467 2022:11149934 1973:26346838 1865:26346838 1816:11091368 1738:44926804 1641:39993887 1633:27715028 1580:C&EN 1560:16593078 1514:(1981). 1470:26219251 1405:(1960). 1386:15826015 1348:18393670 1302:26833859 1254:11091368 1200:See also 1107:ribosome 1051:flagella 1021:such as 999:ribosome 965:Toulouse 766:inputs. 580:proteins 559:stilbene 511:oxidized 507:biphenol 450:biphenol 435:disputed 368:—  339:such as 333:proteins 261:switches 184:rotaxane 172:Kinesins 162:such as 5760:Commons 5540:Outline 5525:History 5459:7099591 5356:Bibcode 5288:Bibcode 5106:9026258 5066:3326300 5038:Bibcode 4988:Bibcode 4922:9660916 4804:Bibcode 4759:Bibcode 4720:3119711 4617:Bibcode 4496:2386530 4395:6175720 4367:Bibcode 4323:Bibcode 4300:2064216 4272:Bibcode 4050:Bibcode 4004:Bibcode 3961:Bibcode 3823:7311404 3802:Bibcode 3775:4304539 3755:Bibcode 3723:8927564 3702:Bibcode 3636:4412610 3598:Bibcode 3568:4351615 3540:Bibcode 3517:2200106 3489:Bibcode 3324:Bibcode 3292:8600522 3163:6628644 3140:Bibcode 3015:6744564 2984:Bibcode 2948:9048773 2925:Bibcode 2521:1360556 2498:Bibcode 2237:9709946 2216:JACS Au 2013:2193665 1964:4585175 1856:4585175 1781:9677189 1761:Bibcode 1753:Science 1718:Bibcode 1528:Bibcode 1461:4557038 1103:introns 1035:nucleus 1031:kinesin 946:Nanocar 738:peptide 678:Details 359:History 309:isomers 214:Kinesin 5603:Carbon 5550:Impact 5466:  5456:  5417:  5382:  5374:  5324:  5316:  5263:  5222:  5183:  5148:  5113:  5103:  5064:  5056:  5006:  4963:  4955:  4920:  4912:  4869:  4830:  4822:  4727:  4717:  4678:  4670:  4635:  4591:  4581:  4546:  4538:  4503:  4493:  4454:  4444:  4393:  4385:  4359:Nature 4341:  4298:  4290:  4264:Nature 4247:  4239:  4204:  4142:  4103:  4068:  4042:Nature 4022:  3979:  3936:  3900:  3865:  3830:  3820:  3773:  3747:Nature 3730:  3720:  3673:  3634:  3626:  3590:Nature 3566:  3558:  3532:Nature 3515:  3507:  3481:Nature 3464:  3412:  3377:  3342:  3316:Nature 3299:  3289:  3250:  3215:  3170:  3160:  3057:  3022:  3012:  3004:  2955:  2945:  2896:  2861:  2819:  2784:  2749:  2708:  2673:  2665:  2618:263667 2616:  2608:  2528:  2518:  2469:  2434:  2371:  2330:  2322:  2287:  2279:  2244:  2234:  2195:  2160:  2125:  2090:  2055:  2020:  2010:  1971:  1961:  1863:  1853:  1814:  1779:  1736:  1710:Nature 1639:  1631:  1558:  1551:348724 1548:  1468:  1458:  1384:  1346:  1308:  1300:  1252:  1164:, and 1097:, the 1043:dynein 1041:, and 1037:along 1027:muscle 1023:myosin 997:. The 681:Image 505:and a 275:, and 263:, and 224:using 202:, and 5380:S2CID 5344:(PDF) 5322:S2CID 5220:S2CID 5062:S2CID 5026:(PDF) 4961:S2CID 4918:S2CID 4828:S2CID 4794:arXiv 4747:(PDF) 4676:S2CID 4391:S2CID 4296:S2CID 4245:S2CID 4066:S2CID 3771:S2CID 3632:S2CID 3586:(PDF) 3564:S2CID 3513:S2CID 3462:S2CID 3432:(PDF) 3375:S2CID 3340:S2CID 2839:(PDF) 2614:S2CID 2576:(PDF) 2328:S2CID 2285:S2CID 1734:S2CID 1637:S2CID 1410:(PDF) 1306:S2CID 1128:is a 1003:tRNAs 917:, or 726:trans 718:crank 665:Types 413:trans 307:trans 5552:and 5464:PMID 5415:PMID 5372:PMID 5314:PMID 5261:PMID 5181:PMID 5146:PMID 5111:PMID 5054:PMID 5004:PMID 4953:PMID 4910:PMID 4867:ISSN 4820:PMID 4725:PMID 4668:PMID 4633:PMID 4589:PMID 4579:ISBN 4544:PMID 4536:ISSN 4501:PMID 4452:OCLC 4442:ISBN 4423:2018 4383:PMID 4339:PMID 4288:PMID 4237:PMID 4202:PMID 4140:PMID 4101:PMID 4020:PMID 3977:PMID 3934:PMID 3898:PMID 3863:PMID 3828:PMID 3728:PMID 3671:PMID 3624:PMID 3556:PMID 3505:PMID 3410:PMID 3297:PMID 3248:PMID 3213:PMID 3168:PMID 3055:PMID 3020:PMID 3002:ISSN 2953:PMID 2894:PMID 2859:PMID 2817:PMID 2782:PMID 2747:PMID 2706:PMID 2671:PMID 2663:ISSN 2606:PMID 2526:PMID 2467:PMID 2432:PMID 2369:PMID 2320:PMID 2277:PMID 2242:PMID 2193:PMID 2158:PMID 2123:PMID 2088:PMID 2053:PMID 2018:PMID 1969:PMID 1921:2016 1893:2016 1861:PMID 1812:PMID 1777:PMID 1629:PMID 1589:2023 1556:PMID 1466:PMID 1382:PMID 1344:PMID 1298:PMID 1250:PMID 1109:for 1095:mRNA 1065:via 1049:and 675:Type 629:and 613:the 578:and 569:and 476:and 411:and 351:and 287:and 174:and 166:and 5454:PMC 5446:doi 5407:doi 5364:doi 5304:hdl 5296:doi 5251:doi 5212:doi 5173:doi 5138:doi 5101:PMC 5093:doi 5089:144 5046:doi 4996:doi 4945:doi 4941:140 4902:hdl 4894:doi 4859:doi 4812:doi 4767:doi 4715:PMC 4707:doi 4660:doi 4625:doi 4613:122 4571:doi 4528:doi 4524:105 4491:PMC 4483:doi 4479:129 4375:doi 4363:479 4331:doi 4280:doi 4268:406 4229:doi 4225:129 4194:doi 4167:doi 4163:100 4132:doi 4093:doi 4089:128 4058:doi 4046:369 4012:doi 3969:doi 3926:doi 3922:126 3890:doi 3855:doi 3818:PMC 3810:doi 3763:doi 3751:356 3718:PMC 3710:doi 3663:doi 3659:116 3614:hdl 3606:doi 3594:401 3548:doi 3536:401 3497:doi 3485:424 3452:hdl 3444:doi 3402:doi 3367:doi 3332:doi 3320:364 3287:PMC 3279:doi 3240:doi 3203:hdl 3195:doi 3158:PMC 3148:doi 3136:116 3109:doi 3105:119 3082:doi 3078:109 3047:doi 3010:PMC 2992:doi 2943:PMC 2933:doi 2886:doi 2851:doi 2809:doi 2774:doi 2737:doi 2698:doi 2653:hdl 2645:doi 2641:137 2596:hdl 2588:doi 2554:doi 2550:116 2516:PMC 2506:doi 2494:103 2459:doi 2424:doi 2420:132 2396:doi 2359:doi 2355:136 2312:doi 2269:doi 2265:120 2232:PMC 2224:doi 2185:doi 2150:doi 2146:132 2115:doi 2080:doi 2076:130 2045:doi 2041:136 2008:PMC 2000:doi 1996:152 1959:PMC 1951:doi 1947:115 1851:PMC 1843:doi 1839:115 1804:doi 1769:doi 1757:281 1726:doi 1714:369 1691:doi 1687:106 1664:doi 1619:doi 1615:113 1546:PMC 1536:doi 1494:doi 1490:102 1456:PMC 1448:doi 1374:doi 1370:105 1336:doi 1288:doi 1242:doi 1079:ATP 722:cis 576:DNA 408:cis 393:in 319:). 303:cis 291:). 244:or 228:on 5802:: 5462:. 5452:. 5440:. 5436:. 5413:. 5403:17 5401:. 5378:. 5370:. 5362:. 5352:32 5350:. 5346:. 5320:. 5312:. 5302:. 5294:. 5284:32 5282:. 5259:. 5247:50 5245:. 5241:. 5218:. 5206:. 5202:. 5179:. 5169:41 5167:. 5144:. 5134:51 5132:. 5109:. 5099:. 5087:. 5083:. 5060:. 5052:. 5044:. 5034:13 5032:. 5028:. 5002:. 4994:. 4982:. 4959:. 4951:. 4939:. 4916:. 4908:. 4900:. 4890:17 4888:. 4865:. 4855:17 4853:. 4849:. 4826:. 4818:. 4810:. 4802:. 4790:94 4788:. 4765:. 4753:. 4749:. 4723:. 4713:. 4703:50 4701:. 4697:. 4674:. 4666:. 4656:14 4654:. 4631:. 4623:. 4611:. 4587:. 4577:. 4565:. 4542:. 4534:. 4522:. 4499:. 4489:. 4477:. 4473:. 4450:. 4389:. 4381:. 4373:. 4361:. 4337:. 4329:. 4317:. 4294:. 4286:. 4278:. 4266:. 4243:. 4235:. 4223:. 4200:. 4190:36 4188:. 4161:. 4138:. 4128:46 4126:. 4122:. 4099:. 4087:. 4064:. 4056:. 4044:. 4032:^ 4018:. 4010:. 4000:98 3998:. 3975:. 3967:. 3957:98 3955:. 3932:. 3920:. 3896:. 3886:10 3884:. 3861:. 3851:18 3849:. 3826:. 3816:. 3808:. 3798:11 3796:. 3792:. 3769:. 3761:. 3749:. 3726:. 3716:. 3708:. 3698:13 3696:. 3692:. 3669:. 3657:. 3653:. 3630:. 3622:. 3612:. 3604:. 3592:. 3588:. 3562:. 3554:. 3546:. 3534:. 3511:. 3503:. 3495:. 3483:. 3460:. 3450:. 3438:. 3434:. 3408:. 3396:. 3373:. 3361:. 3338:. 3330:. 3318:. 3295:. 3285:. 3273:. 3269:. 3246:. 3234:. 3211:. 3201:. 3191:47 3189:. 3166:. 3156:. 3146:. 3134:. 3130:. 3103:. 3076:. 3053:. 3043:50 3041:. 3018:. 3008:. 3000:. 2990:. 2980:10 2978:. 2974:. 2951:. 2941:. 2931:. 2921:10 2919:. 2915:. 2892:. 2882:41 2880:. 2857:. 2847:46 2845:. 2841:. 2815:. 2805:10 2803:. 2780:. 2770:13 2768:. 2745:. 2733:55 2731:. 2727:. 2704:. 2694:78 2692:. 2669:. 2661:. 2651:. 2639:. 2635:. 2612:. 2604:. 2594:. 2584:39 2582:. 2578:. 2548:. 2524:. 2514:. 2504:. 2492:. 2488:. 2465:. 2455:38 2453:. 2430:. 2418:. 2390:. 2367:. 2353:. 2349:. 2326:. 2318:. 2308:59 2306:. 2283:. 2275:. 2263:. 2240:. 2230:. 2218:. 2214:. 2191:. 2181:38 2179:. 2156:. 2144:. 2121:. 2111:47 2109:. 2086:. 2074:. 2051:. 2039:. 2016:. 2006:. 1994:. 1990:. 1967:. 1957:. 1945:. 1941:. 1929:^ 1910:. 1882:. 1859:. 1849:. 1837:. 1833:. 1810:. 1800:39 1798:. 1775:. 1767:. 1755:. 1732:. 1724:. 1712:. 1685:. 1660:24 1635:. 1627:. 1613:. 1609:. 1597:^ 1577:. 1554:. 1544:. 1534:. 1524:78 1522:. 1518:. 1488:. 1464:. 1454:. 1444:54 1442:. 1438:. 1426:^ 1418:23 1416:. 1412:. 1394:^ 1380:. 1368:. 1356:^ 1342:. 1330:. 1318:^ 1304:. 1296:. 1284:17 1282:. 1278:. 1262:^ 1248:. 1238:39 1236:. 1220:^ 1160:, 967:. 933:. 913:, 833:. 693:, 495:pH 461:pH 437:. 421:, 373:, 355:. 347:, 343:, 323:, 271:, 259:, 198:, 170:. 5501:e 5494:t 5487:v 5470:. 5448:: 5442:6 5421:. 5409:: 5386:. 5366:: 5358:: 5328:. 5306:: 5298:: 5290:: 5267:. 5253:: 5226:. 5214:: 5208:2 5187:. 5175:: 5152:. 5140:: 5117:. 5095:: 5068:. 5048:: 5040:: 5010:. 4998:: 4990:: 4984:8 4967:. 4947:: 4924:. 4904:: 4896:: 4873:. 4861:: 4834:. 4814:: 4806:: 4796:: 4773:. 4769:: 4761:: 4755:2 4731:. 4709:: 4682:. 4662:: 4639:. 4627:: 4619:: 4595:. 4573:: 4550:. 4530:: 4507:. 4485:: 4458:. 4425:. 4397:. 4377:: 4369:: 4345:. 4333:: 4325:: 4319:5 4302:. 4282:: 4274:: 4251:. 4231:: 4208:. 4196:: 4173:. 4169:: 4146:. 4134:: 4107:. 4095:: 4072:. 4060:: 4052:: 4026:. 4014:: 4006:: 3983:. 3971:: 3963:: 3940:. 3928:: 3904:. 3892:: 3869:. 3857:: 3834:. 3812:: 3804:: 3777:. 3765:: 3757:: 3734:. 3712:: 3704:: 3677:. 3665:: 3638:. 3616:: 3608:: 3600:: 3570:. 3550:: 3542:: 3519:. 3499:: 3491:: 3468:. 3454:: 3446:: 3440:1 3416:. 3404:: 3398:9 3381:. 3369:: 3363:3 3346:. 3334:: 3326:: 3303:. 3281:: 3275:6 3254:. 3242:: 3236:6 3219:. 3205:: 3197:: 3174:. 3150:: 3142:: 3115:. 3111:: 3088:. 3084:: 3061:. 3049:: 3026:. 2994:: 2986:: 2959:. 2935:: 2927:: 2900:. 2888:: 2865:. 2853:: 2823:. 2811:: 2788:. 2776:: 2753:. 2739:: 2712:. 2700:: 2677:. 2655:: 2647:: 2620:. 2598:: 2590:: 2560:. 2556:: 2532:. 2508:: 2500:: 2473:. 2461:: 2438:. 2426:: 2402:. 2398:: 2392:2 2375:. 2361:: 2334:. 2314:: 2291:. 2271:: 2248:. 2226:: 2220:2 2199:. 2187:: 2164:. 2152:: 2129:. 2117:: 2094:. 2082:: 2059:. 2047:: 2024:. 2002:: 1975:. 1953:: 1923:. 1895:. 1867:. 1845:: 1818:. 1806:: 1783:. 1771:: 1763:: 1740:. 1728:: 1720:: 1697:. 1693:: 1670:. 1666:: 1643:. 1621:: 1591:. 1562:. 1538:: 1530:: 1500:. 1496:: 1472:. 1450:: 1388:. 1376:: 1350:. 1338:: 1332:3 1312:. 1290:: 1256:. 1244:: 1009:. 810:n 806:n 724:- 488:( 463:. 305:- 232:. 139:e 132:t 125:v 20:)

Index

Nanomachines
Molecular
nanotechnology

Mechanosynthesis
Molecular assembler
Molecular machine
Brownian motor
Productive nanosystems
Nanorobotics
Engines of Creation
icon
Science portal
icon
Technology portal
v
t
e
living processes
DNA replication
ATP synthesis
Kinesins
ribosomes
multi-protein complexes
rotaxane
binding sites
Nobel Prize in Chemistry
Jean-Pierre Sauvage
Sir J. Fraser Stoddart
Bernard L. Feringa

Kinesin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.