Knowledge (XXG)

Neuroethology

Source 📝

542:
toads – "predicted" prey-catching reactions such as snapping. Another approach, called stimulation experiment, was carried out in freely moving toads. Focal electrical stimuli were applied to different regions of the brain, and the toad's response was observed. When the thalamic-pretectal region was stimulated, the toad exhibited escape responses, but when the tectum was stimulated in an area close to prey-selective neurons, the toad engaged in prey catching behavior (Carew 2000). Furthermore, neuroanatomical experiments were carried out where the toad's thalamic-pretectal/tectal connection was lesioned and the resulting deficit noted: the prey-selective properties were abolished both in the responses of prey-selective neurons and in the prey catching behavior. These and other experiments suggest that prey selectivity results from pretecto-tectal influences.
472:
technology allows neuroethologists to attach electrodes to even very sensitive parts of an animal such as its brain while it interacts with its environment. The founders of neuroethology ushered this understanding and incorporated technology and creative experimental design. Since then even indirect technological advancements such as battery-powered and waterproofed instruments have allowed neuroethologists to mimic natural conditions in the lab while they study behaviors objectively. In addition, the electronics required for amplifying neural signals and for transmitting them over a certain distance have enabled neuroscientists to record from behaving animals performing activities in naturalistic environments. Emerging technologies can complement neuroethology, augmenting the feasibility of this valuable perspective of natural neurophysiology.
468:
neuroethology. From the neurophysiology perspective, experiments must be designed for controls and objective rigor, which contrasts with the ethology perspective – that the experiment be applicable to the animal's natural condition, which is uncontrolled, or subject to the dynamics of the environment. An early example of this is when Walter Rudolf Hess developed focal brain stimulation technique to examine a cat's brain controls of vegetative functions in addition to other behaviors. Even though this was a breakthrough in technological abilities and technique, it was not used by many neuroethologists originally because it compromised a cat's natural state, and, therefore, in their minds, devalued the experiments' relevance to real situations.
517:
tail. Likewise, the neighboring fish's electric field was mimicked using another set of electrodes. This experiment allowed neuroethologists to manipulate different discharge frequencies and observe the fish's behavior. From the results, they were able to conclude that the electric field frequency, rather than an internal frequency measure, was used as a reference. This experiment is significant in that not only does it reveal a crucial neural mechanism underlying the behavior but also demonstrates the value neuroethologists place on studying animals in their natural habitats.
533:) and concluded that the animal followed a sequence that consisted of stalking, binocular fixation, snapping, swallowing and mouth-wiping. However, initially, the toad's actions were dependent on specific features of the sensory stimulus: whether it demonstrated worm or anti-worm configurations. It was observed that the worm configuration, which signaled prey, was initiated by movement along the object's long axis, whereas anti-worm configuration, which signaled predator, was due to movement along the short axis. (Zupanc 2004). 358:. Charles Sherrington, who was born in Great Britain in 1857, is famous for his work on the nerve synapse as the site of transmission of nerve impulses, and for his work on reflexes in the spinal cord. His research also led him to hypothesize that every muscular activation is coupled to an inhibition of the opposing muscle. He was awarded a Nobel Prize for his work in 1932 along with Lord Edgar Adrian who made the first physiological recordings of neural activity from single nerve fibers. 506:
difference) to that of its own, the fish will avoid having their signals interfere through a behavior known as Jamming Avoidance Response. If the neighbor's frequency is higher than the fish's discharge frequency, the fish will lower its frequency, and vice versa. The sign of the frequency difference is determined by analyzing the "beat" pattern of the incoming interference which consists of the combination of the two fish's discharge patterns.
291:(FAPs): endogenous, instinctive behaviors involving a complex sequence of movements that are triggered ("released") by a certain kind of stimulus. This sequence always proceeds to completion, even if the original stimulus is removed. It is also species-specific and performed by nearly all members. Lorenz constructed his famous "hydraulic model" to help illustrate this concept, as well as the concept of action specific energy, or drives. 3940: 3238: 2787: 2475: 1817: 192:, and neuroethologists argue that such an approach is limited. This argument is supported by experiments in the auditory system, which show that neural responses to complex sounds, like social calls, can not be predicted by the knowledge gained from studying the responses due to pure tones (one of the non-natural stimuli favored by auditory neurophysiologists). This is because of the non-linearity of the system. 546:
latter, for example, the telencephalic caudal ventral striatum is involved in a loop gating the stimulus-response mediation in a manner of directed attention. The telencephalic ventral medial pallium („primordium hippocampi"), however, is involved in loops that either modify prey-selection due to associative learning or specify prey-selection due to non-associative learning, respectively.
2487: 1829: 36: 2033: 554:
Computational neuroethology (CN or CNE) is concerned with the computer modelling of the neural mechanisms underlying animal behaviors. Together with the term "artificial ethology," the term "computational neuroethology" was first published in literature by Achacoso and Yamamoto in the Spring of 1990,
536:
Ewert and coworkers adopted a variety of methods to study the predator versus prey behavior response. They conducted recording experiments where they inserted electrodes into the brain, while the toad was presented with worm or anti-worm stimuli. This technique was repeated at different levels of the
92: 1351:
Hoyle, G. (1984) The scope of Neuroethology. Behavioural Brain Science 7:367-412. Graham Hoyle put forth a rather narrow definition of the goals and subject matter of neuroethology and links the field to the field of ethology. This is followed by commentaries from many prominent neuroethologists. It
361:
Alan Hodgkin and Andrew Huxley (born 1914 and 1917, respectively, in Great Britain), are known for their collaborative effort to understand the production of action potentials in the giant axons of squid. The pair also proposed the existence of ion channels to facilitate action potential initiation,
471:
When intellectual obstacles like this were overcome, it led to a golden age of neuroethology, by focusing on simple and robust forms of behavior, and by applying modern neurobiological methods to explore the entire chain of sensory and neural mechanisms underlying these behaviors (Zupanc 2004). New
195:
Modern neuroethology is largely influenced by the research techniques used. Neural approaches are necessarily very diverse, as is evident through the variety of questions asked, measuring techniques used, relationships explored, and model systems employed. Techniques utilized since 1984 include the
545:
Ewert and coworkers showed in toads that there are stimulus-response mediating pathways that translate perception (of visual sign stimuli) into action (adequate behavioral responses). In addition there are modulatory loops that initiate, modify or specify this mediation (Ewert 2004). Regarding the
467:
Neuroethologists seek to understand the neural basis of a behavior as it would occur in an animal's natural environment but the techniques for neurophysiological analysis are lab-based, and cannot be performed in the field setting. This dichotomy between field and lab studies poses a challenge for
475:
Another challenge, and perhaps part of the beauty of neuroethology, is experimental design. The value of neuroethological criteria speak to the reliability of these experiments, because these discoveries represent behavior in the environments in which they evolved. Neuroethologists foresee future
458:
through an advanced understanding of animal behavior. Model systems were generalized from the study of simple and related animals to humans. For example, the neuronal cortical space map discovered in bats, a specialized champion of hearing and navigating, elucidated the concept of a computational
541:
to be identified. In focus was the discovery of prey-selective neurons in the optic tectum, whose axons could be traced towards the snapping pattern generating cells in the hypoglossal nucleus. The discharge patterns of prey-selective tectal neurons in response to prey objects – in freely moving
516:
s natural conditions to study how it determined the sign of the frequency difference. They manipulated the fish's discharge by injecting it with curare which prevented its natural electric organ from discharging. Then, an electrode was placed in its mouth and another was placed at the tip of its
505:
is a weakly electric fish that can generate electric discharges through electrocytes in its tail. Furthermore, it has the ability to electrolocate by analyzing the perturbations in its electric field. However, when the frequency of a neighboring fish's current is very close (less than 20 Hz
179:
Often central to addressing questions in neuroethology are comparative methodologies, drawing upon knowledge about related organisms' nervous systems, anatomies, life histories, behaviors and environmental niches. While it is not unusual for many types of neurobiology experiments to give rise to
463:
model. This understanding is translatable to understanding spatial localization in humans, a mammalian relative of the bat. Today, knowledge learned from neuroethology are being applied in new technologies. For example, Randall Beer and his colleagues used algorithms learned from insect walking
397:
The International Society for Neuroethology represents the present discipline of neuroethology, which was founded on the occasion of the NATO-Advanced Study Institute "Advances in Vertebrate Neuroethology" (August 13–24, 1981) organized by J.-P. Ewert, D.J. Ingle and R.R. Capranica, held at the
126:
Neuroethologists hope to uncover general principles of the nervous system from the study of animals with exaggerated or specialized behaviors. They endeavor to understand how the nervous system translates biologically relevant stimuli into natural behavior. For example, many bats are capable of
294:
Niko Tinbergen was born in the Netherlands in 1907 and worked closely with Lorenz in the development of the FAP theory; their studies focused on the egg retrieval response of nesting geese. Tinbergen performed extensive research on the releasing mechanisms of particular FAPs, and used the
196:
use of intracellular dyes, which make maps of identified neurons possible, and the use of brain slices, which bring vertebrate brains into better observation through intracellular electrodes (Hoyle 1984). Currently, other fields toward which neuroethology may be headed include
307:
level, and this question can be thought of in many regards as the keystone question in neuroethology. Tinbergen also emphasized the need for ethologists and neurophysiologists to work together in their studies, a unity that has become a reality in the field of neuroethology.
410:
techniques have enabled more exacting approaches in an ever-increasing number of animal systems, as size limitations are being dramatically overcome. Survey of the most recent (2007) congress of the ISN meeting symposia topics gives some idea of the field's breadth:
276:(384–342 BC), it was not until the early twentieth century that ethology finally became distinguished from natural science (a strictly descriptive field) and ecology. The main catalysts behind this new distinction were the research and writings of 180:
behavioral questions, many neuroethologists often begin their research programs by observing a species' behavior in its natural environment. Other approaches to understanding nervous systems include the systems identification approach, popular in
144:
that animals' nervous systems have evolved to address problems of sensing and acting in certain environmental niches and that their nervous systems are best understood in the context of the problems they have evolved to solve. In accordance with
256:. Beyond its conceptual contributions, neuroethology makes indirect contributions to advancing human health. By understanding simpler nervous systems, many clinicians have used concepts uncovered by neuroethology and other branches of 131:
which is used for prey capture and navigation. The auditory system of bats is often cited as an example for how acoustic properties of sounds can be converted into a sensory map of behaviorally relevant features of sounds.
377:– are frequently referred to as the "fathers" of neuroethology. Neuroethology did not really come into its own, though, until the 1970s and 1980s, when new, sophisticated experimental methods allowed researchers such as 1071:
Achacoso, Theodore B.; Yamamoto, William S. (1990). "Artificial Ethology and Computational Neuroethology: A Scientific Discipline and Its Subset by Sharpening and Extending the Definition of Artificial Intelligence".
405:
Its membership draws from many research programs around the world; many of its members are students and faculty members from medical schools and neurobiology departments from various universities. Modern advances in
184:. The idea is to stimulate the system using a non-natural stimulus with certain properties. The system's response to the stimulus may be used to analyze the operation of the system. Such an approach is useful for 592:(Model CM-2). Instead of feeding the model retina with idealized input signals, they exposed the simulation to digitized video sequences made underwater, and compared its response with those of real animals. 119:(study of animal behavior in natural conditions). A central theme of neuroethology, which differentiates it from other branches of neuroscience, is its focus on behaviors that have been favored by 219:
Critics of neuroethology might consider it a branch of neuroscience concerned with 'animal trivia'. Though neuroethological subjects tend not to be traditional neurobiological model systems (i.e.
149:, neuroethologists often study animals that are "specialists" in the behavior the researcher wishes to study e.g. honeybees and social behavior, bat echolocation, owl sound localization, etc. 1160: 334:
Although the development of ethology as a distinct discipline was crucial to the advent of neuroethology, equally important was the development of a more comprehensive understanding of
1348:
Ewert J.-P. (2004) Motion perception shapes the visual world of amphibians. In: Prete F.R. (Ed.) Complex Worlds from Simpler Nervous Systems. Cambridge, MA, MIT Press, pp. 117–160
365:
As a result of this pioneering research, many scientists then sought to connect the physiological aspects of the nervous and sensory systems to specific behaviors. These scientists –
961:
Schürg-Pfeiffer, E.; Spreckelsen, C.; Ewert, J.-P. (1993). "Temporal discharge patterns of tectal and medullary neurons chronically recorded during snapping toward prey in toads
578:
CNE systems work within a closed-loop environment; that is, they perceive their (perhaps artificial) environment directly, rather than through human input, as is typical in
476:
advancements through using new technologies and techniques, such as computational neuroscience, neuroendocrinology, and molecular genetics that mimic natural environments.
123:(e.g., finding mates, navigation, locomotion, and predator avoidance) rather than on behaviors that are specific to a particular disease state or laboratory experiment. 1261: 303:
that he believed ethologists should be asking about any given animal behavior; among these is that of the mechanism of the behavior, on a physiological, neural and
3172: 2395: 1333:
Beer D., Randall, Roy E. Ritzmann, Thomas McKenna (1993) Biological neural networks in invertebrate neuroethology and robotics. Boston : Academic Press.
249:. The discipline of neuroethology has also discovered and explained the only vertebrate behavior for which the entire neural circuit has been described: the 1189:
Yamamoto, William S.; Achacoso, Theodore B. (1992-06-01). "Scaling up the nervous system of Caenorhabditis elegans: Is one ape equal to 33 million worms?".
1404:
Ewert, J.-P. (1976) Neuroethologie: Einführung in die neurophysiologischen Grundlagen des Verhaltens. HT 181. Springer-Verlag Heidelberg, Berlin, New York.
3177: 2525: 216:. In all this, neuroethologists must use the right level of simplicity to effectively guide research towards accomplishing the goals of neuroethology. 464:
behavior to create robots designed to walk on uneven surfaces (Beer et al.). Neuroethology and technology contribute to one another bidirectionally.
1521: 1168: 1867: 3920: 1549: 1052: 1023: 242: 156:, a pioneer of neuroethology, when he considers the types of questions central to neuroethology in his 1980 introductory text to the field: 2772: 140:
Neuroethology is an integrative approach to the study of animal behavior that draws upon several disciplines. Its approach stems from the
1013: 237:), neuroethological approaches emphasizing comparative methods have uncovered many concepts central to neuroscience as a whole, such as 2823: 1566: 694: 538: 3274: 2375: 1432: 1241: 78: 1401:
Ewert, J.-P. (1980) Neuroethology: An Introduction to the Neurophysiological Fundamentals of Behaviour. Springer-Verlag, New York.
1380:
Sillar, K.T., Picton, L.P., Heitler, W.J. (2016) The Neuroethology of Predation and Escape. John Wiley & Sons Inc., New York.
3915: 2688: 1484: 564: 559:
of C. elegans in 1989, with further publications in 1992. Computational neuroethology was argued for in depth later in 1990 by
2881: 2518: 1765: 111:
behavior and its underlying mechanistic control by the nervous system. It is an interdisciplinary science that combines both
2767: 2216: 1258:
From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour (SAB90)
300: 2370: 3874: 3215: 2911: 2191: 2993: 2410: 1514: 1389:
Simmons, P., Young, D. (1999) Nerve Cells and Animal Behaviour. Second Edition. Cambridge University Press, New York.
398:
University of Kassel in Hofgeismar, Germany (cf. report Trends in Neurosci. 5:141-143,1982). Its first president was
56: 46: 1395:
Camhi J. (1984) Neuroethology: Nerve Cells and the Natural Behavior of Animals. Sinauer Associates, Sunderland Mass.
1392:
Simmons, P., Young, D. (2010) Nerve Cells and Animal Behaviour. Third Edition. Cambridge University Press, New York.
1386:
Carew, T.J. (2000) Behavioral Neurobiology: The Cellular Organization of Natural Behavior. Sinauer, Sunderland Mass.
869:
Suga, N. (1989). "Principles of auditory information-processing derived from neuroethology." J Exp Biol 146: 277–86.
501:
expanded it into a full neuroethology study by examining the series of neural connections that led to the behavior.
212:. The existing field of neural modeling may also expand into neuroethological terrain, due to its practical uses in 3194: 3086: 2943: 1937: 1860: 1770: 1755: 490: 253: 197: 2938: 2790: 2563: 2511: 2405: 2380: 2249: 1571: 1256:
D. Cliff (1990) Computational Neuroethology: A provisional manifesto. In J.-A. Meyer and S. W. Wilson (editors):
1339:
Carew, T.J. (2000) Feature analysis in Toads. Behavioral Neurobiology, Sunderland, MA: Sinauer, pp. 95–119.
999:
Zupanc, Günther K.H. (2004). Behavioral Neurobiology an Integrative Approach. Oxford University Press. New York.
497:
sp. In collaboration with T.H. Bullock and colleagues, the behavior was further developed. Finally, the work of
459:
space map. In addition, the discovery of the space map in the barn owl led to the first neuronal example of the
3974: 3735: 3208: 2891: 2762: 2757: 2344: 2319: 2244: 2151: 2056: 1952: 1833: 1775: 1342:
Carew, T.J. (2000) Behavioral neurobiology: The Cellular Organization of Natural Behavior, Sinauer Associates.
2491: 1489: 3370: 2866: 2658: 2181: 1892: 1887: 1628: 1365:
Zupanc, G.K.H. (2004) Behavioral Neurobiology: An Integrative Approach. Oxford University Press: Oxford, UK.
668: 579: 221: 1479: 3964: 3025: 2988: 2978: 2923: 2871: 2816: 2613: 2608: 2598: 2176: 2166: 2076: 1957: 1912: 1821: 1785: 1544: 1507: 922:
Ewert, J. -P.; Borchers, H. -W. (1974). "Antwort von retinalen Ganglienzellen bei freibeweglichen Kröten (
627: 582:
systems. For example, Barlow et al. developed a time-dependent model for the retina of the horseshoe crab
529:(Ewert 1974; see also 2004). He began by observing the natural prey-catching behavior of the common toad ( 227: 1430:
Leslie Brothers & Brian Ring (1992), "A neuroethological framework for the representation of minds",
1383:
Zupanc, G.K.H. (2004) Behavioral Neurobiology an Integrative Approach. Oxford University Press, New York.
418:
Influences of higher processing centers in active sensing (primates, owls, electric fish, rodents, frogs)
3899: 3809: 3267: 2736: 2663: 2573: 2479: 2239: 2234: 2041: 1932: 1853: 1601: 316: 268:
Neuroethology owes part of its existence to the establishment of ethology as a unique discipline within
766: 1362:
Pfluger, H.-J. and R. Menzel (1999) Neuroethology, its roots and future. J Comp Physiol A 185:389-392.
1336:
Camhi, J.M. (1984) Neuroethology: Nerve cells and the Natural behavior of Animals, Sinauer Associates.
604:– nocturnal flight navigation and prey capture; location of objects using echo returns of its own call 91: 3894: 3760: 3588: 3141: 3131: 2896: 2856: 2851: 2553: 2548: 2460: 2211: 2051: 2022: 1917: 1678: 1611: 1591: 1586: 711: 296: 288: 287:
Konrad Lorenz was born in Austria in 1903, and is widely known for his contribution of the theory of
146: 3925: 3854: 3755: 3647: 3630: 3222: 3003: 2726: 2721: 2641: 2603: 2354: 2254: 2131: 2101: 2086: 1745: 1683: 1668: 1633: 804: 799: 760: 615: 601: 498: 399: 386: 382: 343: 153: 128: 96: 1345:
Ewert, J.-P. (1974) The neural basis of visually guided behavior. Scientific American 230(3):34-42
3846: 3740: 3294: 3136: 2928: 2906: 2886: 2711: 2695: 2673: 2578: 2568: 2430: 2324: 2264: 1987: 1967: 1708: 1638: 1606: 1581: 1457: 1105: 982: 943: 904: 702: 589: 238: 205: 201: 295:
bill-pecking behavior of baby herring gulls as his model system. This led to the concept of the
3969: 3827: 3706: 3637: 3625: 3241: 2948: 2916: 2809: 2683: 2678: 2636: 2349: 2284: 2259: 2111: 2071: 1729: 1449: 1413:
Roeder, K.D. (1967) Nerve Cells and Insect Behavior. Harvard University Press, Cambridge Mass.
1237: 1214: 1206: 1132: 1097: 1089: 1048: 1019: 896: 526: 460: 120: 1494: 1419:., Hamilton, W.J. (1966) Mechanisms of Animal Behavior. John Wiley & Sons Inc., New York. 1123:
Achacoso, Theodore B.; Fernandez, Victor; Nguyen, Duc C.; Yamamoto, William S. (1989-11-08).
3943: 3869: 3605: 3260: 3201: 3146: 3013: 2846: 2668: 2653: 2583: 2534: 2390: 2274: 2201: 2116: 1997: 1947: 1795: 1790: 1703: 1441: 1311: 1198: 1140: 1081: 974: 935: 888: 814: 733: 673: 664: 378: 374: 323:
conditions, ethology sought to categorize and analyze the natural behaviors of animals in a
1410:(1976) Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology. W.H. Freeman 3832: 3767: 3564: 3539: 3343: 3156: 3096: 3081: 3066: 3051: 3020: 2973: 2716: 2558: 2450: 2445: 2440: 2435: 2329: 2269: 2206: 2121: 2081: 2066: 2017: 2007: 1962: 1760: 1663: 1658: 1359:
is controlled by two separate motor pathways. The Journal of Neuroscience. 13(5):1862-1878
794: 784: 737: 650: 621: 407: 370: 366: 331:
behaviors, and seeks to mimic the natural context as much as possible in the laboratory.
166:
How is information about a stimulus acquired, stored and recalled by the nervous system?
3864: 3859: 3701: 3620: 3500: 3358: 3338: 3315: 3121: 3076: 3071: 2953: 2861: 2620: 2415: 2385: 2314: 2289: 2279: 2126: 2106: 2096: 1982: 1902: 1780: 1653: 1648: 1596: 1145: 1124: 1041: 779: 726: 680: 638: 583: 324: 281: 60: 163:
How are environmental stimuli in the external world represented in the nervous system?
3958: 3884: 3879: 3782: 3694: 3662: 3615: 3554: 3414: 3395: 3364: 3310: 3126: 3116: 3111: 3106: 3035: 2876: 2339: 2334: 2196: 2186: 2146: 1992: 1927: 1922: 1643: 1576: 1202: 819: 789: 634: 568: 355: 339: 277: 250: 27:
Study of animal behavior and its underlying mechanistic control by the nervous system
1467: 1109: 986: 947: 3750: 3689: 3684: 3544: 3490: 3485: 3404: 3385: 3380: 3151: 3101: 3061: 3030: 2983: 2731: 2646: 2425: 2420: 2304: 2136: 2061: 2012: 2002: 1977: 1972: 1942: 1876: 1800: 1750: 1688: 1461: 1416: 908: 809: 707: 560: 351: 347: 335: 257: 246: 112: 442:
Hormonal actions in brain and behavior (rodents, primates, fish, frogs, and birds)
402:. The society has met every three years since its first meeting in Tokyo in 1986. 1271:
M. A. Arbib (1987) Levels of Modeling of Mechanisms of Visually Guided Behavior.
575:
computational model of neural mechanisms for visual guidance in frogs and toads.
3797: 3677: 3667: 3495: 3480: 3464: 3420: 3400: 3375: 3353: 3348: 3329: 3319: 3091: 3056: 2588: 2294: 2141: 1724: 1693: 1673: 1407: 1125:"Computer Representation of the Synaptic Connectivity of Caenorhabditis Elegans" 838:
Hoyle, G. (1984) The scope of Neuroethology. The Behavioral and Brain Sciences.
525:
The recognition of prey and predators in the toad was first studied in depth by
312: 233: 209: 181: 175:
How can the ontogenetic development of behavior be related to neural mechanisms?
55:
The references used may be made clearer with a different or consistent style of
1234:
Intelligence as Adaptive Behavior: An experiment in computational neuroethology
421:
Animal signaling plasticity over many time scales (electric fish, frogs, birds)
17: 3889: 3720: 3610: 3559: 3524: 3470: 3454: 3434: 3429: 3425: 3334: 2752: 2455: 2156: 1698: 1445: 745:– escape and startle behaviors, aggression and formation of social hierarchies 698: 556: 455: 320: 1210: 1136: 1093: 3745: 3597: 3459: 3440: 3409: 3323: 2400: 2091: 754: 610: 304: 273: 189: 1453: 1129:
Proceedings of the Annual Symposium on Computer Application in Medical Care
900: 489:
In 1963, Akira Watanabe and Kimihisa Takeda discovered the behavior of the
1490:
https://web.archive.org/web/20071006201121/http://www.tamie.org/insect.png
1316: 1299: 1218: 1101: 1085: 892: 658: 654: 389:, and others to study the neural circuits underlying verifiable behavior. 338:. Contributors to this new understanding were the Spanish Neuroanatomist, 3787: 3672: 3574: 3569: 3549: 3534: 3529: 3519: 3449: 3444: 3390: 2963: 2958: 2933: 2832: 2309: 1561: 742: 657:"Image processing in the toad's visual system: behavior, brain function, 644: 607: 213: 116: 3584: 3283: 2998: 1284:
D. Cliff (2003) Neuroethology, Computational. In M. A. Arbib (editor):
978: 939: 757:– learning, navigation, vision, olfaction, flight, aggression, foraging 748: 718: 269: 3657: 3510: 1555: 1468:
Günther K. H. Zupanc (2010), Neuroethology, Scholarpedia, 5(10):5306.
1398:
Guthrie, D.M. (1980) Neuroethology: An Introduction. Wiley, New York.
1300:"The Neural Network of the Limulus Retina: From Computer to Behavior" 436:
Contributions of genes to behavior (Drosophila, honeybees, zebrafish)
185: 141: 108: 415:
Comparative aspects of spatial memory (rodents, birds, humans, bats)
327:. Similarly, neuroethology asks questions about the neural bases of 2503: 2032: 3804: 3792: 3777: 3772: 2901: 1298:
Barlow, Robert B.; Prakash, Ramkrishna; Solessio, Eduardo (1993).
688: 90: 172:
How is behavior coordinated and controlled by the nervous system?
3008: 1499: 3256: 2805: 2507: 1849: 1845: 1503: 641:, expectation generators, and spike timing dependent plasticity 637:– navigation, communication, Jamming Avoidance Response (JAR), 430:
Optimal function of sensory systems (flies, moths, frogs, fish)
272:. Although animal behavior had been studied since the time of 29: 879:
Bullock, T. H. (1999). "Neuroethology has pregnant agendas".
667:– influence of various circadian controlled behaviors by the 152:
The scope of neuroethological inquiry might be summarized by
107:
is the evolutionary and comparative approach to the study of
683:– C-start escape response and underwater directional hearing 362:
and were awarded the Nobel Prize in 1963 for their efforts.
2801: 3252: 851:
Ewert, P. (1980) Neuroethology. Springer-Verlag. New York.
647:
auditory spatial map – nocturnal prey location and capture
860:
Camhi, J. (1984) Neuroethology. Sinauer. Sunderland Mass.
1288:. Second Edition. MIT Press Bradford Books. pp. 737–741. 631:); song learning as a model for human speech development 433:
Neuronal complexity in behavior (insects, computational)
169:
How is a behavioral pattern encoded by neural networks?
260:
to develop treatments for devastating human diseases.
1355:
Metzner, W. (1993) The Jamming avoidance response in
509:
Neuroethologists performed several experiments under
3908: 3845: 3820: 3728: 3719: 3646: 3596: 3583: 3509: 3303: 3186: 3165: 3044: 2839: 2745: 2704: 2629: 2541: 2363: 2225: 2165: 2040: 1901: 1738: 1717: 1621: 1537: 722:
sea hares – learning and memory in startle response
439:
Eye and head movement (crustaceans, humans, robots)
1040: 567:both of whom acknowledged the strong influence of 315:, which studies animals' reactions to non-natural 1161:"Ay's Neuroanatomy of C. Elegans for Computation" 1495:Collected Neuroethology articles in Scholarpedia 1286:The Handbook of Brain Theory and Neural Networks 701:, and spatial navigation in chasing behavior of 424:Song production and learning in passerine birds 188:systems, but the nervous system is notoriously 1260:. MIT Press Bradford Books, 1991, pp. 29–39. 454:Neuroethology can help create advancements in 3268: 3173:Association for the Study of Animal Behaviour 2817: 2519: 1861: 1515: 100:in bats is one model system in neuroethology. 8: 2396:Intraoperative neurophysiological monitoring 653:– discrimination of prey versus predator – 3725: 3593: 3275: 3261: 3253: 3178:International Society for Applied Ethology 2824: 2810: 2802: 2526: 2512: 2504: 1868: 1854: 1846: 1522: 1508: 1500: 1007: 1005: 1315: 1144: 1047:. Oxford University Press. p. 1291. 676:– mate attraction and corollary discharge 79:Learn how and when to remove this message 686:Fly – Microscale directional hearing in 160:How are stimuli detected by an organism? 1480:International Society for Neuroethology 831: 299:. Tinbergen is also well known for his 751:fish – aggression and attack behaviors 555:based on their pioneering work on the 52:numerous sources not properly notated. 7: 2486: 1828: 1074:Perspectives in Biology and Medicine 695:sex differences of the visual system 967:Journal of Comparative Physiology A 881:Journal of Comparative Physiology A 767:More Model Systems and Information 342:(born in 1852), and physiologists 115:(study of the nervous system) and 25: 2376:Development of the nervous system 1433:Journal of Cognitive Neuroscience 1273:The Behavioral and Brain Sciences 1191:Computers and Biomedical Research 928:Journal of Comparative Physiology 3939: 3938: 3658:Mammalian anatomy and morphology 3237: 3236: 2786: 2785: 2485: 2474: 2473: 2031: 1827: 1816: 1815: 1059:Computational neuroethology cne. 34: 1572:Central pattern generator (CPG) 537:visual system and also allowed 521:Feature analysis in toad vision 445:Cognition in insects (honeybee) 2882:Bee learning and communication 1766:Frog hearing and communication 1352:makes for fascinating reading. 1: 2768:Neuroscience and intelligence 2217:Social cognitive neuroscience 1018:. MIT Press. pp. 13–14. 625:) and white-crowned sparrow ( 2192:Molecular cellular cognition 1203:10.1016/0010-4809(92)90043-A 2411:Neurodevelopmental disorder 2386:Neural network (biological) 2381:Neural network (artificial) 736:– olfactory imprinting and 550:Computational neuroethology 3991: 1938:Computational neuroscience 1771:Infrared sensing in snakes 1756:Jamming avoidance response 1039:Margaret A. Boden (2006). 491:jamming avoidance response 485:Jamming avoidance response 254:jamming avoidance response 198:computational neuroscience 3934: 3290: 3232: 2939:Evolutionary neuroscience 2781: 2564:Cognitive bias in animals 2469: 2406:Neurodegenerative disease 2250:Evolutionary neuroscience 2029: 1883: 1811: 1446:10.1162/jocn.1992.4.2.107 763:– navigational mechanisms 450:Application to technology 2892:Behavioral endocrinology 2763:Encephalization quotient 2758:Brain-to-body mass ratio 2371:Brain–computer interface 2320:Neuromorphic engineering 2245:Educational neuroscience 2152:Nutritional neuroscience 2057:Clinical neurophysiology 1953:Integrative neuroscience 1776:Caridoid escape reaction 1232:Randall D. Beer (1990). 3371:Biological anthropology 3087:Irenäus Eibl-Eibesfeldt 2867:Animal sexual behaviour 2182:Behavioral neuroscience 1629:Theodore Holmes Bullock 1485:Topics in Neuroethology 669:suprachiasmatic nucleus 659:artificial neuronal net 50:. The reason given is: 3026:Tool use by non-humans 2979:Philosophical ethology 2924:Comparative psychology 2872:Animal welfare science 2609:Tool use by non-humans 2599:Observational learning 2177:Affective neuroscience 1958:Molecular neuroscience 1913:Behavioral epigenetics 1786:Surface wave detection 1012:Stan Franklin (1998). 628:Zonotrichia leucophrys 101: 3900:Alfred Russel Wallace 3810:Water vascular system 2737:Pain in invertebrates 2574:Comparative cognition 2240:Cultural neuroscience 2235:Consumer neuroscience 2077:Neurogastroenterology 1933:Cellular neuroscience 1602:Anti-Hebbian learning 1086:10.1353/pbm.1990.0020 893:10.1007/s003590050389 714:response to bat calls 289:fixed action patterns 243:coincidence detection 94: 3761:Cellular respiration 3132:William Homan Thorpe 2897:Behavioural genetics 2857:Animal consciousness 2852:Animal communication 2554:Animal consciousness 2549:Animal communication 2212:Sensory neuroscience 2052:Behavioral neurology 2023:Systems neuroscience 1679:Bernhard Hassenstein 1612:Ultrasound avoidance 1587:Fixed action pattern 1550:Coincidence detector 712:ultrasound avoidance 393:Modern neuroethology 297:supernormal stimulus 3926:Timeline of zoology 3855:Karl Ernst von Baer 3756:Respiratory pigment 3631:Mineralized tissues 2887:Behavioural ecology 2727:Pain in crustaceans 2722:Pain in cephalopods 2604:Primate archaeology 2355:Social neuroscience 2255:Global neurosurgery 2132:Neurorehabilitation 2102:Neuro-ophthalmology 2087:Neurointensive care 1918:Behavioral genetics 1746:Animal echolocation 1684:Werner E. Reichardt 1634:Walter Heiligenberg 1317:10.1093/icb/33.1.66 800:Theodore H. Bullock 639:corollary discharge 616:Taeniopygia guttata 400:Theodore H. Bullock 383:Walter Heiligenberg 344:Charles Sherrington 329:naturally occurring 3741:Respiratory system 3729:General physiology 3626:Connective tissues 3216:Behavioral Ecology 3137:Nikolaas Tinbergen 2929:Emotion in animals 2907:Cognitive ethology 2712:Pain in amphibians 2579:Emotion in animals 2569:Cognitive ethology 2431:Neuroimmune system 2325:Neurophenomenology 2265:Neural engineering 1988:Neuroendocrinology 1968:Neural engineering 1709:Fernando Nottebohm 1607:Sound localization 1582:Lateral inhibition 1304:American Zoologist 1236:. Academic Press. 979:10.1007/BF00212701 963:Bufo bufo spinosus 940:10.1007/BF00694501 703:Fannia canicularis 590:Connection Machine 585:Limulus polyphemus 239:lateral inhibition 206:neuroendocrinology 202:molecular genetics 102: 3952: 3951: 3895:Jakob von Uexküll 3841: 3840: 3828:Insect physiology 3721:Animal physiology 3715: 3714: 3707:Insect morphology 3638:Molecular anatomy 3611:Epithelial tissue 3589:Animal morphology 3250: 3249: 3142:Jakob von Uexküll 2912:Comfort behaviour 2799: 2798: 2773:Number of neurons 2746:Relation to brain 2501: 2500: 2350:Paleoneurobiology 2285:Neuroepistemology 2260:Neuroanthropology 2226:Interdisciplinary 2112:Neuropharmacology 2072:Neuroepidemiology 1843: 1842: 1730:Slice preparation 1592:Krogh's Principle 1567:Feature detection 1054:978-0-19-924144-6 1025:978-0-262-56109-9 761:Monarch butterfly 539:feature detectors 493:in the knifefish 427:Primate sociality 147:Krogh's principle 121:natural selection 89: 88: 81: 16:(Redirected from 3982: 3942: 3941: 3870:Jean-Henri Fabre 3726: 3594: 3277: 3270: 3263: 3254: 3240: 3239: 3202:Animal Cognition 3195:Animal Behaviour 3147:Wolfgang Wickler 2847:Animal cognition 2826: 2819: 2812: 2803: 2789: 2788: 2535:Animal cognition 2528: 2521: 2514: 2505: 2489: 2488: 2477: 2476: 2391:Detection theory 2275:Neurocriminology 2202:Neurolinguistics 2117:Neuroprosthetics 2035: 1998:Neuroinformatics 1948:Imaging genetics 1870: 1863: 1856: 1847: 1831: 1830: 1819: 1818: 1796:Mechanoreception 1791:Electroreception 1704:Masakazu Konishi 1669:Jörg-Peter Ewert 1524: 1517: 1510: 1501: 1464: 1322: 1321: 1319: 1295: 1289: 1282: 1276: 1269: 1263: 1254: 1248: 1247: 1229: 1223: 1222: 1186: 1180: 1179: 1177: 1176: 1167:. Archived from 1157: 1151: 1150: 1148: 1120: 1114: 1113: 1068: 1062: 1061: 1046: 1036: 1030: 1029: 1015:Artificial Minds 1009: 1000: 997: 991: 990: 958: 952: 951: 919: 913: 912: 876: 870: 867: 861: 858: 852: 849: 843: 836: 815:Masakazu Konishi 805:Jörg-Peter Ewert 738:thyroid hormones 665:Circadian rhythm 602:Bat echolocation 573:Rana Computatrix 527:Jörg-Peter Ewert 515: 387:Jörg-Peter Ewert 379:Masakazu Konishi 375:Theodore Bullock 154:Jörg-Peter Ewert 84: 77: 73: 70: 64: 38: 37: 30: 21: 3990: 3989: 3985: 3984: 3983: 3981: 3980: 3979: 3975:Neurophysiology 3955: 3954: 3953: 3948: 3930: 3904: 3837: 3833:Fish physiology 3816: 3768:Vascular system 3711: 3649: 3642: 3616:Muscular tissue 3587: 3579: 3565:Platyhelminthes 3540:Xenacoelomorpha 3505: 3344:Lepidopterology 3299: 3286: 3281: 3251: 3246: 3228: 3182: 3161: 3157:Solly Zuckerman 3097:Karl von Frisch 3082:Richard Dawkins 3067:John B. Calhoun 3052:Patrick Bateson 3040: 2974:Pain in animals 2835: 2830: 2800: 2795: 2777: 2741: 2717:Pain in animals 2700: 2625: 2559:Animal language 2537: 2532: 2502: 2497: 2465: 2451:Neurotechnology 2446:Neuroplasticity 2441:Neuromodulation 2436:Neuromanagement 2359: 2330:Neurophilosophy 2227: 2221: 2207:Neuropsychology 2168: 2161: 2122:Neuropsychiatry 2082:Neuroimmunology 2067:Neurocardiology 2043: 2036: 2027: 2018:Neurophysiology 2008:Neuromorphology 1963:Neural decoding 1904: 1897: 1879: 1874: 1844: 1839: 1807: 1761:Vision in toads 1734: 1713: 1664:Erich von Holst 1659:Karl von Frisch 1617: 1533: 1528: 1476: 1429: 1426: 1377: 1372: 1370:Further reading 1330: 1325: 1297: 1296: 1292: 1283: 1279: 1270: 1266: 1255: 1251: 1244: 1231: 1230: 1226: 1188: 1187: 1183: 1174: 1172: 1159: 1158: 1154: 1122: 1121: 1117: 1070: 1069: 1065: 1055: 1043:Mind as machine 1038: 1037: 1033: 1026: 1011: 1010: 1003: 998: 994: 960: 959: 955: 921: 920: 916: 878: 877: 873: 868: 864: 859: 855: 850: 846: 837: 833: 829: 824: 795:Erich von Holst 785:Karl von Frisch 775: 622:Serinus canaria 613:– zebra finch ( 598: 552: 523: 513: 499:W. Heiligenberg 487: 482: 452: 408:neurophysiology 395: 371:Erich von Holst 367:Karl von Frisch 319:in artificial, 266: 138: 85: 74: 68: 65: 54: 45:has an unclear 39: 35: 28: 23: 22: 18:Neuroethologist 15: 12: 11: 5: 3988: 3986: 3978: 3977: 3972: 3967: 3957: 3956: 3950: 3949: 3947: 3946: 3935: 3932: 3931: 3929: 3928: 3923: 3918: 3912: 3910: 3906: 3905: 3903: 3902: 3897: 3892: 3887: 3882: 3877: 3872: 3867: 3865:Charles Darwin 3862: 3860:Georges Cuvier 3857: 3851: 3849: 3843: 3842: 3839: 3838: 3836: 3835: 3830: 3824: 3822: 3818: 3817: 3815: 3814: 3813: 3812: 3807: 3802: 3801: 3800: 3795: 3790: 3780: 3775: 3765: 3764: 3763: 3758: 3753: 3748: 3743: 3732: 3730: 3723: 3717: 3716: 3713: 3712: 3710: 3709: 3704: 3702:Spider anatomy 3699: 3698: 3697: 3687: 3682: 3681: 3680: 3675: 3670: 3665: 3654: 3652: 3650:and morphology 3644: 3643: 3641: 3640: 3635: 3634: 3633: 3628: 3623: 3621:Nervous tissue 3618: 3613: 3602: 3600: 3591: 3585:Animal anatomy 3581: 3580: 3578: 3577: 3572: 3567: 3562: 3557: 3552: 3547: 3542: 3537: 3532: 3527: 3522: 3516: 3514: 3507: 3506: 3504: 3503: 3501:Zooarchaeology 3498: 3493: 3488: 3483: 3478: 3473: 3468: 3462: 3457: 3452: 3447: 3438: 3432: 3423: 3418: 3412: 3407: 3398: 3393: 3388: 3383: 3378: 3373: 3368: 3362: 3359:Orthopterology 3356: 3351: 3346: 3341: 3339:Coleopterology 3332: 3327: 3316:Arthropodology 3313: 3307: 3305: 3301: 3300: 3298: 3297: 3291: 3288: 3287: 3282: 3280: 3279: 3272: 3265: 3257: 3248: 3247: 3245: 3244: 3233: 3230: 3229: 3227: 3226: 3219: 3212: 3209:Animal Welfare 3205: 3198: 3190: 3188: 3184: 3183: 3181: 3180: 3175: 3169: 3167: 3163: 3162: 3160: 3159: 3154: 3149: 3144: 3139: 3134: 3129: 3124: 3122:Desmond Morris 3119: 3114: 3109: 3104: 3099: 3094: 3089: 3084: 3079: 3077:Marian Dawkins 3074: 3072:Charles Darwin 3069: 3064: 3059: 3054: 3048: 3046: 3042: 3041: 3039: 3038: 3033: 3028: 3023: 3018: 3017: 3016: 3011: 3006: 3001: 2991: 2986: 2981: 2976: 2971: 2966: 2961: 2956: 2954:Human ethology 2951: 2946: 2941: 2936: 2931: 2926: 2921: 2920: 2919: 2909: 2904: 2899: 2894: 2889: 2884: 2879: 2874: 2869: 2864: 2862:Animal culture 2859: 2854: 2849: 2843: 2841: 2837: 2836: 2831: 2829: 2828: 2821: 2814: 2806: 2797: 2796: 2794: 2793: 2782: 2779: 2778: 2776: 2775: 2770: 2765: 2760: 2755: 2749: 2747: 2743: 2742: 2740: 2739: 2734: 2729: 2724: 2719: 2714: 2708: 2706: 2702: 2701: 2699: 2698: 2693: 2692: 2691: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2650: 2649: 2644: 2633: 2631: 2627: 2626: 2624: 2623: 2621:Vocal learning 2618: 2617: 2616: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2545: 2543: 2539: 2538: 2533: 2531: 2530: 2523: 2516: 2508: 2499: 2498: 2496: 2495: 2483: 2470: 2467: 2466: 2464: 2463: 2461:Self-awareness 2458: 2453: 2448: 2443: 2438: 2433: 2428: 2423: 2418: 2416:Neurodiversity 2413: 2408: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2367: 2365: 2361: 2360: 2358: 2357: 2352: 2347: 2342: 2337: 2332: 2327: 2322: 2317: 2315:Neuromarketing 2312: 2307: 2302: 2297: 2292: 2290:Neuroesthetics 2287: 2282: 2280:Neuroeconomics 2277: 2272: 2267: 2262: 2257: 2252: 2247: 2242: 2237: 2231: 2229: 2223: 2222: 2220: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2173: 2171: 2163: 2162: 2160: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2127:Neuroradiology 2124: 2119: 2114: 2109: 2107:Neuropathology 2104: 2099: 2097:Neuro-oncology 2094: 2089: 2084: 2079: 2074: 2069: 2064: 2059: 2054: 2048: 2046: 2038: 2037: 2030: 2028: 2026: 2025: 2020: 2015: 2010: 2005: 2000: 1995: 1990: 1985: 1983:Neurochemistry 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1909: 1907: 1899: 1898: 1896: 1895: 1890: 1884: 1881: 1880: 1875: 1873: 1872: 1865: 1858: 1850: 1841: 1840: 1838: 1837: 1825: 1812: 1809: 1808: 1806: 1805: 1804: 1803: 1793: 1788: 1783: 1781:Vocal learning 1778: 1773: 1768: 1763: 1758: 1753: 1748: 1742: 1740: 1736: 1735: 1733: 1732: 1727: 1721: 1719: 1715: 1714: 1712: 1711: 1706: 1701: 1696: 1691: 1686: 1681: 1676: 1671: 1666: 1661: 1656: 1654:Donald Kennedy 1651: 1649:Donald Griffin 1646: 1641: 1639:Niko Tinbergen 1636: 1631: 1625: 1623: 1619: 1618: 1616: 1615: 1609: 1604: 1599: 1597:Hebbian theory 1594: 1589: 1584: 1579: 1574: 1569: 1564: 1559: 1552: 1547: 1541: 1539: 1535: 1534: 1529: 1527: 1526: 1519: 1512: 1504: 1498: 1497: 1492: 1487: 1482: 1475: 1474:External links 1472: 1471: 1470: 1465: 1440:(2): 107–118, 1425: 1422: 1421: 1420: 1414: 1411: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1376: 1373: 1371: 1368: 1367: 1366: 1363: 1360: 1353: 1349: 1346: 1343: 1340: 1337: 1334: 1329: 1326: 1324: 1323: 1290: 1277: 1264: 1249: 1242: 1224: 1197:(3): 279–291. 1181: 1152: 1115: 1080:(3): 379–390. 1063: 1053: 1031: 1024: 1001: 992: 973:(3): 363–376. 953: 934:(2): 117–130. 914: 887:(4): 291–295. 871: 862: 853: 844: 830: 828: 825: 823: 822: 817: 812: 807: 802: 797: 792: 787: 782: 780:Niko Tinbergen 776: 774: 771: 770: 769: 764: 758: 752: 746: 740: 730: 729:and navigation 727:spatial memory 723: 715: 705: 684: 681:Mauthner cells 677: 671: 662: 648: 642: 632: 605: 597: 594: 551: 548: 522: 519: 486: 483: 481: 478: 451: 448: 447: 446: 443: 440: 437: 434: 431: 428: 425: 422: 419: 416: 394: 391: 301:four questions 282:Niko Tinbergen 265: 262: 177: 176: 173: 170: 167: 164: 161: 137: 134: 87: 86: 47:citation style 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3987: 3976: 3973: 3971: 3968: 3966: 3965:Neuroethology 3963: 3962: 3960: 3945: 3937: 3936: 3933: 3927: 3924: 3922: 3919: 3917: 3914: 3913: 3911: 3907: 3901: 3898: 3896: 3893: 3891: 3888: 3886: 3885:Konrad Lorenz 3883: 3881: 3880:Carl Linnaeus 3878: 3876: 3875:William Kirby 3873: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3852: 3850: 3848: 3844: 3834: 3831: 3829: 3826: 3825: 3823: 3819: 3811: 3808: 3806: 3803: 3799: 3796: 3794: 3791: 3789: 3786: 3785: 3784: 3783:Blood vessels 3781: 3779: 3776: 3774: 3771: 3770: 3769: 3766: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3738: 3737: 3734: 3733: 3731: 3727: 3724: 3722: 3718: 3708: 3705: 3703: 3700: 3696: 3695:Shark anatomy 3693: 3692: 3691: 3688: 3686: 3683: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3660: 3659: 3656: 3655: 3653: 3651: 3645: 3639: 3636: 3632: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3608: 3607: 3604: 3603: 3601: 3599: 3595: 3592: 3590: 3586: 3582: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3555:Aschelminthes 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3517: 3515: 3512: 3508: 3502: 3499: 3497: 3494: 3492: 3489: 3487: 3484: 3482: 3479: 3477: 3476:Neuroethology 3474: 3472: 3469: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3442: 3439: 3436: 3433: 3431: 3427: 3424: 3422: 3419: 3416: 3415:Testudinology 3413: 3411: 3408: 3406: 3402: 3399: 3397: 3396:Helminthology 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3366: 3365:Myriapodology 3363: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3336: 3333: 3331: 3328: 3325: 3321: 3317: 3314: 3312: 3311:Anthrozoology 3309: 3308: 3306: 3302: 3296: 3293: 3292: 3289: 3285: 3278: 3273: 3271: 3266: 3264: 3259: 3258: 3255: 3243: 3235: 3234: 3231: 3225: 3224: 3220: 3218: 3217: 3213: 3211: 3210: 3206: 3204: 3203: 3199: 3197: 3196: 3192: 3191: 3189: 3185: 3179: 3176: 3174: 3171: 3170: 3168: 3164: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3128: 3127:Thomas Sebeok 3125: 3123: 3120: 3118: 3117:Konrad Lorenz 3115: 3113: 3112:Julian Huxley 3110: 3108: 3107:Heini Hediger 3105: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3049: 3047: 3043: 3037: 3036:Zoomusicology 3034: 3032: 3029: 3027: 3024: 3022: 3019: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2996: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2969:Neuroethology 2967: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2918: 2915: 2914: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2877:Anthrozoology 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2844: 2842: 2838: 2834: 2827: 2822: 2820: 2815: 2813: 2808: 2807: 2804: 2792: 2784: 2783: 2780: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2754: 2751: 2750: 2748: 2744: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2713: 2710: 2709: 2707: 2703: 2697: 2694: 2690: 2687: 2686: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2648: 2645: 2643: 2640: 2639: 2638: 2635: 2634: 2632: 2628: 2622: 2619: 2615: 2612: 2611: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2594:Neuroethology 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2546: 2544: 2540: 2536: 2529: 2524: 2522: 2517: 2515: 2510: 2509: 2506: 2494: 2493: 2484: 2482: 2481: 2472: 2471: 2468: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2368: 2366: 2362: 2356: 2353: 2351: 2348: 2346: 2345:Neurotheology 2343: 2341: 2340:Neurorobotics 2338: 2336: 2335:Neuropolitics 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2300:Neuroethology 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2232: 2230: 2224: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2197:Motor control 2195: 2193: 2190: 2188: 2187:Chronobiology 2185: 2183: 2180: 2178: 2175: 2174: 2172: 2170: 2164: 2158: 2155: 2153: 2150: 2148: 2147:Neurovirology 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2049: 2047: 2045: 2039: 2034: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1993:Neurogenetics 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1928:Brain-reading 1926: 1924: 1923:Brain mapping 1921: 1919: 1916: 1914: 1911: 1910: 1908: 1906: 1900: 1894: 1891: 1889: 1886: 1885: 1882: 1878: 1871: 1866: 1864: 1859: 1857: 1852: 1851: 1848: 1836: 1835: 1826: 1824: 1823: 1814: 1813: 1810: 1802: 1799: 1798: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1743: 1741: 1737: 1731: 1728: 1726: 1723: 1722: 1720: 1716: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1644:Konrad Lorenz 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1626: 1624: 1620: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1577:NMDA receptor 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1557: 1553: 1551: 1548: 1546: 1543: 1542: 1540: 1536: 1532: 1531:Neuroethology 1525: 1520: 1518: 1513: 1511: 1506: 1505: 1502: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1477: 1473: 1469: 1466: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1434: 1428: 1427: 1423: 1418: 1415: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1391: 1388: 1385: 1382: 1379: 1378: 1374: 1369: 1364: 1361: 1358: 1354: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1331: 1327: 1318: 1313: 1309: 1305: 1301: 1294: 1291: 1287: 1281: 1278: 1274: 1268: 1265: 1262: 1259: 1253: 1250: 1245: 1243:0-12-084730-2 1239: 1235: 1228: 1225: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1185: 1182: 1171:on 2019-10-15 1170: 1166: 1162: 1156: 1153: 1147: 1142: 1138: 1134: 1130: 1126: 1119: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1067: 1064: 1060: 1056: 1050: 1045: 1044: 1035: 1032: 1027: 1021: 1017: 1016: 1008: 1006: 1002: 996: 993: 988: 984: 980: 976: 972: 968: 964: 957: 954: 949: 945: 941: 937: 933: 929: 925: 918: 915: 910: 906: 902: 898: 894: 890: 886: 882: 875: 872: 866: 863: 857: 854: 848: 845: 841: 835: 832: 826: 821: 820:Martin Giurfa 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 790:Konrad Lorenz 788: 786: 783: 781: 778: 777: 772: 768: 765: 762: 759: 756: 753: 750: 747: 744: 741: 739: 735: 731: 728: 724: 721: 720: 716: 713: 709: 708:Noctuid moths 706: 704: 700: 696: 692: 690: 685: 682: 678: 675: 672: 670: 666: 663: 660: 656: 652: 649: 646: 643: 640: 636: 635:Electric fish 633: 630: 629: 624: 623: 618: 617: 612: 609: 606: 603: 600: 599: 596:Model systems 595: 593: 591: 587: 586: 581: 576: 574: 570: 569:Michael Arbib 566: 562: 558: 549: 547: 543: 540: 534: 532: 528: 520: 518: 512: 507: 504: 500: 496: 492: 484: 479: 477: 473: 469: 465: 462: 457: 449: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 414: 413: 412: 409: 403: 401: 392: 390: 388: 384: 380: 376: 372: 368: 363: 359: 357: 356:Andrew Huxley 353: 349: 345: 341: 340:Ramon y Cajal 337: 332: 330: 326: 325:field setting 322: 318: 314: 309: 306: 302: 298: 292: 290: 285: 283: 279: 278:Konrad Lorenz 275: 271: 263: 261: 259: 255: 252: 251:electric fish 248: 244: 240: 236: 235: 230: 229: 224: 223: 217: 215: 211: 207: 203: 199: 193: 191: 187: 183: 174: 171: 168: 165: 162: 159: 158: 157: 155: 150: 148: 143: 135: 133: 130: 124: 122: 118: 114: 110: 106: 105:Neuroethology 99: 98: 93: 83: 80: 72: 62: 58: 53: 49: 48: 43:This article 41: 32: 31: 19: 3751:Gas exchange 3690:Fish anatomy 3685:Bird anatomy 3545:Ambulacraria 3491:Paleozoology 3486:Parasitology 3475: 3405:Batrachology 3386:Ethnozoology 3381:Cnidariology 3221: 3214: 3207: 3200: 3193: 3152:E. O. Wilson 3102:Jane Goodall 3062:Donald Broom 3031:Zoosemiotics 2984:Sociobiology 2968: 2732:Pain in fish 2630:Intelligence 2593: 2490: 2478: 2426:Neuroimaging 2421:Neurogenesis 2305:Neurohistory 2299: 2270:Neurobiotics 2169:neuroscience 2137:Neurosurgery 2062:Epileptology 2044:neuroscience 2013:Neurophysics 2003:Neurometrics 1978:Neurobiology 1973:Neuroanatomy 1943:Connectomics 1877:Neuroscience 1832: 1820: 1801:Lateral line 1751:Waggle dance 1689:Eric Knudsen 1554: 1530: 1437: 1431: 1408:Kandel, E.R. 1356: 1307: 1303: 1293: 1285: 1280: 1272: 1267: 1257: 1252: 1233: 1227: 1194: 1190: 1184: 1173:. Retrieved 1169:the original 1164: 1155: 1128: 1118: 1077: 1073: 1066: 1058: 1042: 1034: 1014: 995: 970: 966: 962: 956: 931: 927: 923: 917: 884: 880: 874: 865: 856: 847: 839: 834: 810:Eric Knudsen 717: 687: 674:Cricket song 626: 620: 614: 584: 577: 572: 561:Randall Beer 553: 544: 535: 530: 524: 510: 508: 502: 494: 488: 480:Case studies 474: 470: 466: 453: 404: 396: 364: 360: 352:Alan Hodgkin 348:Edgar Adrian 336:neuroscience 333: 328: 310: 293: 286: 267: 258:neuroscience 247:sensory maps 232: 226: 220: 218: 194: 178: 151: 139: 129:echolocation 125: 113:neuroscience 104: 103: 97:Echolocation 95: 75: 66: 51: 44: 3921:Post-Darwin 3798:Capillaries 3736:Respiration 3496:Planktology 3481:Ornithology 3465:Primatology 3421:Ichthyology 3401:Herpetology 3376:Bryozoology 3354:Myrmecology 3349:Melittology 3330:Carcinology 3320:Arachnology 3092:Dian Fossey 3057:Marc Bekoff 3045:Ethologists 2589:Mirror test 2295:Neuroethics 2142:Neurotology 1725:Patch clamp 1694:Eric Kandel 1674:Franz Huber 1545:Feedforward 1357:Eigenmannia 1275:10:407–465. 1131:: 330–334. 651:Toad vision 619:), canary ( 511:Eigenmannia 503:Eigenmannia 495:Eigenmannia 313:behaviorism 234:Danio rerio 210:epigenetics 182:engineering 3959:Categories 3916:Pre-Darwin 3890:Thomas Say 3847:Zoologists 3821:By species 3560:Arthropoda 3525:Ctenophora 3471:Nematology 3455:Felinology 3435:Teuthology 3430:Conchology 3426:Malacology 3335:Entomology 2994:Structures 2989:Stereotypy 2753:Brain size 2659:Cephalopod 2614:sea otters 2456:Neurotoxin 2157:Psychiatry 1699:Nobuo Suga 1614:in insects 1175:2019-10-16 842:: 367–412. 827:References 699:Bibionidae 565:Dave Cliff 557:connectome 456:technology 321:laboratory 228:C. elegans 222:Drosophila 136:Philosophy 69:March 2024 61:footnoting 3746:Breathing 3598:Histology 3460:Hippology 3441:Mammalogy 3410:Ophiology 3324:Acarology 3223:Behaviour 3166:Societies 3004:Honeycomb 2542:Cognition 2401:Neurochip 2167:Cognitive 2092:Neurology 1417:Marler, P 1375:Textbooks 1310:: 66–78. 1211:0010-4809 1165:CRC Press 1137:0195-4210 1094:1529-8795 924:Bufo bufo 755:Honey bee 611:bird song 531:Bufo bufo 305:molecular 274:Aristotle 190:nonlinear 3970:Ethology 3944:Category 3788:Arteries 3673:Elephant 3648:Anatomy 3575:Annelida 3570:Mollusca 3550:Chordata 3535:Cnidaria 3530:Placozoa 3520:Porifera 3450:Cynology 3445:Cetology 3391:Ethology 3304:Branches 3242:Category 3187:Journals 3014:Instinct 2964:Learning 2959:Instinct 2934:Ethogram 2917:Grooming 2840:Branches 2833:Ethology 2791:Category 2674:Elephant 2664:Cetacean 2480:Category 2364:Concepts 2310:Neurolaw 2042:Clinical 1822:Category 1562:Instinct 1538:Concepts 1454:23967887 1424:Articles 1110:13002088 987:41990022 948:11003900 901:10555265 773:See also 743:Crayfish 691:ochracea 645:Barn owl 461:Jeffress 214:robotics 117:ethology 57:citation 3909:History 3606:Tissues 3295:Outline 3284:Zoology 2944:Feeding 2689:Hominid 2684:Primate 2647:talking 2492:Commons 1905:science 1893:History 1888:Outline 1834:Commons 1739:Systems 1718:Methods 1462:6607487 1328:Sources 1219:1611892 1146:2245716 1102:2188211 909:5194095 749:Cichlid 732:Salmon 719:Aplysia 563:and by 317:stimuli 311:Unlike 270:zoology 264:History 3513:groups 3511:Animal 2642:Pigeon 2584:Insect 2228:fields 1622:People 1556:Umwelt 1460:  1452:  1240:  1217:  1209:  1143:  1135:  1108:  1100:  1092:  1051:  1022:  985:  946:  926:L.)". 907:  899:  734:homing 725:Rat – 608:Oscine 373:, and 354:, and 245:, and 186:linear 142:theory 109:animal 3805:Heart 3793:Veins 3778:Lymph 3773:Blood 3663:Human 3021:Swarm 2949:Hover 2902:Breed 2696:Swarm 1903:Basic 1458:S2CID 1106:S2CID 983:S2CID 944:S2CID 905:S2CID 689:Ormia 679:Fish 655:Video 588:on a 514:' 231:, or 3009:Nest 2999:Hive 2705:Pain 2679:Fish 2637:Bird 1450:PMID 1238:ISBN 1215:PMID 1207:ISSN 1133:ISSN 1098:PMID 1090:ISSN 1049:ISBN 1020:ISBN 897:PMID 280:and 208:and 59:and 3678:Cat 3668:Dog 2669:Dog 2654:Cat 1442:doi 1312:doi 1199:doi 1141:PMC 1082:doi 975:doi 971:173 965:". 936:doi 889:doi 885:185 697:in 571:'s 3961:: 1456:, 1448:, 1436:, 1308:33 1306:. 1302:. 1213:. 1205:. 1195:25 1193:. 1163:. 1139:. 1127:. 1104:. 1096:. 1088:. 1078:33 1076:. 1057:. 1004:^ 981:. 969:. 942:. 932:92 930:. 903:. 895:. 883:. 710:– 693:, 580:AI 385:, 381:, 369:, 350:, 346:, 284:. 241:, 225:, 204:, 200:, 3467:) 3443:( 3437:) 3428:( 3417:) 3403:( 3367:) 3361:) 3337:( 3326:) 3322:( 3318:( 3276:e 3269:t 3262:v 2825:e 2818:t 2811:v 2527:e 2520:t 2513:v 1869:e 1862:t 1855:v 1523:e 1516:t 1509:v 1444:: 1438:4 1320:. 1314:: 1246:. 1221:. 1201:: 1178:. 1149:. 1112:. 1084:: 1028:. 989:. 977:: 950:. 938:: 911:. 891:: 840:7 661:" 82:) 76:( 71:) 67:( 63:. 20:)

Index

Neuroethologist
citation style
citation
footnoting
Learn how and when to remove this message

Echolocation
animal
neuroscience
ethology
natural selection
echolocation
theory
Krogh's principle
Jörg-Peter Ewert
engineering
linear
nonlinear
computational neuroscience
molecular genetics
neuroendocrinology
epigenetics
robotics
Drosophila
C. elegans
Danio rerio
lateral inhibition
coincidence detection
sensory maps
electric fish

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.