Knowledge (XXG)

Nearly neutral theory of molecular evolution

Source đź“ť

112: 1073:) can explain variation in genomic architecture among species, e.g. the size of the genome, or the mutation rate. Specifically, larger populations will have lower mutation rates, more streamlined genomic architectures, and generally more finely tuned adaptations. However, if robustness to the consequences of each possible error in processes such as transcription and translation substantially reduces the cost of making such errors, larger populations might evolve lower rates of global 121: 95:
that included both beneficial and deleterious mutations, so that no artificial "shift" of overall population fitness was necessary. According to Ohta, however, the nearly neutral theory largely fell out of favor in the late 1980s, because the mathematically simpler neutral theory for the widespread
929:
is constant (in this sense, the argument in the previous paragraphs can be regarded as based on the “shift model”). This assumption can lead to indefinite improvement or deterioration of protein function. Alternatively, the later “fixed model” fixes the distribution of mutations’ effect on protein
94:
Between then and the early 1990s, many studies of molecular evolution used a "shift model" in which the negative effect on the fitness of a population due to deleterious mutations shifts back to an original value when a mutation reaches fixation. In the early 1990s, Ohta developed a "fixed model"
86:
In this case, the faster rate of neutral evolution in proteins expected in small populations (due to a more lenient threshold for purging deleterious mutations) is offset by longer generation times (and vice versa), but in large populations with short generation times, noncoding DNA evolves faster
1035:: a large product corresponds to adaptive evolution, an intermediate product corresponds to nearly neutral evolution, and a small product corresponds to almost neutral evolution. According to this classification, slightly advantageous mutations can contribute to nearly neutral evolution. 66:
According to the neutral theory of molecular evolution, the rate at which molecular changes accumulate between species should be equal to the rate of neutral mutations and hence relatively constant across species. However, this is a per-generation rate. Since larger organisms have longer
115:
The probability of fixation depends strongly on N for deleterious mutations (note the log scale on the y-axis) relative to the neutral case of s=0. Dashed lines show the probability of fixation of a mutation with s=-1/N. Note that larger populations have more deleterious mutations (not
984:
populations, advantageous mutations are quickly picked up by selection, increasing the mean fitness of the population. In response, the mutation rate of nearly neutral mutations is reduced because these mutations are restricted to the tail of the distribution of selection coefficients.
103:. As more detailed systematics studies started to compare the evolution of genome regions subject to strong selection versus weaker selection in the 1990s, the nearly neutral theory and the interaction between selection and drift have once again become an important focus of research. 82:
substitutions tend to be more neutral, independent of population size, their rate of evolution is correctly predicted to depend on population size / generation time, unlike the rate of non-synonymous changes.
71:, the neutral theory predicts that their rate of molecular evolution should be slower. However, molecular evolutionists found that rates of protein evolution were fairly independent of generation time. 78:
substitutions are slightly deleterious, this would increase the rate of effectively neutral mutation rate in small populations, which could offset the effect of long generation times. However, because
450: 838: 213: 727: 581: 528: 624: 91:
suggesting that a wide variety of molecular evidence supported the theory that most mutation events at the molecular level are slightly deleterious rather than strictly neutral.
657: 1071: 1013: 982: 865: 785: 754: 684: 355: 284: 146: 1033: 952: 927: 907: 887: 474: 328: 308: 257: 237: 124:
The probability of fixation of beneficial mutations is fairly insensitive to N. Note that larger populations have more beneficial mutations (not illustrated).
87:
while protein evolution is retarded by selection (which is more significant than drift for large populations) In 1973, Ohta published a short letter in
909:
can vary between generations but the mean fitness of the population is reset to zero after fixation. This basically assumes the distribution of
1093:
depend on protein abundance (which is responsible for modulating the locus-specific strength of selection), but do so only for high-error-rate
31:
are either so deleterious such that they can be ignored, or else neutral. Slightly deleterious mutations are reliably purged only when their
24: 1500:"Correction for Traverse and Ochman, Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles" 988:
The “fixed model” expands the nearly neutral theory. Tachida classified evolution under the “fixed model” based on the product of
1662: 363: 1117: 287: 44: 787:
populations, these mutations are purged by selection. If nearly neutral mutations are common, then the proportion for which
111: 1683: 1678: 74:
Noting that population size is generally inversely proportional to generation time, Tomoko Ohta proposed that if most
1043: 790: 154: 55: 689: 36: 533: 1085: 483: 586: 54:
in 1973. The population-size-dependent threshold for purging mutations has been called the "drift barrier" by
1688: 1256: 957:
The “fixed model” provides a slightly different explanation for the rate of protein evolution. In large
477: 96: 32: 1046:
has proposed that variation in the ability to purge slightly deleterious mutations (i.e. variation in
1511: 1453: 1200: 1146: 1074: 1261: 286:
is the effective population size. The last term is the probability that a new mutation will become
1224: 1170: 1292:
Ohta T (August 1996). "The current significance and standing of neutral and neutral theories".
120: 1641: 1590: 1539: 1481: 1407: 1358: 1309: 1274: 1216: 1162: 629: 1631: 1621: 1580: 1570: 1529: 1519: 1471: 1461: 1397: 1389: 1348: 1340: 1301: 1266: 1208: 1154: 1079: 1049: 991: 960: 843: 763: 732: 662: 333: 262: 131: 68: 39:. In larger populations, a higher proportion of mutations exceed this threshold for which 1329:"Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution" 1247:
Ohta T, Gillespie JH (April 1996). "Development of Neutral and Nearly Neutral Theories".
1515: 1457: 1204: 1150: 1636: 1609: 1585: 1558: 1534: 1499: 1476: 1441: 1402: 1377: 1353: 1328: 1018: 937: 912: 892: 872: 459: 313: 293: 242: 222: 100: 1672: 757: 79: 40: 1228: 1174: 931: 357:. Kimura’s equation for the probability of fixation in a haploid population gives: 1191:
Ohta T (November 1973). "Slightly deleterious mutant substitutions in evolution".
1393: 1344: 1575: 1559:"Drift Barriers to Quality Control When Genes Are Expressed at Different Levels" 1101: 51: 1504:
Proceedings of the National Academy of Sciences of the United States of America
1446:
Proceedings of the National Academy of Sciences of the United States of America
1610:"High Transcriptional Error Rates Vary as a Function of Gene Expression Level" 75: 1524: 1466: 1645: 1594: 1543: 1485: 1305: 1270: 1442:"Evolution of molecular error rates and the consequences for evolvability" 1411: 1362: 1313: 1278: 1220: 1166: 1626: 1094: 58:, and used to explain differences in genomic architecture among species. 28: 1137:
Kimura M (February 1968). "Evolutionary rate at the molecular level".
729:
are called nearly neutral mutations. These mutations can fix in small-
1212: 1158: 1098: 869:
The effect of nearly neutral mutations can depend on fluctuations in
1089:. This is supported by the fact that transcriptional error rates in 1378:"A study on a nearly neutral mutation model in finite populations" 119: 110: 1077:, and hence have higher rates of error. This may explain why 1557:
Xiong K, McEntee JP, Porfirio DJ, Masel J (January 2017).
934:
of population to evolve. This allows the distribution of
445:{\displaystyle P_{fix}={\frac {1-e^{-s}}{1-e^{-sN_{e}}}}} 1608:
Meer KM, Nelson PG, Xiong K, Masel J (January 2020).
1052: 1021: 994: 963: 940: 915: 895: 875: 846: 793: 766: 735: 692: 665: 632: 589: 536: 486: 462: 366: 336: 316: 296: 265: 245: 225: 157: 134: 99:research that flourished after the advent of rapid 1065: 1027: 1007: 976: 946: 921: 901: 881: 859: 832: 779: 748: 721: 678: 651: 618: 575: 522: 468: 444: 349: 322: 302: 278: 251: 231: 207: 140: 1663:The Nearly Neutral Theory of Molecular Evolution 954:to change with the mean fitness of population. 1083:has higher rates of transcription error than 833:{\displaystyle P_{fix}\ll {\frac {1}{N_{e}}}} 208:{\displaystyle \rho =ugN_{e}{\bar {P}}_{fix}} 43:cannot overpower selection, leading to fewer 8: 21:nearly neutral theory of molecular evolution 1242: 1240: 1238: 1186: 1184: 889:. Early work used a “shift model” in which 722:{\displaystyle -s\simeq {\frac {1}{N_{e}}}} 576:{\displaystyle P_{fix}={\frac {1}{N_{e}}}} 50:The nearly neutral theory was proposed by 47:events and so slower molecular evolution. 1635: 1625: 1584: 1574: 1533: 1523: 1475: 1465: 1401: 1352: 1260: 1057: 1051: 1020: 999: 993: 968: 962: 939: 914: 894: 874: 851: 845: 822: 813: 798: 792: 771: 765: 740: 734: 711: 702: 691: 670: 664: 637: 631: 608: 599: 588: 565: 556: 541: 535: 523:{\displaystyle |s|\ll {\frac {1}{N_{e}}}} 512: 503: 495: 487: 485: 461: 431: 420: 399: 386: 371: 365: 341: 335: 315: 295: 270: 264: 244: 224: 193: 182: 181: 174: 156: 133: 1015:and the variance in the distribution of 619:{\displaystyle -s\gg {\frac {1}{N_{e}}}} 27:that accounts for the fact that not all 1129: 310:is constant between species, and that 1665:- Perspectives on Molecular Evolution 25:neutral theory of molecular evolution 7: 1327:Ohta T, Tachida H (September 1990). 659:decreases almost exponentially with 35:are greater than one divided by the 1427:The origins of genome architecture 16:Variant of one theory of evolution 14: 1440:Rajon E, Masel J (January 2011). 1429:. Sunderland: Sinauer Associates. 1510:(29): E4257–E4258. July 2016. 1249:Theoretical Population Biology 1118:History of molecular evolution 496: 488: 187: 1: 1614:Genome Biology and Evolution 1300:(8): 673–7, discussion 683. 290:. Early models assumed that 259:is the generation time, and 1576:10.1534/genetics.116.192567 128:The rate of substitution, 1705: 1394:10.1093/genetics/128.1.183 1345:10.1093/genetics/126.1.219 1039:The "drift barrier" theory 930:function, but allows the 626:(extremely deleterious), 37:effective population size 23:is a modification of the 1086:Saccharomyces cerevisiae 1525:10.1073/pnas.1609677113 1467:10.1073/pnas.1012918108 652:{\displaystyle P_{fix}} 1376:Tachida H (May 1991). 1306:10.1002/bies.950180811 1271:10.1006/tpbi.1996.0007 1067: 1029: 1009: 978: 948: 923: 903: 883: 861: 834: 781: 750: 723: 680: 653: 620: 577: 530:(completely neutral), 524: 470: 446: 351: 324: 304: 280: 253: 239:is the mutation rate, 233: 209: 142: 125: 117: 1068: 1066:{\displaystyle N_{e}} 1030: 1010: 1008:{\displaystyle N_{e}} 979: 977:{\displaystyle N_{e}} 949: 924: 904: 884: 862: 860:{\displaystyle N_{e}} 835: 782: 780:{\displaystyle N_{e}} 751: 749:{\displaystyle N_{e}} 724: 681: 679:{\displaystyle N_{e}} 654: 621: 578: 525: 478:selection coefficient 471: 447: 352: 350:{\displaystyle N_{e}} 325: 305: 281: 279:{\displaystyle N_{e}} 254: 234: 210: 143: 141:{\displaystyle \rho } 123: 114: 97:molecular systematics 33:selection coefficient 1050: 1019: 992: 961: 938: 913: 893: 873: 844: 791: 764: 756:populations through 733: 690: 663: 630: 587: 534: 484: 480:of a mutation. When 460: 364: 334: 314: 294: 263: 243: 223: 155: 132: 1684:Population genetics 1679:Molecular evolution 1516:2016PNAS..113E4257. 1458:2011PNAS..108.1082R 1205:1973Natur.246...96O 1151:1968Natur.217..624K 1627:10.1093/gbe/evz275 1063: 1025: 1005: 974: 944: 919: 899: 879: 857: 830: 777: 746: 719: 676: 649: 616: 573: 520: 466: 442: 347: 320: 300: 276: 249: 229: 205: 138: 126: 118: 1145:(5129): 624–626. 1028:{\displaystyle s} 947:{\displaystyle s} 922:{\displaystyle s} 902:{\displaystyle s} 882:{\displaystyle s} 828: 717: 686:. Mutations with 614: 571: 518: 469:{\displaystyle s} 440: 323:{\displaystyle g} 303:{\displaystyle u} 252:{\displaystyle g} 232:{\displaystyle u} 190: 1696: 1650: 1649: 1639: 1629: 1620:(1): 3754–3761. 1605: 1599: 1598: 1588: 1578: 1554: 1548: 1547: 1537: 1527: 1496: 1490: 1489: 1479: 1469: 1452:(3): 1082–1087. 1437: 1431: 1430: 1425:Lynch M (2007). 1422: 1416: 1415: 1405: 1373: 1367: 1366: 1356: 1324: 1318: 1317: 1289: 1283: 1282: 1264: 1244: 1233: 1232: 1213:10.1038/246096a0 1188: 1179: 1178: 1159:10.1038/217624a0 1134: 1080:Escherichia coli 1072: 1070: 1069: 1064: 1062: 1061: 1034: 1032: 1031: 1026: 1014: 1012: 1011: 1006: 1004: 1003: 983: 981: 980: 975: 973: 972: 953: 951: 950: 945: 928: 926: 925: 920: 908: 906: 905: 900: 888: 886: 885: 880: 866: 864: 863: 858: 856: 855: 840:is dependent on 839: 837: 836: 831: 829: 827: 826: 814: 809: 808: 786: 784: 783: 778: 776: 775: 755: 753: 752: 747: 745: 744: 728: 726: 725: 720: 718: 716: 715: 703: 685: 683: 682: 677: 675: 674: 658: 656: 655: 650: 648: 647: 625: 623: 622: 617: 615: 613: 612: 600: 582: 580: 579: 574: 572: 570: 569: 557: 552: 551: 529: 527: 526: 521: 519: 517: 516: 504: 499: 491: 475: 473: 472: 467: 451: 449: 448: 443: 441: 439: 438: 437: 436: 435: 408: 407: 406: 387: 382: 381: 356: 354: 353: 348: 346: 345: 329: 327: 326: 321: 309: 307: 306: 301: 285: 283: 282: 277: 275: 274: 258: 256: 255: 250: 238: 236: 235: 230: 214: 212: 211: 206: 204: 203: 192: 191: 183: 179: 178: 147: 145: 144: 139: 69:generation times 1704: 1703: 1699: 1698: 1697: 1695: 1694: 1693: 1669: 1668: 1659: 1654: 1653: 1607: 1606: 1602: 1556: 1555: 1551: 1498: 1497: 1493: 1439: 1438: 1434: 1424: 1423: 1419: 1375: 1374: 1370: 1326: 1325: 1321: 1291: 1290: 1286: 1262:10.1.1.332.2080 1246: 1245: 1236: 1199:(5428): 96–98. 1190: 1189: 1182: 1136: 1135: 1131: 1126: 1114: 1053: 1048: 1047: 1041: 1017: 1016: 995: 990: 989: 964: 959: 958: 936: 935: 911: 910: 891: 890: 871: 870: 847: 842: 841: 818: 794: 789: 788: 767: 762: 761: 736: 731: 730: 707: 688: 687: 666: 661: 660: 633: 628: 627: 604: 585: 584: 561: 537: 532: 531: 508: 482: 481: 458: 457: 427: 416: 409: 395: 388: 367: 362: 361: 337: 332: 331: 330:increases with 312: 311: 292: 291: 266: 261: 260: 241: 240: 221: 220: 180: 170: 153: 152: 130: 129: 109: 64: 17: 12: 11: 5: 1702: 1700: 1692: 1691: 1689:Neutral theory 1686: 1681: 1671: 1670: 1667: 1666: 1658: 1657:External links 1655: 1652: 1651: 1600: 1569:(1): 397–407. 1549: 1491: 1432: 1417: 1388:(1): 183–192. 1368: 1339:(1): 219–229. 1319: 1284: 1255:(2): 128–142. 1234: 1180: 1128: 1127: 1125: 1122: 1121: 1120: 1113: 1110: 1060: 1056: 1040: 1037: 1024: 1002: 998: 971: 967: 943: 918: 898: 878: 854: 850: 825: 821: 817: 812: 807: 804: 801: 797: 774: 770: 743: 739: 714: 710: 706: 701: 698: 695: 673: 669: 646: 643: 640: 636: 611: 607: 603: 598: 595: 592: 568: 564: 560: 555: 550: 547: 544: 540: 515: 511: 507: 502: 498: 494: 490: 465: 454: 453: 434: 430: 426: 423: 419: 415: 412: 405: 402: 398: 394: 391: 385: 380: 377: 374: 370: 344: 340: 319: 299: 273: 269: 248: 228: 217: 216: 202: 199: 196: 189: 186: 177: 173: 169: 166: 163: 160: 137: 108: 105: 101:DNA sequencing 63: 60: 15: 13: 10: 9: 6: 4: 3: 2: 1701: 1690: 1687: 1685: 1682: 1680: 1677: 1676: 1674: 1664: 1661: 1660: 1656: 1647: 1643: 1638: 1633: 1628: 1623: 1619: 1615: 1611: 1604: 1601: 1596: 1592: 1587: 1582: 1577: 1572: 1568: 1564: 1560: 1553: 1550: 1545: 1541: 1536: 1531: 1526: 1521: 1517: 1513: 1509: 1505: 1501: 1495: 1492: 1487: 1483: 1478: 1473: 1468: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1433: 1428: 1421: 1418: 1413: 1409: 1404: 1399: 1395: 1391: 1387: 1383: 1379: 1372: 1369: 1364: 1360: 1355: 1350: 1346: 1342: 1338: 1334: 1330: 1323: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1285: 1280: 1276: 1272: 1268: 1263: 1258: 1254: 1250: 1243: 1241: 1239: 1235: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1187: 1185: 1181: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1133: 1130: 1123: 1119: 1116: 1115: 1111: 1109: 1107: 1106:S. cerevisiae 1103: 1100: 1096: 1092: 1088: 1087: 1082: 1081: 1076: 1058: 1054: 1045: 1044:Michael Lynch 1038: 1036: 1022: 1000: 996: 986: 969: 965: 955: 941: 933: 916: 896: 876: 867: 852: 848: 823: 819: 815: 810: 805: 802: 799: 795: 772: 768: 759: 758:genetic drift 741: 737: 712: 708: 704: 699: 696: 693: 671: 667: 644: 641: 638: 634: 609: 605: 601: 596: 593: 590: 566: 562: 558: 553: 548: 545: 542: 538: 513: 509: 505: 500: 492: 479: 463: 432: 428: 424: 421: 417: 413: 410: 403: 400: 396: 392: 389: 383: 378: 375: 372: 368: 360: 359: 358: 342: 338: 317: 297: 289: 271: 267: 246: 226: 200: 197: 194: 184: 175: 171: 167: 164: 161: 158: 151: 150: 149: 135: 122: 116:illustrated). 113: 106: 104: 102: 98: 92: 90: 84: 81: 80:noncoding DNA 77: 72: 70: 61: 59: 57: 56:Michael Lynch 53: 48: 46: 42: 41:genetic drift 38: 34: 30: 26: 22: 1617: 1613: 1603: 1566: 1562: 1552: 1507: 1503: 1494: 1449: 1445: 1435: 1426: 1420: 1385: 1381: 1371: 1336: 1332: 1322: 1297: 1293: 1287: 1252: 1248: 1196: 1192: 1142: 1138: 1132: 1105: 1090: 1084: 1078: 1075:proofreading 1042: 987: 956: 932:mean fitness 868: 455: 218: 127: 93: 88: 85: 73: 65: 49: 20: 18: 1102:deamination 760:. In large- 583:, and when 52:Tomoko Ohta 1673:Categories 1124:References 1104:errors in 76:amino acid 1294:BioEssays 1257:CiteSeerX 811:≪ 700:≃ 694:− 597:≫ 591:− 501:≪ 422:− 414:− 401:− 393:− 188:¯ 159:ρ 136:ρ 29:mutations 1646:31841128 1595:27838629 1563:Genetics 1544:27402746 1486:21199946 1382:Genetics 1333:Genetics 1112:See also 45:fixation 1637:6988749 1586:5223517 1535:4961203 1512:Bibcode 1477:3024668 1454:Bibcode 1412:2060776 1403:1204447 1363:2227381 1354:1204126 1314:8779656 1279:8813019 1229:4226804 1221:4585855 1201:Bibcode 1175:4161261 1167:5637732 1147:Bibcode 1091:E. coli 476:is the 62:Origins 1644:  1634:  1593:  1583:  1542:  1532:  1484:  1474:  1410:  1400:  1361:  1351:  1312:  1277:  1259:  1227:  1219:  1193:Nature 1173:  1165:  1139:Nature 456:where 219:where 107:Theory 89:Nature 1225:S2CID 1171:S2CID 288:fixed 1642:PMID 1591:PMID 1540:PMID 1482:PMID 1408:PMID 1359:PMID 1310:PMID 1275:PMID 1217:PMID 1163:PMID 19:The 1632:PMC 1622:doi 1581:PMC 1571:doi 1567:205 1530:PMC 1520:doi 1508:113 1472:PMC 1462:doi 1450:108 1398:PMC 1390:doi 1386:128 1349:PMC 1341:doi 1337:126 1302:doi 1267:doi 1209:doi 1197:246 1155:doi 1143:217 1097:to 148:is 1675:: 1640:. 1630:. 1618:12 1616:. 1612:. 1589:. 1579:. 1565:. 1561:. 1538:. 1528:. 1518:. 1506:. 1502:. 1480:. 1470:. 1460:. 1448:. 1444:. 1406:. 1396:. 1384:. 1380:. 1357:. 1347:. 1335:. 1331:. 1308:. 1298:18 1296:. 1273:. 1265:. 1253:49 1251:. 1237:^ 1223:. 1215:. 1207:. 1195:. 1183:^ 1169:. 1161:. 1153:. 1141:. 1108:. 1648:. 1624:: 1597:. 1573:: 1546:. 1522:: 1514:: 1488:. 1464:: 1456:: 1414:. 1392:: 1365:. 1343:: 1316:. 1304:: 1281:. 1269:: 1231:. 1211:: 1203:: 1177:. 1157:: 1149:: 1099:U 1095:C 1059:e 1055:N 1023:s 1001:e 997:N 970:e 966:N 942:s 917:s 897:s 877:s 853:e 849:N 824:e 820:N 816:1 806:x 803:i 800:f 796:P 773:e 769:N 742:e 738:N 713:e 709:N 705:1 697:s 672:e 668:N 645:x 642:i 639:f 635:P 610:e 606:N 602:1 594:s 567:e 563:N 559:1 554:= 549:x 546:i 543:f 539:P 514:e 510:N 506:1 497:| 493:s 489:| 464:s 452:, 433:e 429:N 425:s 418:e 411:1 404:s 397:e 390:1 384:= 379:x 376:i 373:f 369:P 343:e 339:N 318:g 298:u 272:e 268:N 247:g 227:u 215:, 201:x 198:i 195:f 185:P 176:e 172:N 168:g 165:u 162:=

Index

neutral theory of molecular evolution
mutations
selection coefficient
effective population size
genetic drift
fixation
Tomoko Ohta
Michael Lynch
generation times
amino acid
noncoding DNA
molecular systematics
DNA sequencing


fixed
selection coefficient
genetic drift
mean fitness
Michael Lynch
proofreading
Escherichia coli
Saccharomyces cerevisiae
C
U
deamination
History of molecular evolution
Bibcode
1968Natur.217..624K
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑