Knowledge (XXG)

Newton-X

Source đź“ť

1759:: the first level is a trivial parallelization given by the Independent-Trajectories approach used by the program. Complete sets of input files are redundantly written to allow each trajectory to be executed independently. They can be easily merged for final analysis in a later step. In a second level, Newton-X takes advantage of the parallelization of the third-party programs with which it is interfaced. Thus, a Newton-X simulation using the interface with Gaussian program can be first distributed over a cluster in terms of independent trajectories and each trajectory runs parallelized version of Gaussian. In the third level, the coupling computations in Newton-X are parallelized. 1729: 234: 1624: 1020: 36: 27: 1343: 1333: 740: 567: 1724:
A main concept guiding the Newton-X development is that the program should be simple to use, but still providing as many options as possible to customize the jobs. This is achieved by a series of input tools that guide the user through the program options, providing context-dependent variable values
1762:
Starting with version (1.3, 2013), Newton-X uses meta-codes to control the dynamics simulation behavior. Based on a series of initial instructions provided by the user, new codes are automatically written and executed on-the-fly. These codes allow, for instance, checking specific conditions to
214:
Hybrid combination of methods is possible in Newton-X. Forces computed with different methods for different atomic subsets can be linearly combined to generate the final force driving the dynamics. These hybrid forces may, for instance, be combined into the popular electrostatic-embedding
717:. In this approach, an ensemble of nuclear geometries is built in the initial state and the transition energies and transition moments to the other states are computed for each geometry in the ensemble. A convolution of the results provides spectral widths and absolute intensities. 1841:; Granucci, Giovanni; Persico, Maurizio; Ruckenbauer, Matthias; Vazdar, Mario; Eckert-Maksić, Mirjana; Lischka, Hans (August 2007). "The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems". 176:
Newton-X is designed as a platform to perform all steps of the nonadiabatic dynamics simulations, from the initial conditions generation, through trajectories computation, to the statistical analysis of the results. It works interfaced to a number of
1619:{\displaystyle \Gamma (E)={\frac {e^{2}n_{r}^{3}}{2\pi \hbar mc^{3}\epsilon _{0}}}{\frac {1}{N_{p}}}\sum _{l}^{N_{p}}\Delta E_{1,0}(\mathbf {R} _{l})^{2}\left|f_{1,0}(\mathbf {R} _{l})\right|g\left(E-\Delta E_{1,0}(\mathbf {R} _{l}),\delta \right)} 1119: 1015:{\displaystyle \sigma (E)={\frac {\pi e^{2}\hbar }{2mc\epsilon _{0}n_{r}E}}\sum _{n}^{N_{fs}}{\frac {1}{N_{p}}}\sum _{l}^{N_{p}}\Delta E_{0,n}(\mathbf {R} _{l})f_{0,n}(\mathbf {R} _{l})g\left(E-\Delta E_{0,n}(\mathbf {R} _{l}),\delta \right)} 672: 380: 701:(Time-Dependent Density Functional Theory), and TDA (Tamm-Dankov Approximation). In the case of MCSCF and MRCI, the configuration interaction coefficients are directly used for computation of couplings. For the other methods, the 2029:; Pittner, Jiří; Pederzoli, Marek; Werner, Ute; Mitrić, Roland; Bonačić-Koutecký, Vlasta; Lischka, Hans (September 2010). "Non-adiabatic dynamics of pyrrole: Dependence of deactivation mechanisms on the excitation energy". 347:
Newton-X can either compute nonadiabatic couplings during the dynamics or read them from an interfaced third-party program. The computation of the couplings in Newton-X is done by finite differences, following the
207:, the central quantity in nonadiabatic simulations, can be either provided by a third-party program or computed by Newton-X. When computed by Newton-X, it is done with a numerical approximation based on overlap of 2068:; MĂĽller, Thomas; Lischka, Hans (July 2010). "Nonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media". 1806:; Ruckenbauer, Matthias; Plasser, Felix; Pittner, Jiri; Granucci, Giovanni; Persico, Maurizio; Lischka, Hans (January 2014). "Newton-X: a surface-hopping program for nonadiabatic molecular dynamics". 1771:
To keep a modular architecture for easy inclusion of new algorithms, Newton-X is organized as a series of independent programs connected by general program drivers. For this reason, a large amount of
201:. Its modular development allows to create new interfaces and integrate new methods. Users’ new developments are encouraged and are in due course included into the main branch of the program. 1716:
A number of workshops on nonadiabatic simulations using Newton-X have been organized in Vienna (2008), Rio de Janeiro (2009), Sao Carlos (2011), Chiang Mai (2011, 2015), and Jeddah (2014).
1786:
Other problems with the current implementation are the lack of parallelization of the code, especially of the couplings computation, and the restriction of the program to Linux systems.
1690:
Newton-X is distributed free of charges for academic usage and with open source. The original paper describing the program had been cited 190 times by December 22, 2014, according to
1671:
dynamics was developed by Matthias Ruckenbauer. Felix Plasser implemented the local diabatization method and dynamics based on CC2 and ADC(2). Rachel Crespo-Otero extended the
1779:
methods, this is normally not a problem, as the time bottleneck is in the electronic structure calculation. Low efficiency due to input/output can, however, be relevant with
1328:{\displaystyle g\left(E-\Delta E_{0,n},\delta \right)={\frac {1}{\left(2\pi (\delta /2)^{2}\right)^{1/2}}}exp\left({\frac {-(E-\Delta E_{0,n})^{2}}{2(\delta /2)^{2}}}\right)} 2107:; Lischka, Hans; Windus, Theresa L. (July 2014). "Nonadiabatic dynamics study of methaniminium with ORMAS: Challenges of incomplete active spaces in dynamics simulations". 575: 562:{\displaystyle {\boldsymbol {\tau }}_{LM}\cdot \mathbf {v} \approx {\frac {1}{4\Delta t}}\left(3S_{LM}(t)-3S_{ML}(t)-S_{LM}(t-\Delta t)+S_{ML}(t-\Delta t)\right)} 1648:
in collaboration with Hans Lischka. The original code used and expanded routines written by Giovanni Granucci and Maurizio Persico from the University of Pisa.
139: 1879:"Surface hopping dynamics using a locally diabatic formalism: Charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer" 2167: 211:
obtained in sequential time steps. A local diabatization method is also available to provide couplings in the case of weak nonadiabatic interactions.
1925:(9 June 2012). "Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran". 1660: 690: 277: 1780: 157: 685:
representation of the electronic wavefunction can be worked out. In Newton-X, it is used with a number of quantum-chemical methods, including
1644:
The development of Newton-X started in 2005 at the Institute for the Theoretical Chemistry of the University of Vienna. It was designed by
1636:
Starting from version 2.0, it is possible to use the nuclear ensemble approach to simulate steady and time-resolved photoelectron spectra.
1630: 1776: 1736:
Newton-X is written as a combination of independent programs. The coordinated execution of these programs is done by drivers written in
256: 178: 1709:
is also available on line, showing how to use the main features of the program step-by-step. Examples of simulations are shown at a
164:
between several states) are recovered by a stochastic algorithm, which allows individual trajectories to change between different
1682:
Mario Barbatti coordinates new program developments, their integration into the official version, and the Newton-X distribution.
119: 1991:(February 2009). "Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings". 1952:
Hammes-Schiffer, Sharon; Tully, John C. (1994). "Proton transfer in solution: Molecular dynamics with quantum transitions".
226:
As part of the initial conditions module, Newton-X can simulate absorption, emission, and photoelectron spectra, using the
123: 63: 1728: 1629:
In both absorption and emission, the nuclear ensemble can be sampled either from a dynamics simulation or from a
714: 682: 227: 1713:. The program itself is distributed with a collection of input and output files of several worked-out examples. 1745: 721: 165: 697:(Coupled Cluster to Approximated Second Order), ADC(2) (Algebraic Diagrammatic Construction to Second Order), 1740:, while the programs dealing with integration of the dynamics and other mathematical aspects are written in 1034: 182: 135: 349: 1663:
wavefunctions was implemented by Jiri Pittner (J. Heyrovsky Institute) and later adapted to work with
1072:
of the medium. The first summation runs over all target states and the second summation runs over all
2077: 2038: 2000: 1961: 1890: 356:
approach. In this approach, the key quantity for computation of the surface hopping probability, the
1058: 301: 705:
are used as the coefficients of a configuration interaction wavefunction with single excitations.
1749: 667:{\displaystyle S_{LM}(t)\equiv \left\langle \Psi _{L}(t-\Delta t)\mid \Psi _{M}(t)\right\rangle } 153: 115: 134:
time scale) in photoexcited molecules. It has also been used for simulation of band envelops of
1775:
is required during the program's execution, reducing its efficiency. When dynamics is based on
1652: 1030: 341: 261: 204: 54:, G. Granucci, M. Ruckenbauer, F. Plasser, R. Crespo-Otero, J. Pittner, M. Persico, H. Lischka 2152: 1702: 2112: 2085: 2046: 2008: 1969: 1934: 1898: 1850: 1815: 1069: 87: 1756: 702: 694: 337: 293: 247: 156:, while the electrons are treated as a quantum subsystem via a local approximation of the 149: 1752:
and there are no formal limits for most of variables, such as number of atoms or states.
2081: 2042: 2004: 1965: 1894: 2104: 2065: 2026: 1988: 1922: 1874: 1838: 1803: 1691: 1676: 1645: 1050: 681:
This method can be generally used for any electronic-structure method, provided that a
51: 152:
method, a semi-classical approximation in which the nuclei are treated classically by
2161: 1854: 1042: 357: 353: 208: 2050: 2012: 1772: 675: 233: 2116: 1079:
points in the nuclear ensemble. Each point in the ensemble has nuclear geometry
724:
for a molecule initially in the ground state and being excited with photoenergy
318: 194: 161: 127: 2130: 1938: 1741: 131: 46: 284: 190: 35: 1710: 1675:
and TDA capabilities. An interface to Gamess was added by Aaron West and
268: 223:, such as link atoms, boundaries, and thermostats are available as well. 198: 186: 2089: 1903: 1878: 1819: 1973: 20:
Newton-X: A Package for Newtonian Dynamics Close to the Crossing Seam
26: 1727: 1672: 1668: 1664: 1656: 698: 686: 323: 310: 306: 289: 273: 232: 220: 216: 1808:
Wiley Interdisciplinary Reviews: Computational Molecular Science
1737: 230:, which provides full spectral widths and absolute intensities. 713:
Newton-X simulates absorption and emission spectra using the
250:
with the following programs and quantum-chemical methods:
101: 2147: 1706: 1698: 1338:
For emission, the differential emission rate is given by
678:
overlaps between states L and M in different time steps.
1843:
Journal of Photochemistry and Photobiology A: Chemistry
1346: 1122: 743: 578: 383: 1873:Plasser, Felix; Granucci, Giovanni; Pittner, Jiri; 1102:(for a transition from the ground state into state 96: 86: 78: 62: 45: 1618: 1327: 1014: 666: 561: 160:. Nonadiabatic effects (the spread of the nuclear 215:quantum-mechanical/molecular-mechanical method ( 122:. It has been primarily used for simulations of 689:(Multiconfigurational Self-Consistent Field), 242:Methods and Interfaces to Third-Party Programs 1110:is a normalized Gaussian function with width 693:(Multi-Reference Configuration Interaction), 8: 1916: 1914: 19: 1877:; Persico, Maurizio; Lischka, Hans (2012). 34: 25: 18: 1902: 1868: 1866: 1864: 1596: 1591: 1575: 1540: 1535: 1519: 1504: 1494: 1489: 1473: 1458: 1453: 1448: 1436: 1427: 1418: 1408: 1384: 1379: 1369: 1362: 1345: 1312: 1300: 1283: 1267: 1245: 1220: 1216: 1205: 1193: 1170: 1144: 1121: 992: 987: 971: 941: 936: 920: 907: 902: 886: 871: 866: 861: 849: 840: 829: 824: 819: 803: 793: 769: 759: 742: 644: 613: 583: 577: 527: 493: 468: 440: 410: 402: 390: 385: 382: 252: 2109:Computational and Theoretical Chemistry 1795: 1732:Files and directories tree in Newton-X. 1398: 775: 386: 1833: 1831: 1829: 1655:based on finite differences of either 720:In the Nuclear Ensemble approach, the 16:Molecular dynamics simulation software 237:Basic execution sections of Newton-X. 7: 735:final electronic states is given by 360:between the nonadiabatic couplings ( 2070:The Journal of Physical Chemistry A 1720:Program philosophy and architecture 158:Time-dependent Schrödinger Equation 1568: 1466: 1347: 1260: 1137: 964: 879: 641: 628: 610: 545: 511: 419: 114:Newton-X is a general program for 14: 2168:Computational chemistry software 1855:10.1016/j.jphotochem.2006.12.008 1755:Newton-X works in a three-level 1592: 1536: 1490: 988: 937: 903: 403: 1954:The Journal of Chemical Physics 1883:The Journal of Chemical Physics 40:Snapshot of Newton-X main menu. 2051:10.1016/j.chemphys.2010.07.014 2013:10.1016/j.chemphys.2008.10.013 1987:Pittner, Jiri; Lischka, Hans; 1927:Theoretical Chemistry Accounts 1602: 1587: 1546: 1531: 1501: 1485: 1356: 1350: 1309: 1294: 1280: 1251: 1202: 1187: 998: 983: 947: 932: 913: 898: 753: 747: 656: 650: 634: 619: 598: 592: 551: 536: 517: 502: 483: 477: 455: 449: 367:) and the nuclear velocities ( 120:Born-Oppenheimer approximation 1: 1651:A modulus for computation of 722:photoabsorption cross section 340:depends on the values of the 179:electronic structure programs 2117:10.1016/j.comptc.2014.03.015 1763:terminate the simulations. 1699:comprehensive documentation 344:between electronic states. 338:surface hopping probability 2184: 1095:, and oscillator strength 1088:, transition energy Δ 703:linear-response amplitudes 1939:10.1007/s00214-012-1237-4 1686:Distribution and training 1679:(Iowa State University). 715:Nuclear Ensemble approach 683:configuration interaction 228:Nuclear Ensemble approach 219:). Important options for 74: 58: 33: 24: 248:surface-hopping dynamics 209:electronic wavefunctions 2064:Ruckenbauer, Matthias; 1703:public discussion forum 1697:Newton-X counts with a 1640:Development and credits 1035:reduced Planck constant 183:computational chemistry 166:potential energy states 118:simulations beyond the 2111:. 1040–1041: 158–166. 1921:Crespo-Otero, Rachel; 1733: 1725:always that possible. 1653:nonadiabatic couplings 1620: 1465: 1329: 1016: 878: 839: 668: 563: 342:nonadiabatic couplings 332:Nonadiabatic couplings 246:Newton-X can simulate 238: 205:Nonadiabatic couplings 1750:dynamically allocated 1731: 1621: 1444: 1330: 1017: 857: 815: 669: 564: 236: 168:during the dynamics. 1344: 1120: 741: 709:Spectrum Simulations 576: 381: 148:uses the trajectory 2082:2010JPCA..114.6757R 2043:2010CP....375...26B 2005:2009CP....356..147P 1966:1994JChPh.101.4657H 1895:2012JChPh.137vA514P 1631:Wigner distribution 1389: 1059:vacuum permittivity 257:Third-Party Program 124:ultrafast processes 21: 2131:"Newton-X webpage" 1734: 1616: 1375: 1325: 1012: 664: 559: 239: 154:Newtonian dynamics 116:molecular dynamics 2090:10.1021/jp103101t 2076:(25): 6757–6765. 1904:10.1063/1.4738960 1820:10.1002/wcms.1158 1442: 1425: 1319: 1230: 1031:elementary charge 855: 813: 426: 329: 328: 221:QM/MM simulations 112: 111: 2175: 2153:Discussion forum 2148:Newton-X webpage 2135: 2134: 2127: 2121: 2120: 2103:West, Aaron C.; 2100: 2094: 2093: 2061: 2055: 2054: 2031:Chemical Physics 2023: 2017: 2016: 1999:(1–3): 147–152. 1993:Chemical Physics 1984: 1978: 1977: 1974:10.1063/1.467455 1949: 1943: 1942: 1918: 1909: 1908: 1906: 1870: 1859: 1858: 1849:(2–3): 228–240. 1835: 1824: 1823: 1800: 1667:. A modulus for 1625: 1623: 1622: 1617: 1615: 1611: 1601: 1600: 1595: 1586: 1585: 1553: 1549: 1545: 1544: 1539: 1530: 1529: 1509: 1508: 1499: 1498: 1493: 1484: 1483: 1464: 1463: 1462: 1452: 1443: 1441: 1440: 1428: 1426: 1424: 1423: 1422: 1413: 1412: 1390: 1388: 1383: 1374: 1373: 1363: 1334: 1332: 1331: 1326: 1324: 1320: 1318: 1317: 1316: 1304: 1289: 1288: 1287: 1278: 1277: 1246: 1231: 1229: 1228: 1224: 1215: 1211: 1210: 1209: 1197: 1171: 1166: 1162: 1155: 1154: 1070:refractive index 1021: 1019: 1018: 1013: 1011: 1007: 997: 996: 991: 982: 981: 946: 945: 940: 931: 930: 912: 911: 906: 897: 896: 877: 876: 875: 865: 856: 854: 853: 841: 838: 837: 836: 823: 814: 812: 808: 807: 798: 797: 778: 774: 773: 760: 673: 671: 670: 665: 663: 659: 649: 648: 618: 617: 591: 590: 572:where the terms 568: 566: 565: 560: 558: 554: 535: 534: 501: 500: 476: 475: 448: 447: 427: 425: 411: 406: 398: 397: 389: 253: 108: 105: 103: 88:Operating system 82:Perl, Fortran, C 38: 29: 22: 2183: 2182: 2178: 2177: 2176: 2174: 2173: 2172: 2158: 2157: 2144: 2139: 2138: 2129: 2128: 2124: 2105:Barbatti, Mario 2102: 2101: 2097: 2066:Barbatti, Mario 2063: 2062: 2058: 2027:Barbatti, Mario 2025: 2024: 2020: 1989:Barbatti, Mario 1986: 1985: 1981: 1951: 1950: 1946: 1923:Barbatti, Mario 1920: 1919: 1912: 1875:Barbatti, Mario 1872: 1871: 1862: 1839:Barbatti, Mario 1837: 1836: 1827: 1804:Barbatti, Mario 1802: 1801: 1797: 1792: 1769: 1757:parallelization 1722: 1711:YouTube channel 1688: 1642: 1590: 1571: 1561: 1557: 1534: 1515: 1514: 1510: 1500: 1488: 1469: 1454: 1432: 1414: 1404: 1391: 1365: 1364: 1342: 1341: 1308: 1290: 1279: 1263: 1247: 1241: 1201: 1180: 1176: 1175: 1140: 1130: 1126: 1118: 1117: 1100: 1093: 1086: 1077: 1066: 1056: 986: 967: 957: 953: 935: 916: 901: 882: 867: 845: 825: 799: 789: 779: 765: 761: 739: 738: 733: 711: 640: 609: 608: 604: 579: 574: 573: 523: 489: 464: 436: 432: 428: 415: 384: 379: 378: 366: 350:Hammes-Schiffer 334: 244: 174: 150:surface hopping 100: 70: 41: 17: 12: 11: 5: 2181: 2179: 2171: 2170: 2160: 2159: 2156: 2155: 2150: 2143: 2142:External links 2140: 2137: 2136: 2122: 2095: 2056: 2018: 1979: 1944: 1910: 1889:(22): 22A514. 1860: 1825: 1794: 1793: 1791: 1788: 1768: 1765: 1721: 1718: 1692:Google Scholar 1687: 1684: 1677:Theresa Windus 1646:Mario Barbatti 1641: 1638: 1614: 1610: 1607: 1604: 1599: 1594: 1589: 1584: 1581: 1578: 1574: 1570: 1567: 1564: 1560: 1556: 1552: 1548: 1543: 1538: 1533: 1528: 1525: 1522: 1518: 1513: 1507: 1503: 1497: 1492: 1487: 1482: 1479: 1476: 1472: 1468: 1461: 1457: 1451: 1447: 1439: 1435: 1431: 1421: 1417: 1411: 1407: 1403: 1400: 1397: 1394: 1387: 1382: 1378: 1372: 1368: 1361: 1358: 1355: 1352: 1349: 1323: 1315: 1311: 1307: 1303: 1299: 1296: 1293: 1286: 1282: 1276: 1273: 1270: 1266: 1262: 1259: 1256: 1253: 1250: 1244: 1240: 1237: 1234: 1227: 1223: 1219: 1214: 1208: 1204: 1200: 1196: 1192: 1189: 1186: 1183: 1179: 1174: 1169: 1165: 1161: 1158: 1153: 1150: 1147: 1143: 1139: 1136: 1133: 1129: 1125: 1098: 1091: 1084: 1075: 1064: 1054: 1051:speed of light 1010: 1006: 1003: 1000: 995: 990: 985: 980: 977: 974: 970: 966: 963: 960: 956: 952: 949: 944: 939: 934: 929: 926: 923: 919: 915: 910: 905: 900: 895: 892: 889: 885: 881: 874: 870: 864: 860: 852: 848: 844: 835: 832: 828: 822: 818: 811: 806: 802: 796: 792: 788: 785: 782: 777: 772: 768: 764: 758: 755: 752: 749: 746: 731: 710: 707: 662: 658: 655: 652: 647: 643: 639: 636: 633: 630: 627: 624: 621: 616: 612: 607: 603: 600: 597: 594: 589: 586: 582: 557: 553: 550: 547: 544: 541: 538: 533: 530: 526: 522: 519: 516: 513: 510: 507: 504: 499: 496: 492: 488: 485: 482: 479: 474: 471: 467: 463: 460: 457: 454: 451: 446: 443: 439: 435: 431: 424: 421: 418: 414: 409: 405: 401: 396: 393: 388: 375:, is given by 364: 333: 330: 327: 326: 321: 315: 314: 304: 298: 297: 287: 281: 280: 271: 265: 264: 259: 243: 240: 181:available for 173: 170: 110: 109: 98: 94: 93: 90: 84: 83: 80: 76: 75: 72: 71: 68: 66: 64:Stable release 60: 59: 56: 55: 49: 43: 42: 39: 31: 30: 15: 13: 10: 9: 6: 4: 3: 2: 2180: 2169: 2166: 2165: 2163: 2154: 2151: 2149: 2146: 2145: 2141: 2132: 2126: 2123: 2118: 2114: 2110: 2106: 2099: 2096: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2060: 2057: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2022: 2019: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1983: 1980: 1975: 1971: 1967: 1963: 1959: 1955: 1948: 1945: 1940: 1936: 1932: 1928: 1924: 1917: 1915: 1911: 1905: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1869: 1867: 1865: 1861: 1856: 1852: 1848: 1844: 1840: 1834: 1832: 1830: 1826: 1821: 1817: 1813: 1809: 1805: 1799: 1796: 1789: 1787: 1784: 1782: 1781:semiempirical 1778: 1774: 1766: 1764: 1760: 1758: 1753: 1751: 1747: 1743: 1739: 1730: 1726: 1719: 1717: 1714: 1712: 1708: 1704: 1700: 1695: 1693: 1685: 1683: 1680: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1649: 1647: 1639: 1637: 1634: 1632: 1627: 1612: 1608: 1605: 1597: 1582: 1579: 1576: 1572: 1565: 1562: 1558: 1554: 1550: 1541: 1526: 1523: 1520: 1516: 1511: 1505: 1495: 1480: 1477: 1474: 1470: 1459: 1455: 1449: 1445: 1437: 1433: 1429: 1419: 1415: 1409: 1405: 1401: 1395: 1392: 1385: 1380: 1376: 1370: 1366: 1359: 1353: 1339: 1336: 1321: 1313: 1305: 1301: 1297: 1291: 1284: 1274: 1271: 1268: 1264: 1257: 1254: 1248: 1242: 1238: 1235: 1232: 1225: 1221: 1217: 1212: 1206: 1198: 1194: 1190: 1184: 1181: 1177: 1172: 1167: 1163: 1159: 1156: 1151: 1148: 1145: 1141: 1134: 1131: 1127: 1123: 1115: 1113: 1109: 1105: 1101: 1094: 1087: 1082: 1078: 1071: 1067: 1060: 1052: 1048: 1044: 1043:electron mass 1040: 1036: 1032: 1028: 1023: 1008: 1004: 1001: 993: 978: 975: 972: 968: 961: 958: 954: 950: 942: 927: 924: 921: 917: 908: 893: 890: 887: 883: 872: 868: 862: 858: 850: 846: 842: 833: 830: 826: 820: 816: 809: 804: 800: 794: 790: 786: 783: 780: 770: 766: 762: 756: 750: 744: 736: 734: 727: 723: 718: 716: 708: 706: 704: 700: 696: 692: 688: 684: 679: 677: 660: 653: 645: 637: 631: 625: 622: 614: 605: 601: 595: 587: 584: 580: 570: 555: 548: 542: 539: 531: 528: 524: 520: 514: 508: 505: 497: 494: 490: 486: 480: 472: 469: 465: 461: 458: 452: 444: 441: 437: 433: 429: 422: 416: 412: 407: 399: 394: 391: 376: 374: 370: 363: 359: 358:inner product 355: 351: 345: 343: 339: 331: 325: 322: 320: 317: 316: 312: 308: 305: 303: 300: 299: 295: 291: 288: 286: 283: 282: 279: 275: 272: 270: 267: 266: 263: 260: 258: 255: 254: 251: 249: 241: 235: 231: 229: 224: 222: 218: 212: 210: 206: 202: 200: 196: 192: 188: 184: 180: 171: 169: 167: 163: 159: 155: 151: 147: 143: 141: 137: 133: 129: 125: 121: 117: 107: 99: 95: 91: 89: 85: 81: 77: 73: 67: 65: 61: 57: 53: 50: 48: 44: 37: 32: 28: 23: 2125: 2108: 2098: 2073: 2069: 2059: 2037:(1): 26–34. 2034: 2030: 2021: 1996: 1992: 1982: 1957: 1953: 1947: 1930: 1926: 1886: 1882: 1846: 1842: 1814:(1): 26–33. 1811: 1807: 1798: 1785: 1773:input/output 1770: 1761: 1754: 1748:. Memory is 1735: 1723: 1715: 1696: 1689: 1681: 1650: 1643: 1635: 1628: 1340: 1337: 1116: 1111: 1107: 1103: 1096: 1089: 1083: 1080: 1073: 1062: 1046: 1038: 1026: 1024: 737: 729: 725: 719: 712: 680: 676:wavefunction 571: 377: 372: 368: 361: 346: 335: 245: 225: 213: 203: 185:, including 175: 172:Capabilities 145: 144: 113: 47:Developer(s) 1960:(6): 4657. 1033:, ħ is the 313:, TDA, CIS 162:wave packet 128:femtosecond 52:M. Barbatti 1790:References 1742:Fortran 90 371:) at time 136:absorption 132:picosecond 79:Written in 1783:methods. 1777:ab initio 1767:Drawbacks 1609:δ 1569:Δ 1566:− 1467:Δ 1446:∑ 1416:ϵ 1399:ℏ 1396:π 1348:Γ 1298:δ 1261:Δ 1258:− 1249:− 1191:δ 1185:π 1160:δ 1138:Δ 1135:− 1114:given by 1005:δ 965:Δ 962:− 880:Δ 859:∑ 817:∑ 791:ϵ 776:ℏ 763:π 745:σ 642:Ψ 638:∣ 629:Δ 626:− 611:Ψ 602:≡ 546:Δ 543:− 512:Δ 509:− 487:− 459:− 420:Δ 408:≈ 400:⋅ 387:τ 296:, ADC(2) 285:Turbomole 191:Turbomole 142:spectra. 2162:Category 1707:tutorial 1053:, ε 661:⟩ 606:⟨ 302:Gaussian 269:Columbus 199:Columbus 187:Gaussian 146:Newton-X 140:emission 104:.newtonx 2078:Bibcode 2039:Bibcode 2001:Bibcode 1962:Bibcode 1891:Bibcode 1068:is the 1057:is the 1049:is the 1041:is the 1029:is the 262:Methods 97:Website 69:2.2 1701:and a 1112:δ 1061:, and 1025:where 362:τ 319:Gamess 197:, and 195:Gamess 1933:(6). 1673:TDDFT 1669:QM/MM 1665:TDDFT 1657:MCSCF 728:into 699:TDDFT 687:MCSCF 354:Tully 324:MCSCF 311:TDDFT 307:MCSCF 290:TDDFT 274:MCSCF 217:QM/MM 92:Linux 1744:and 1738:Perl 1705:. A 1661:MRCI 691:MRCI 674:are 336:The 278:MRCI 138:and 106:.org 2113:doi 2086:doi 2074:114 2047:doi 2035:375 2009:doi 1997:356 1970:doi 1958:101 1935:doi 1931:131 1899:doi 1887:137 1851:doi 1847:190 1816:doi 1659:or 1106:). 1099:0,n 1092:0,n 695:CC2 294:CC2 130:to 102:www 2164:: 2084:. 2072:. 2045:. 2033:. 2007:. 1995:. 1968:. 1956:. 1929:. 1913:^ 1897:. 1885:. 1881:. 1863:^ 1845:. 1828:^ 1810:. 1694:. 1633:. 1626:. 1335:. 1045:, 1037:, 1022:, 732:fs 569:, 365:LM 309:, 292:, 276:, 193:, 189:, 2133:. 2119:. 2115:: 2092:. 2088:: 2080:: 2053:. 2049:: 2041:: 2015:. 2011:: 2003:: 1976:. 1972:: 1964:: 1941:. 1937:: 1907:. 1901:: 1893:: 1857:. 1853:: 1822:. 1818:: 1812:4 1746:C 1613:) 1606:, 1603:) 1598:l 1593:R 1588:( 1583:0 1580:, 1577:1 1573:E 1563:E 1559:( 1555:g 1551:| 1547:) 1542:l 1537:R 1532:( 1527:0 1524:, 1521:1 1517:f 1512:| 1506:2 1502:) 1496:l 1491:R 1486:( 1481:0 1478:, 1475:1 1471:E 1460:p 1456:N 1450:l 1438:p 1434:N 1430:1 1420:0 1410:3 1406:c 1402:m 1393:2 1386:3 1381:r 1377:n 1371:2 1367:e 1360:= 1357:) 1354:E 1351:( 1322:) 1314:2 1310:) 1306:2 1302:/ 1295:( 1292:2 1285:2 1281:) 1275:n 1272:, 1269:0 1265:E 1255:E 1252:( 1243:( 1239:p 1236:x 1233:e 1226:2 1222:/ 1218:1 1213:) 1207:2 1203:) 1199:2 1195:/ 1188:( 1182:2 1178:( 1173:1 1168:= 1164:) 1157:, 1152:n 1149:, 1146:0 1142:E 1132:E 1128:( 1124:g 1108:g 1104:n 1097:f 1090:E 1085:p 1081:R 1076:p 1074:N 1065:r 1063:n 1055:0 1047:c 1039:m 1027:e 1009:) 1002:, 999:) 994:l 989:R 984:( 979:n 976:, 973:0 969:E 959:E 955:( 951:g 948:) 943:l 938:R 933:( 928:n 925:, 922:0 918:f 914:) 909:l 904:R 899:( 894:n 891:, 888:0 884:E 873:p 869:N 863:l 851:p 847:N 843:1 834:s 831:f 827:N 821:n 810:E 805:r 801:n 795:0 787:c 784:m 781:2 771:2 767:e 757:= 754:) 751:E 748:( 730:N 726:E 657:) 654:t 651:( 646:M 635:) 632:t 623:t 620:( 615:L 599:) 596:t 593:( 588:M 585:L 581:S 556:) 552:) 549:t 540:t 537:( 532:L 529:M 525:S 521:+ 518:) 515:t 506:t 503:( 498:M 495:L 491:S 484:) 481:t 478:( 473:L 470:M 466:S 462:3 456:) 453:t 450:( 445:M 442:L 438:S 434:3 430:( 423:t 417:4 413:1 404:v 395:M 392:L 373:t 369:v 352:- 126:(

Index



Developer(s)
M. Barbatti
Stable release
Operating system
www.newtonx.org
molecular dynamics
Born-Oppenheimer approximation
ultrafast processes
femtosecond
picosecond
absorption
emission
surface hopping
Newtonian dynamics
Time-dependent Schrödinger Equation
wave packet
potential energy states
electronic structure programs
computational chemistry
Gaussian
Turbomole
Gamess
Columbus
Nonadiabatic couplings
electronic wavefunctions
QM/MM
QM/MM simulations
Nuclear Ensemble approach

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑