Knowledge (XXG)

Nuclear ensemble approach

Source 📝

101:. It allows comparing the theoretical results to experimental measurements. There are many theoretical methods for simulating spectra. Some are simple approximations (like stick spectra); others are high-level, accurate approximations (like those based on Fourier-transform of wavepacket propagations). The NEA lies in between. On the one hand, it is intuitive and straightforward to apply, providing much improved results compared to the stick spectrum. On the other hand, it does not recover all spectral effects and delivers a limited spectral resolution.   474: 80:(NEA) is a general method for simulations of diverse types of molecular spectra. It works by sampling an ensemble of molecular conformations (nuclear geometries) in the source state, computing the transition probabilities to the target states for each of these geometries, and performing a sum over all these transitions convoluted with shape function. The result is an incoherent spectrum containing absolute band shapes through inhomogeneous broadening. 160: 25: 113:, ensembles of geometries started to be also used to estimate the spectra through incoherent sums. Thus, different from the reflection principle, which is usually done via direct integration of analytical functions, the NEA is a numerical approach. In 2012, a formal account of NEA showed that it corresponded to an approximation to the time-dependent spectrum simulation approach, employing a 1279: 841: 84: 469:{\displaystyle \sigma \left(E\right)={\frac {\pi {{e}^{2}}\hbar }{2mc{{\epsilon }_{0}}E}}\sum \limits _{n}^{{N}_{fs}}{{\frac {1}{{N}_{p}}}\sum \limits _{i}^{{N}_{p}}{\Delta {{E}_{0n}}\left({{\mathbf {x} }_{i}}\right){{f}_{0n}}\left({{\mathbf {x} }_{i}}\right)g\left(E-\Delta {{E}_{0n}}\left({{\mathbf {x} }_{i}}\right),\delta \right)}},} 1015: 136:
and temperature, the molecular geometry has a distribution around the equilibrium geometry. From a classical point of view, supposing that the photon absorption is an instantaneous process, each time a molecule is excited, it does so from a different geometry. As a consequence, the transition energy
87:
NEA simulates the spectrum in three steps: firstly an ensemble of molecular geometries is generated. 2)Secondly the transition probability between the initial and final states is computed for each geometry. Lastly a sum over all transition probabilities is done convoluted with a shape
626: 1327:
in the absorption spectrum will not appear in the simulations, only the band envelope around them, because these peaks depend on the wavefunction overlap between the ground and excited state. NEA can be, however, coupled to excited-state dynamics to recover these effects.
973: 1331:
NEA may be too computationally expensive for large molecules. The spectrum simulation requires the calculation of transition probabilities for hundreds of different nuclear geometries, which may become prohibitive due to the high computational costs.
1274:{\displaystyle \Gamma (E)={\frac {e^{2}}{2\pi \hbar mc^{3}\epsilon _{0}}}{\frac {1}{N_{p}}}\sum _{i}^{N_{p}}\Delta E_{1,0}(\mathbf {x} _{i})^{2}\left|f_{1,0}(\mathbf {x} _{i})\right|g\left(E-\Delta E_{1,0}(\mathbf {x} _{i}),\delta \right)} 836:{\displaystyle g\left(E-\Delta {{E}_{0n}},\delta \right)={\frac {1}{\sqrt {2\pi {{\left(\delta /2\right)}^{2}}}}}\exp \left(-{\frac {{\left(E-\Delta {{E}_{0n}}\right)}^{2}}{2{{\left(\delta /2\right)}^{2}}}}\right).} 1625:
Segarra-Martí J, Segatta F, Mackenzie TA, Nenov A, Rivalta I, Bearpark MJ, Garavelli M (December 2019). "Modeling multidimensional spectral lineshapes from first principles: application to water-solvated adenine".
1322:
By construction, NEA does not include information about the target (final) states. For this reason, any spectral information that depends on these states cannot be described in the framework of NEA. For example,
849:
is an arbitrary parameter, it must be much narrower than the band width, not to interfere in its description. As the average value of band widths is around 0.3 eV, it is a good practice to adopt
884: 1679:
Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, et al. (September 2010). "Conical intersection dynamics of the primary photoisomerization event in vision".
109:
The NEA is a multidimensional extension of the reflection principle, an approach often used for estimating spectra in photodissociative systems. With popularization
1570:"Probing electronic and vibrational dynamics in molecules by time-resolved photoelectron, Auger-electron, and X-ray photon scattering spectroscopy" 1366:(June 2012). "Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran". 1297:
NEA can be used for many types of steady-state and time-resolved spectrum simulations. Some examples beyond absorption and emission spectra are:
1428: 866: 1444:
Bergsma JP, Berens PH, Wilson KR, Fredkin DR, Heller EJ (February 1984). "Electronic spectra from molecular dynamics: a simple approach".
1731: 41: 63: 34: 1850:"Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories" 1475: 140:
The NEA captures this effect by creating an ensemble of geometries reflecting the zero-point energy, the temperature, or both.
1959: 1532: 45: 872: 968:{\displaystyle \sigma =\ln(10){\frac {10^{3}}{N_{\text{A}}}}\varepsilon \approx 3.82353216\times 10^{-21}\,\varepsilon .} 865:
can be generated by any method able to describe the ground state distribution. Two of the most employed are dynamics and
586:) states are computed. Each transition in the ensemble is convoluted with a normalized line shape function centered at Δ 1954: 1899:"Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach" 1410: 518: 126: 114: 1415:. Cambridge Monographs on Atomic, Molecular and Chemical Physics (1 ed.). Cambridge University Press. 1324: 1910: 1861: 1785: 1688: 1581: 1487: 510: 110: 1712: 1661: 1391: 1772:
McFarland BK, Farrell JP, Miyabe S, Tarantelli F, Aguilar A, Berrah N, et al. (June 2014).
1879: 1803: 1754: 1704: 1653: 1607: 1513: 1424: 1383: 487: 133: 98: 1928: 1918: 1869: 1830: 1793: 1746: 1696: 1643: 1635: 1597: 1589: 1547: 1503: 1495: 1453: 1416: 1375: 1333: 1533:"Effects of different initial condition samplings on photodynamics and spectrum of pyrrole" 1286: 1914: 1865: 1789: 1692: 1585: 1491: 1412:
Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules
1933: 1898: 1602: 1569: 1508: 1363: 499: 40:
It may require cleanup to comply with Knowledge (XXG)'s content policies, particularly
621:
The line shape function may be, for instance, a normalized Gaussian function given by
1948: 1665: 491: 1395: 1716: 1006: 1821:
Heller EJ (December 1981). "The semiclassical way to molecular spectroscopy 2".
618:
is a vector collecting the cartesian components of the geometries of each atom.
1379: 997:, NEA is a post-Condon approximation, and it can predict dark vibronic bands. 1750: 1499: 1420: 1387: 137:
has not always the same value, but is a function of the nuclear coordinates.
1883: 1807: 1758: 1732:"Steady and Time-Resolved Photoelectron Spectra Based on Nuclear Ensembles" 1708: 1657: 1648: 1611: 1517: 1834: 1700: 1457: 1923: 1897:
Ye ZR, Huang IS, Chan YT, Li ZJ, Liao CC, Tsai HR, et al. (2020).
1798: 1773: 1639: 1593: 1874: 1849: 1551: 544:. For each of such geometries in the ensemble, transition energies Δ 1774:"Ultrafast X-ray Auger probing of photoexcited molecular dynamics" 143:
In the NEA, the absorption spectrum (or absorption cross section)
83: 82: 1336:
methods coupled to NEA have been proposed to reduce these costs.
1730:
Arbelo-González W, Crespo-Otero R, Barbatti M (October 2016).
129:. Initially, all molecules are in the ground electronic state 18: 97:
Spectrum simulation is one of the most fundamental tasks in
16:
Semiclassical approach for molecular spectrum simulations.
878:
can be obtained from absorption cross section through
33:
A major contributor to this article appears to have a
1018: 887: 629: 163: 1273: 967: 835: 468: 1476:"Machine Learning for Absorption Cross Sections" 1289:, with emission from the first excited state. 1009:, the differential emission rate is given by 8: 1285:This expression assumes the validity of the 1568:Bennett K, Kowalewski M, Mukamel S (2015). 1474:Xue BX, Barbatti M, Dral PO (August 2020). 1739:Journal of Chemical Theory and Computation 1540:International Journal of Quantum Chemistry 582:) between the ground (0) and the excited ( 117:of the wavepacket overlap time evolution. 1932: 1922: 1873: 1797: 1647: 1601: 1507: 1251: 1246: 1230: 1195: 1190: 1174: 1159: 1149: 1144: 1128: 1113: 1108: 1103: 1091: 1082: 1073: 1063: 1040: 1034: 1017: 958: 949: 925: 915: 909: 886: 815: 801: 792: 790: 780: 764: 759: 757: 742: 739: 715: 701: 692: 690: 678: 654: 649: 647: 628: 439: 433: 432: 430: 416: 411: 409: 381: 375: 374: 372: 358: 353: 351: 340: 334: 333: 331: 317: 312: 310: 306: 298: 293: 291: 286: 274: 269: 263: 262: 251: 246: 244: 239: 222: 217: 215: 194: 189: 187: 181: 162: 64:Learn how and when to remove this message 1345: 1053: 201: 1848:Petit AS, Subotnik JE (October 2014). 7: 1563: 1561: 1469: 1467: 1357: 1355: 1353: 1351: 1349: 1480:The Journal of Physical Chemistry A 283: 236: 1223: 1121: 1019: 754: 644: 406: 307: 125:Consider an ensemble of molecules 14: 1446:The Journal of Physical Chemistry 127:absorbing radiation in the UV/vis 1247: 1191: 1145: 434: 376: 335: 44:. Please discuss further on the 23: 1854:The Journal of Chemical Physics 1293:NEA for other types of spectrum 1531:Barbatti M, Sen K (May 2016). 1368:Theoretical Chemistry Accounts 1257: 1242: 1201: 1186: 1156: 1140: 1028: 1022: 906: 900: 1: 1823:Accounts of Chemical Research 978:Because of the dependence of 873:Molar extinction coefficient 1325:vibronically resolved peaks 563:) and oscillator strengths 121:NEA for absorption spectrum 1976: 1380:10.1007/s00214-012-1237-4 1304:differential transmission 1001:NEA for emission spectrum 132:Because of the molecular 78:Nuclear Ensemble Approach 1751:10.1021/acs.jctc.6b00704 1500:10.1021/acs.jpca.0c05310 1421:10.1017/cbo9780511586453 1409:Schinke R (April 1993). 519:reduced Planck constant 151:) at excitation energy 115:Monte Carlo integration 1313:X-ray photo-scattering 1275: 1120: 969: 869:nuclear normal modes. 837: 470: 305: 261: 89: 1960:Theoretical chemistry 1778:Nature Communications 1276: 1099: 970: 838: 471: 282: 235: 86: 42:neutral point of view 1016: 885: 627: 521:. The sums run over 161: 1915:2020RSCAd..1023834Y 1909:(40): 23834–23841. 1866:2014JChPh.141o4108P 1835:10.1021/ar00072a002 1790:2014NatCo...5.4235M 1701:10.1038/nature09346 1693:2010Natur.467..440P 1628:Faraday Discussions 1586:2015FaDi..177..405B 1574:Faraday Discussions 1492:2020JPCA..124.7199X 1458:10.1021/j150647a055 867:Wigner distribution 535:nuclear geometries 528:excited states and 511:vacuum permittivity 111:molecular mechanics 1924:10.1039/D0RA05014H 1799:10.1038/ncomms5235 1640:10.1039/C9FD00072K 1594:10.1039/C4FD00178H 1318:Limitations of NEA 1271: 965: 833: 466: 90: 1955:Quantum chemistry 1875:10.1063/1.4897258 1745:(10): 5037–5049. 1552:10.1002/qua.25049 1486:(35): 7199–7210. 1430:978-0-521-48414-5 1097: 1080: 931: 928: 823: 723: 722: 605:) and with width 486:are the electron 280: 233: 155:is calculated as 134:zero-point energy 99:quantum chemistry 74: 73: 66: 37:with its subject. 1967: 1939: 1938: 1936: 1926: 1894: 1888: 1887: 1877: 1845: 1839: 1838: 1818: 1812: 1811: 1801: 1769: 1763: 1762: 1736: 1727: 1721: 1720: 1676: 1670: 1669: 1651: 1622: 1616: 1615: 1605: 1565: 1556: 1555: 1537: 1528: 1522: 1521: 1511: 1471: 1462: 1461: 1441: 1435: 1434: 1406: 1400: 1399: 1362:Crespo-Otero R, 1359: 1334:Machine learning 1280: 1278: 1277: 1272: 1270: 1266: 1256: 1255: 1250: 1241: 1240: 1208: 1204: 1200: 1199: 1194: 1185: 1184: 1164: 1163: 1154: 1153: 1148: 1139: 1138: 1119: 1118: 1117: 1107: 1098: 1096: 1095: 1083: 1081: 1079: 1078: 1077: 1068: 1067: 1045: 1044: 1035: 974: 972: 971: 966: 957: 956: 932: 930: 929: 926: 920: 919: 910: 842: 840: 839: 834: 829: 825: 824: 822: 821: 820: 819: 814: 813: 809: 805: 785: 784: 779: 778: 774: 773: 772: 771: 763: 740: 724: 721: 720: 719: 714: 713: 709: 705: 683: 679: 674: 670: 663: 662: 661: 653: 475: 473: 472: 467: 462: 461: 460: 456: 449: 445: 444: 443: 438: 437: 425: 424: 423: 415: 391: 387: 386: 385: 380: 379: 367: 366: 365: 357: 350: 346: 345: 344: 339: 338: 326: 325: 324: 316: 304: 303: 302: 297: 290: 281: 279: 278: 273: 264: 260: 259: 258: 250: 243: 234: 232: 228: 227: 226: 221: 204: 200: 199: 198: 193: 182: 177: 69: 62: 58: 55: 49: 35:close connection 27: 26: 19: 1975: 1974: 1970: 1969: 1968: 1966: 1965: 1964: 1945: 1944: 1943: 1942: 1896: 1895: 1891: 1847: 1846: 1842: 1829:(12): 368–375. 1820: 1819: 1815: 1771: 1770: 1766: 1734: 1729: 1728: 1724: 1687:(7314): 440–3. 1678: 1677: 1673: 1624: 1623: 1619: 1567: 1566: 1559: 1546:(10): 762–771. 1535: 1530: 1529: 1525: 1473: 1472: 1465: 1443: 1442: 1438: 1431: 1408: 1407: 1403: 1361: 1360: 1347: 1342: 1320: 1310:ultrafast Auger 1301:two-dimensional 1295: 1245: 1226: 1216: 1212: 1189: 1170: 1169: 1165: 1155: 1143: 1124: 1109: 1087: 1069: 1059: 1046: 1036: 1014: 1013: 1005:In the case of 1003: 995: 987: 945: 921: 911: 883: 882: 863: 856:The geometries 797: 793: 791: 786: 758: 747: 743: 741: 735: 731: 697: 693: 691: 648: 637: 633: 625: 624: 616: 603: 595: 580: 572: 561: 553: 542: 533: 526: 508: 431: 426: 410: 399: 395: 373: 368: 352: 332: 327: 311: 292: 268: 245: 216: 205: 188: 183: 167: 159: 158: 123: 107: 95: 70: 59: 53: 50: 39: 28: 24: 17: 12: 11: 5: 1973: 1971: 1963: 1962: 1957: 1947: 1946: 1941: 1940: 1889: 1860:(15): 154108. 1840: 1813: 1764: 1722: 1671: 1617: 1557: 1523: 1463: 1452:(3): 612–619. 1436: 1429: 1401: 1344: 1343: 1341: 1338: 1319: 1316: 1315: 1314: 1311: 1308: 1305: 1302: 1294: 1291: 1283: 1282: 1269: 1265: 1262: 1259: 1254: 1249: 1244: 1239: 1236: 1233: 1229: 1225: 1222: 1219: 1215: 1211: 1207: 1203: 1198: 1193: 1188: 1183: 1180: 1177: 1173: 1168: 1162: 1158: 1152: 1147: 1142: 1137: 1134: 1131: 1127: 1123: 1116: 1112: 1106: 1102: 1094: 1090: 1086: 1076: 1072: 1066: 1062: 1058: 1055: 1052: 1049: 1043: 1039: 1033: 1030: 1027: 1024: 1021: 1002: 999: 993: 982: 976: 975: 964: 961: 955: 952: 948: 944: 941: 938: 935: 924: 918: 914: 908: 905: 902: 899: 896: 893: 890: 861: 832: 828: 818: 812: 808: 804: 800: 796: 789: 783: 777: 770: 767: 762: 756: 753: 750: 746: 738: 734: 730: 727: 718: 712: 708: 704: 700: 696: 689: 686: 682: 677: 673: 669: 666: 660: 657: 652: 646: 643: 640: 636: 632: 614: 601: 590: 578: 567: 559: 548: 540: 531: 524: 506: 500:speed of light 465: 459: 455: 452: 448: 442: 436: 429: 422: 419: 414: 408: 405: 402: 398: 394: 390: 384: 378: 371: 364: 361: 356: 349: 343: 337: 330: 323: 320: 315: 309: 301: 296: 289: 285: 277: 272: 267: 257: 254: 249: 242: 238: 231: 225: 220: 214: 211: 208: 203: 197: 192: 186: 180: 176: 173: 170: 166: 122: 119: 106: 103: 94: 91: 72: 71: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1972: 1961: 1958: 1956: 1953: 1952: 1950: 1935: 1930: 1925: 1920: 1916: 1912: 1908: 1904: 1900: 1893: 1890: 1885: 1881: 1876: 1871: 1867: 1863: 1859: 1855: 1851: 1844: 1841: 1836: 1832: 1828: 1824: 1817: 1814: 1809: 1805: 1800: 1795: 1791: 1787: 1783: 1779: 1775: 1768: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1726: 1723: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1675: 1672: 1667: 1663: 1659: 1655: 1650: 1649:10044/1/70922 1645: 1641: 1637: 1633: 1629: 1621: 1618: 1613: 1609: 1604: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1564: 1562: 1558: 1553: 1549: 1545: 1541: 1534: 1527: 1524: 1519: 1515: 1510: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1468: 1464: 1459: 1455: 1451: 1447: 1440: 1437: 1432: 1426: 1422: 1418: 1414: 1413: 1405: 1402: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1358: 1356: 1354: 1352: 1350: 1346: 1339: 1337: 1335: 1329: 1326: 1317: 1312: 1309: 1307:photoelectron 1306: 1303: 1300: 1299: 1298: 1292: 1290: 1288: 1267: 1263: 1260: 1252: 1237: 1234: 1231: 1227: 1220: 1217: 1213: 1209: 1205: 1196: 1181: 1178: 1175: 1171: 1166: 1160: 1150: 1135: 1132: 1129: 1125: 1114: 1110: 1104: 1100: 1092: 1088: 1084: 1074: 1070: 1064: 1060: 1056: 1050: 1047: 1041: 1037: 1031: 1025: 1012: 1011: 1010: 1008: 1000: 998: 996: 991: 986: 981: 962: 959: 953: 950: 946: 942: 939: 936: 933: 922: 916: 912: 903: 897: 894: 891: 888: 881: 880: 879: 877: 874: 870: 868: 864: 859: 854: 852: 848: 843: 830: 826: 816: 810: 806: 802: 798: 794: 787: 781: 775: 768: 765: 760: 751: 748: 744: 736: 732: 728: 725: 716: 710: 706: 702: 698: 694: 687: 684: 680: 675: 671: 667: 664: 658: 655: 650: 641: 638: 634: 630: 622: 619: 617: 612: 608: 604: 599: 594: 589: 585: 581: 576: 571: 566: 562: 557: 552: 547: 543: 538: 534: 527: 520: 516: 512: 505: 501: 497: 493: 489: 485: 481: 476: 463: 457: 453: 450: 446: 440: 427: 420: 417: 412: 403: 400: 396: 392: 388: 382: 369: 362: 359: 354: 347: 341: 328: 321: 318: 313: 299: 294: 287: 275: 270: 265: 255: 252: 247: 240: 229: 223: 218: 212: 209: 206: 195: 190: 184: 178: 174: 171: 168: 164: 156: 154: 150: 146: 141: 138: 135: 130: 128: 120: 118: 116: 112: 104: 102: 100: 92: 85: 81: 79: 68: 65: 57: 47: 43: 38: 36: 30: 21: 20: 1906: 1903:RSC Advances 1902: 1892: 1857: 1853: 1843: 1826: 1822: 1816: 1781: 1777: 1767: 1742: 1738: 1725: 1684: 1680: 1674: 1631: 1627: 1620: 1577: 1573: 1543: 1539: 1526: 1483: 1479: 1449: 1445: 1439: 1411: 1404: 1371: 1367: 1330: 1321: 1296: 1287:Kasha's rule 1284: 1007:fluorescence 1004: 992: 989: 984: 979: 977: 875: 871: 860: 857: 855: 850: 846: 844: 623: 620: 613: 610: 606: 600: 597: 592: 587: 583: 577: 574: 569: 564: 558: 555: 550: 545: 539: 536: 529: 522: 514: 503: 495: 483: 479: 477: 157: 152: 148: 144: 142: 139: 131: 124: 108: 96: 77: 75: 60: 54:October 2020 51: 32: 1784:(1): 4235. 1634:: 219–244. 1374:(6): 1237. 853:≤ 0.05 eV. 1949:Categories 1580:: 405–28. 1364:Barbatti M 1340:References 940:3.82353216 105:Historical 93:Motivation 1666:196857298 1388:1432-881X 1264:δ 1224:Δ 1221:− 1122:Δ 1101:∑ 1071:ϵ 1054:ℏ 1051:π 1020:Γ 960:ε 951:− 943:× 937:≈ 934:ε 898:⁡ 889:σ 845:Although 799:δ 755:Δ 752:− 737:− 729:⁡ 699:δ 688:π 668:δ 645:Δ 642:− 454:δ 407:Δ 404:− 308:Δ 284:∑ 237:∑ 219:ϵ 202:ℏ 185:π 165:σ 88:function. 46:talk page 1884:25338882 1808:24953740 1759:27588827 1709:20864998 1658:31544178 1612:25730500 1518:32786977 1396:95758853 1934:9054811 1911:Bibcode 1862:Bibcode 1786:Bibcode 1717:4354278 1689:Bibcode 1603:4401660 1582:Bibcode 1509:7511037 1488:Bibcode 609:. Each 498:is the 1931:  1882:  1806:  1757:  1715:  1707:  1681:Nature 1664:  1656:  1610:  1600:  1516:  1506:  1427:  1394:  1386:  513:, and 488:charge 478:where 1735:(PDF) 1713:S2CID 1662:S2CID 1536:(PDF) 1392:S2CID 1880:PMID 1804:PMID 1755:PMID 1705:PMID 1654:PMID 1608:PMID 1514:PMID 1425:ISBN 1384:ISSN 517:the 509:the 492:mass 490:and 482:and 76:The 1929:PMC 1919:doi 1870:doi 1858:141 1831:doi 1794:doi 1747:doi 1697:doi 1685:467 1644:hdl 1636:doi 1632:221 1598:PMC 1590:doi 1578:177 1548:doi 1544:116 1504:PMC 1496:doi 1484:124 1454:doi 1417:doi 1376:doi 1372:131 988:on 726:exp 1951:: 1927:. 1917:. 1907:10 1905:. 1901:. 1878:. 1868:. 1856:. 1852:. 1827:14 1825:. 1802:. 1792:. 1780:. 1776:. 1753:. 1743:12 1741:. 1737:. 1711:. 1703:. 1695:. 1683:. 1660:. 1652:. 1642:. 1630:. 1606:. 1596:. 1588:. 1576:. 1572:. 1560:^ 1542:. 1538:. 1512:. 1502:. 1494:. 1482:. 1478:. 1466:^ 1450:88 1448:. 1423:. 1390:. 1382:. 1370:. 1348:^ 954:21 947:10 913:10 904:10 895:ln 525:fs 502:, 494:, 1937:. 1921:: 1913:: 1886:. 1872:: 1864:: 1837:. 1833:: 1810:. 1796:: 1788:: 1782:5 1761:. 1749:: 1719:. 1699:: 1691:: 1668:. 1646:: 1638:: 1614:. 1592:: 1584:: 1554:. 1550:: 1520:. 1498:: 1490:: 1460:. 1456:: 1433:. 1419:: 1398:. 1378:: 1281:. 1268:) 1261:, 1258:) 1253:i 1248:x 1243:( 1238:0 1235:, 1232:1 1228:E 1218:E 1214:( 1210:g 1206:| 1202:) 1197:i 1192:x 1187:( 1182:0 1179:, 1176:1 1172:f 1167:| 1161:2 1157:) 1151:i 1146:x 1141:( 1136:0 1133:, 1130:1 1126:E 1115:p 1111:N 1105:i 1093:p 1089:N 1085:1 1075:0 1065:3 1061:c 1057:m 1048:2 1042:2 1038:e 1032:= 1029:) 1026:E 1023:( 994:i 990:x 985:n 983:0 980:f 963:. 927:A 923:N 917:3 907:) 901:( 892:= 876:ε 862:i 858:x 851:δ 847:δ 831:. 827:) 817:2 811:) 807:2 803:/ 795:( 788:2 782:2 776:) 769:n 766:0 761:E 749:E 745:( 733:( 717:2 711:) 707:2 703:/ 695:( 685:2 681:1 676:= 672:) 665:, 659:n 656:0 651:E 639:E 635:( 631:g 615:i 611:x 607:δ 602:i 598:x 596:( 593:n 591:0 588:E 584:n 579:i 575:x 573:( 570:n 568:0 565:f 560:i 556:x 554:( 551:n 549:0 546:E 541:i 537:x 532:p 530:N 523:N 515:ћ 507:0 504:ε 496:c 484:m 480:e 464:, 458:) 451:, 447:) 441:i 435:x 428:( 421:n 418:0 413:E 401:E 397:( 393:g 389:) 383:i 377:x 370:( 363:n 360:0 355:f 348:) 342:i 336:x 329:( 322:n 319:0 314:E 300:p 295:N 288:i 276:p 271:N 266:1 256:s 253:f 248:N 241:n 230:E 224:0 213:c 210:m 207:2 196:2 191:e 179:= 175:) 172:E 169:( 153:E 149:E 147:( 145:σ 67:) 61:( 56:) 52:( 48:.

Index

close connection
neutral point of view
talk page
Learn how and when to remove this message
NEA steps.
quantum chemistry
molecular mechanics
Monte Carlo integration
absorbing radiation in the UV/vis
zero-point energy
charge
mass
speed of light
vacuum permittivity
reduced Planck constant
Wigner distribution
Molar extinction coefficient
fluorescence
Kasha's rule
vibronically resolved peaks
Machine learning





Barbatti M
doi
10.1007/s00214-012-1237-4
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.