Knowledge (XXG)

Near-field electromagnetic ranging

Source 📝

22: 312:). Therefore, since higher frequencies have smaller wavelengths, high frequency antennas are typically smaller than low frequency antennas. The larger size of practically efficient low frequency antennas is a significant hurdle that near-field electromagnetic ranging systems cannot overcome without decreasing gain. Applying fractal antennae to NFC requires complex adaptive controls 261:, and the EH phase difference changes about 45 degrees between 30 m (98 ft) to 60 m (200 ft). Thus, a 1 degree EH phase difference in a 1 MHz signal corresponds to a range difference of about 67 cm (26 in) and 1/360 of the period or 27.78  329:(UWB). Systems deployed in complicated indoor propagation environments reportedly achieve 60 cm (24 in) accuracy or better at ranges of 46 m (151 ft) or more. There is also an indication that multiple frequency implementations may yield increased accuracy. 219:, the EH phase difference goes to zero. Thus a receiver that can separately measure the electric and magnetic field components of a near-field signal and compare their phases can measure the range to the transmitter. 320:
The low-frequency, multipath-resistant characteristics of NFER make it well suited for tracking in dense metallic locations, such as typical office and industrial environments. Low frequencies also readily
308:
Operation at low frequencies faces challenges as well. In general, antennas are most efficient at frequencies whose wavelengths are comparable to the antennas' dimensions (e.g., a quarter-wavelength
39: 280:
Using relatively low frequencies also conveys additional advantages. First, low frequencies are generally more penetrating than higher frequencies. For instance, at 2.4
242:
Second, precise synchronization is not required between different receivers: in fact, a local range measurement can be made with just a single receiver.
548: 86: 58: 524: 484: 573:
Kim, C.w.; Chin, F.p.s.; Garg, H.K. (2006). "Multiple Frequencies for Accuracy Improvement in Near Field Electromagnetic Ranging (NFER)".
65: 590: 449: 105: 72: 266: 54: 149:
ranging is an emerging RTLS technology that employs transmitter tags and one or more receiving units. Operating within a half-
350: 215:
out of phase. As the distance from the antenna increases, the EH phase difference decreases. Far from a small antenna in the
43: 325:
around the human body, which makes tracking people possible without the body blockage experienced by microwave systems like
236: 227:
NFER technology is a different approach for locating systems. It has several inherent advantages over other RTLS systems.
361: 274: 32: 641: 146: 134: 79: 344: 501: 269:
signal, the period becomes 1 ms, and the time difference required to measure becomes 27.78 μs. A comparable
205: 414:
Electric Waves: Being Researches on the Propagation of Electric Action with Finite Velocity Through Space
164:) to achieve significant ranging. Depending on the choice of frequency, NFER has the potential for range 289: 626: 246: 201: 418: 596: 530: 509:
2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing
455: 356: 338: 165: 126: 300:
signals to be used for reliable positioning. Low frequencies are less affected by this problem.
586: 520: 480: 445: 265:
difference in time between the electric and magnetic signals. Down-converted to a 1 kHz
578: 512: 437: 309: 211:
Close to a small antenna, the electric and magnetic field components of a radio wave are 90
575:
2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications
288:. Second, the long wavelengths associated with low frequencies are far less vulnerable to 193: 621: 412: 366: 326: 270: 212: 197: 189: 185: 387: 635: 177: 534: 459: 600: 181: 474: 516: 322: 130: 21: 500:
Roland, Michael; Witschnig, Harald; Merlin, Erich; Saminger, Christian (2008).
582: 292:. In dense metallic structures, multipath obscures or destroys the ability of 232: 150: 441: 617:
Capps, Charles. “Near Field or Far Field,” EDN, August 16, 2001, pp. 95-102.
293: 216: 154: 616: 253:, high range precision may be achieved with relatively low time precision. 250: 285: 277:(TDOA) system would require 2 ns to 4 ns to make the same measurement. 168:
of 30 cm (12 in) and ranges up to 300 m (980 ft).
258: 284:
Hz a reinforced concrete wall might attenuate signals as much as 20
434:
2005 IEEE Antennas and Propagation Society International Symposium
262: 161: 158: 122: 245:
Third, since EH phase differences are preserved when a signal is
281: 257:
For instance, a radio wave at 1 MHz has a period of 1 
297: 15: 549:"Q-Track Demonstrates Novel Indoor Wireless Tracking Product" 235:
is required, so baseband signals with an arbitrarily small
180:
relations between the EH components of an electro-magnetic
502:"Automatic impedance matching for 13.56 MHZ NFC antennas" 476:
Local Positioning Systems: LBS Applications and Services
153:
of a receiver, transmitter tags must use relatively low
627:
Technical Papers on Near Field Electromagnetic Ranging
341:, a definition with the Hertz and Maxwell wave models 432:Schantz, H.G. (2005). "Near Field Phase Behavior". 46:. Unsourced material may be challenged and removed. 622:Introduction to Near Field Electromagnetic Ranging 388:"Novel approach to tracking shows its accuracy" 473:Kolodziej, Krzysztof W.; Hjelm, Johan (2006). 8: 106:Learn how and when to remove this message 378: 7: 479:. Taylor & Francis. p. 95. 55:"Near-field electromagnetic ranging" 44:adding citations to reliable sources 347:, a short-range wireless technology 192:)) vary with distance around small 436:. Vol. 3B. pp. 134–137. 119:Near-field electromagnetic ranging 14: 357:Real Time Locating Systems (RTLS) 20: 386:Mannion, Patrick (2004-10-25). 196:. This was first discovered by 184:((E and H are the components E= 31:needs additional citations for 417:. Dover Publications. p.  351:Radio Frequency Identification 1: 517:10.1109/csndsp.2008.4610705 658: 362:Real Time Location Systems 275:Time difference of arrival 583:10.1109/PIMRC.2006.254050 135:Real Time Location System 125:technology employing the 442:10.1109/APS.2005.1552452 411:Hertz, Heinrich (1893). 345:Near Field Communication 239:may be used for ranging. 200:and is formulated with 121:(NFER) refers to any 511:. pp. 288–291. 172:Technical Discussion 40:improve this article 526:978-1-4244-1875-6 486:978-0-8493-3349-1 233:signal modulation 116: 115: 108: 90: 649: 642:Radio technology 605: 604: 577:. pp. 1–5. 570: 564: 563: 561: 560: 545: 539: 538: 506: 497: 491: 490: 470: 464: 463: 429: 423: 422: 408: 402: 401: 399: 398: 383: 310:monopole antenna 111: 104: 100: 97: 91: 89: 48: 24: 16: 657: 656: 652: 651: 650: 648: 647: 646: 632: 631: 613: 608: 593: 572: 571: 567: 558: 556: 547: 546: 542: 527: 504: 499: 498: 494: 487: 472: 471: 467: 452: 431: 430: 426: 410: 409: 405: 396: 394: 385: 384: 380: 376: 335: 318: 306: 225: 174: 147:electromagnetic 143: 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 655: 653: 645: 644: 634: 633: 630: 629: 624: 619: 612: 611:External links 609: 607: 606: 591: 565: 540: 525: 492: 485: 465: 450: 424: 403: 377: 375: 372: 371: 370: 367:Ultra-wideband 364: 359: 354: 348: 342: 334: 331: 327:Ultra-wideband 317: 314: 305: 302: 271:time-of-flight 255: 254: 247:down-converted 243: 240: 224: 221: 198:Heinrich Hertz 173: 170: 157:(less than 30 142: 139: 129:properties of 114: 113: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 654: 643: 640: 639: 637: 628: 625: 623: 620: 618: 615: 614: 610: 602: 598: 594: 592:1-4244-0329-4 588: 584: 580: 576: 569: 566: 554: 553:Business Wire 550: 544: 541: 536: 532: 528: 522: 518: 514: 510: 503: 496: 493: 488: 482: 478: 477: 469: 466: 461: 457: 453: 451:0-7803-8883-6 447: 443: 439: 435: 428: 425: 420: 416: 415: 407: 404: 393: 389: 382: 379: 373: 368: 365: 363: 360: 358: 355: 352: 349: 346: 343: 340: 337: 336: 332: 330: 328: 324: 315: 313: 311: 304:Disadvantages 303: 301: 299: 295: 291: 287: 283: 278: 276: 272: 268: 264: 260: 252: 248: 244: 241: 238: 234: 230: 229: 228: 222: 220: 218: 214: 209: 207: 203: 199: 195: 191: 187: 183: 179: 171: 169: 167: 163: 160: 156: 152: 148: 140: 138: 136: 132: 128: 124: 120: 110: 107: 99: 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: –  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 574: 568: 557:. Retrieved 555:. 2006-11-28 552: 543: 508: 495: 475: 468: 433: 427: 413: 406: 395:. Retrieved 391: 381: 319: 316:Applications 307: 279: 256: 226: 210: 206:field theory 175: 144: 118: 117: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 155:frequencies 145:Near-field 131:radio waves 559:2019-10-06 397:2019-10-06 374:References 339:Near-field 231:First, no 223:Advantages 166:resolution 151:wavelength 127:near-field 66:newspapers 294:microwave 290:multipath 273:(TOF) or 237:bandwidth 217:far-field 96:July 2007 636:Category 535:15070231 460:16097600 333:See also 323:diffract 251:baseband 194:antennas 190:magnetic 186:electric 141:Overview 137:(RTLS). 601:5420485 392:EETimes 213:degrees 202:Maxwell 80:scholar 599:  589:  533:  523:  483:  458:  448:  353:(RFID) 188:and H= 82:  75:  68:  61:  53:  597:S2CID 531:S2CID 505:(PDF) 456:S2CID 369:(UWB) 267:audio 182:field 178:phase 133:as a 123:radio 87:JSTOR 73:books 587:ISBN 521:ISBN 481:ISBN 446:ISBN 176:The 59:news 579:doi 513:doi 438:doi 419:152 298:UHF 296:or 249:to 204:'s 42:by 638:: 595:. 585:. 551:. 529:. 519:. 507:. 454:. 444:. 390:. 286:dB 263:ns 259:μs 208:. 162:Hz 603:. 581:: 562:. 537:. 515:: 489:. 462:. 440:: 421:. 400:. 282:G 159:M 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Near-field electromagnetic ranging"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
radio
near-field
radio waves
Real Time Location System
electromagnetic
wavelength
frequencies
M
Hz
resolution
phase
field
electric
magnetic
antennas
Heinrich Hertz
Maxwell
field theory
degrees

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.