Knowledge (XXG)

Coincidence detection in neurobiology

Source 📝

421:(ITD). Due to differing lengths and a finite conduction speed within the axons of the delay lines, different coincidence detector neurons will fire when sound comes from different positions along the azimuth. Jeffress' model proposes that two signals even from an asynchronous arrival of sound in the cochlea of each ear will converge synchronously on a coincidence detector in the auditory cortex based on the magnitude of the ITD (Fig. 2). Therefore, the ITD should correspond to an anatomical map that can be found within the brain. 1632: 314: 125: 29: 375:
receive inputs mainly from nearby cells in the same layer as the receiving cell, and also from distant connections which are fed through Layer 1. The dendrites which receive these inputs are quite distant from the cell body, and therefore they exhibit different electrical and signal-processing behaviour compared with the proximal (or feedforward) dendrites described above.
1644: 300:
potential threshold. Hence, the function of coincidence detection is to reduce the jitter caused by spontaneous neuronal activity, and while random sub-threshold stimulations from cells may not often fire coincidentally, coincident synaptic inputs derived from a unitary external stimulus ensure that a target neuron will fire as a result of the stimulus.
70: 434:
enter the nucleus laminaris dorsally while the contralateral axons enter ventrally, sounds from various positions along the azimuth correspond directly to stimulation of different depths of the nucleus laminaris. From this information, a neural map of auditory space was formed. The function of the nucleus laminaris parallels that of the
383:
received within a short period of time (i.e. before the overall voltage decays to background), the voltage of the segment will rise above a threshold, giving rise to a non-linear dendritic spike, which travels, effectively undiminished, all the way to the cell body, and which causes it to become partially depolarised.
497:. As a result, both synapses strengthen. The prolonged depolarization needed for the expulsion of Mg from NMDA receptors requires a high frequency stimulation. Associativity becomes a factor because this can be achieved through two simultaneous inputs that may not be strong enough to activate LTP by themselves. 500:
Besides the NMDA-receptor based processes, further cellular mechanisms allow of the association between two different input signals converging on the same neuron, in a defined timeframe. Upon a simultaneous increase in the intracellular concentrations of cAMP and Ca, a transcriptional coactivator
433:
of the ears travels to the ipsilateral nucleus magnocellularis. From here, the signals project ipsilaterally and contralaterally to two nucleus laminari. Each nucleus laminaris contains coincidence detectors that receive auditory input from the left and the right ear. Since the ipsilateral axons
374:
The above description applies well to feedforward inputs to neurons, which provide inputs from either sensory nerves or lower-level regions in the brain. About 90% of interneural connections are, however, not feedforward but predictive (or modulatory, or attentional) in nature. These connections
382:
long) of distal dendrite, the reaction to activations coming in on synapses to the dendritic spines acts to raise the overall local potential with each incoming signal. This rising potential acts against a background of decay in the potential back to the resting level. If sufficient signals are
299:
of a target neuron over the threshold required to create an action potential. Conversely, if the two inputs temporally arrive too far apart, the depolarization of the first input may have time to drop significantly, preventing the membrane potential of the target neuron from reaching the action
416:
proposed that some organisms may have a collection of neurons that receive auditory input from each ear. The neural pathways to these neurons are called delay lines. Jeffress claimed that the neurons that the delay lines link act as coincidence detectors by firing maximally when receiving
286:
Coincidence detection relies on separate inputs converging on a common target. For example (Fig. 1), in a basic neural circuit with two input neurons—A and B—that have excitatory synaptic terminals converging on a single output neuron (C), if each input neuron's
275: 386:
This is perhaps the most important form of dendritic coincidence detection in the brain. The more easily understood proximal activation acts over much longer time periods, and is thus much less sensitive to the time factor in coincidence detection.
399:
Fig. 2: If a sound arrives at the left ear before the right ear, the impulse in the left auditory tract will reach X sooner than the impulse in the right auditory tract reaches Y. Neurons 4 or 5 may therefore receive coincident
250:
encodes information by detecting the occurrence of temporally close but spatially distributed input signals. Coincidence detectors influence neuronal information processing by reducing temporal
335: 142: 42: 450:
postulated that synaptic efficiency will increase through repeated and persistent stimulation of a postsynaptic cell by a presynaptic cell. This is often informally summarized as "
88: 458:. Studies of LTP on multiple presynaptic cells stimulating a postsynaptic cell uncovered the property of associativity. A weak neuronal stimulation onto a 48: 1296: 189: 1336: 161: 548:. Glutamate released from the parallel fibers activates AMPA receptors which depolarize the postsynaptic cell. The parallel fibers also activate 168: 295:
at C, then C cannot fire unless the two inputs from A and B are temporally close. The synchronous arrival of these two inputs may push the
417:
simultaneous inputs from both ears. When a sound is heard, sound waves may reach the ears at different times. This is referred to as the
462:
may not induce long-term potentiation. However, this same stimulation paired with a simultaneous strong stimulation from another neuron
396: 175: 1381: 950:
Willoughby, Debbie; Cooper, Dermot M. F. (July 2007). "Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains".
875: 361: 288: 226: 208: 106: 56: 157: 586: 466:. This process suggests that two neuronal pathways converging on the same cell may both strengthen if stimulated coincidentally. 536:
Long-term depression also works through associative properties although it is not always the reverse process of LTP. LTD in the
1670: 1580: 339: 146: 794:
Zupanc, G.K.H. 2004. Behavioral Neurobiology: An Integrative Approach. Oxford University Press: Oxford, UK. pp. 133-150
282:. Two EPSPs innervated in rapid succession sum to produce a larger EPSP, or an action potential in the postsynaptic cell. 1329: 568: 279: 324: 1297:
https://web.archive.org/web/20040519194818/http://bbsonline.cup.cam.ac.uk/Preprints/OldArchive/bbs.neur4.crepel.html
1585: 1570: 893:"TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity" 418: 182: 343: 328: 135: 1386: 1005:"The role of Ca2+/calmodulin-stimulable adenylyl cyclases as molecular coincidence detectors in memory formation" 891:
Kovacs, K. A.; Steullet, P.; Steinmann, M.; Do, K. Q.; Magistretti, P. J.; Halfon, O.; Cardinaux, J. -R. (2007).
485:. The removal of the Mg block allows the flow of Ca into the cell. A large elevation of calcium levels activate 1648: 1590: 1443: 1111:
Neve, Kim A.; Seamans, Jeremy K.; Trantham-Davidson, Heather (August 2004). "Dopamine receptor signaling".
254:
and spontaneous activity, allowing the creation of variable associations between separate neural events in
1636: 1600: 1359: 1322: 1120: 959: 601: 556:
and DAG. The climbing fibers stimulate a large increase in postsynaptic Ca levels when activated. The Ca,
474: 455: 1416: 557: 435: 1493: 1426: 1406: 1401: 904: 813: 749: 655: 596: 1308: 1125: 964: 1560: 1498: 1483: 1448: 581: 17: 571:
to internalize AMPA receptors and decrease the sensitivity of the postsynaptic cell to glutamate.
1523: 1453: 1421: 1396: 1154: 1050: 845: 804:
Frey, Uwe; Morris, Richard G. M. (February 1997). "Synaptic tagging and long-term potentiation".
621: 405: 296: 1544: 1285: 1250: 1207: 1146: 1138: 1093: 1085: 1042: 1024: 985: 977: 932: 871: 837: 829: 777: 718: 683: 510: 506: 413: 1610: 1605: 1518: 1275: 1240: 1232: 1197: 1189: 1130: 1077: 1032: 1016: 969: 922: 912: 821: 767: 757: 710: 673: 663: 463: 459: 422: 292: 1575: 1478: 1473: 644:"On the relationship between synaptic input and spike output jitter in individual neurons" 545: 541: 513:
activation, might also account for the detection of the repetitive stimulation of a given
486: 1178:"Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex" 1037: 1004: 908: 817: 753: 659: 1595: 1468: 1463: 1411: 1245: 1221:"Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus" 1220: 1202: 1177: 927: 892: 591: 509:
into long term changes such as LTP. This cellular mechanism, through calcium-dependent
247: 1280: 1263: 1081: 772: 737: 1664: 1458: 1391: 1345: 1236: 678: 643: 611: 490: 482: 1158: 1054: 1615: 1565: 1503: 1193: 1068:
Hanoune, J.; Defer, N. (2001). "Regulation and role of adenylyl cyclase isoforms".
849: 616: 606: 549: 263: 259: 1539: 1508: 1488: 564: 481:
requires a prolonged depolarization that can expel the Mg block of postsynaptic
478: 447: 313: 274: 124: 973: 742:
Proceedings of the National Academy of Sciences of the United States of America
648:
Proceedings of the National Academy of Sciences of the United States of America
1513: 537: 430: 395: 1142: 1089: 1028: 981: 833: 917: 762: 494: 426: 1254: 1211: 1150: 1097: 1046: 989: 936: 722: 1289: 1134: 1020: 841: 781: 687: 668: 1376: 1264:"Coincidence detection in the auditory system: 50 years after Jeffress" 514: 505:) becomes activated, that converts the temporal coincidence of the two 409: 1370: 1176:
Bender, V. A.; Bender, K. J.; Brasier, D. J.; Feldman, D. E. (2006).
825: 714: 528:) has been implicated in memory formation as a coincidence detector. 255: 251: 243: 870:(3 ed.). Sunderland, MA: Sinauer Associates. pp. 575–608. 502: 394: 379: 273: 1314: 738:"Axonal delay lines for time measurement in the owl's brainstem" 701:
Jeffress, L. A. (1948). "A place theory of sound localization".
1318: 307: 118: 63: 22: 493:. This increases the sensitivity of the postsynaptic cell to 404:
Coincidence detection has been shown to be a major factor in
1309:
Auditory Localization by ITD Analysis: The Jeffress Model
552:
glutamate receptors that release the second messengers IP
258:. The study of coincidence detectors has been crucial in 454:". The theory was validated in part by the discovery of 84: 429:
shows that this is true. Sensory information from the
1113:
Journal of Receptor and Signal Transduction Research
1003:
Mons, N.; Guillou, J.-L.; Jaffard, R. (1999-04-01).
489:
that ultimately increase the number of postsynaptic
1553: 1532: 1436: 1352: 703:
Journal of Comparative and Physiological Psychology
149:. Unsourced material may be challenged and removed. 79:
may be too technical for most readers to understand
1219:Caillard, O.; Ben-Ari, Y.; Gaiarsa, J. L. (1999). 1262:Joris, P. X.; Smith, P. H.; Yin, T. C. (1998). 897:Proceedings of the National Academy of Sciences 262:with regards to understanding the formation of 1330: 861: 859: 642:Marsálek, P.; Koch, C.; Maunsell, J. (1997). 470:Molecular mechanism of long-term potentiation 8: 1070:Annual Review of Pharmacology and Toxicology 532:Molecular mechanism of long-term depression 342:. Unsourced material may be challenged and 57:Learn how and when to remove these messages 1337: 1323: 1315: 1279: 1244: 1201: 1124: 1036: 963: 926: 916: 771: 761: 677: 667: 520:Adenylyl cyclase (also commonly known as 362:Learn how and when to remove this message 227:Learn how and when to remove this message 209:Learn how and when to remove this message 107:Learn how and when to remove this message 91:, without removing the technical details. 634: 452:cells that fire together, wire together 158:"Coincidence detection in neurobiology" 1311:- Online interactive tutorial (Flash) 540:requires a coincident stimulation of 442:Synaptic plasticity and associativity 412:plane in several organisms. In 1948, 89:make it understandable to non-experts 7: 1643: 1009:Cellular and Molecular Life Sciences 378:In a short section (perhaps 40  340:adding citations to reliable sources 147:adding citations to reliable sources 270:Principles of coincidence detection 14: 1082:10.1146/annurev.pharmtox.41.1.145 736:Carr, C. E.; Konishi, M. (1988). 38:This article has multiple issues. 1642: 1631: 1630: 1237:10.1111/j.1469-7793.1999.0109r.x 587:Earth Coincidence Control Office 312: 123: 68: 27: 1387:Central pattern generator (CPG) 134:needs additional citations for 46:or discuss these issues on the 16:For the electronic device, see 1581:Frog hearing and communication 1194:10.1523/JNEUROSCI.0176-06.2006 280:Spatial and temporal summation 1: 1281:10.1016/S0896-6273(00)80643-1 464:will strengthen both synapses 304:Distal coincidence detection 569:signal transduction pathway 1687: 1586:Infrared sensing in snakes 1571:Jamming avoidance response 974:10.1152/physrev.00049.2006 419:interaural time difference 15: 1626: 1225:The Journal of Physiology 1591:Caridoid escape reaction 291:is sub-threshold for an 1444:Theodore Holmes Bullock 1182:Journal of Neuroscience 918:10.1073/pnas.0607524104 763:10.1073/pnas.85.21.8311 1671:Neuroethology concepts 1601:Surface wave detection 602:Long-term potentiation 456:long-term potentiation 401: 283: 1417:Anti-Hebbian learning 1135:10.1081/RRS-200029981 1021:10.1007/s000180050311 952:Physiological Reviews 866:Purves, Dale (2004). 669:10.1073/pnas.94.2.735 436:medial superior olive 398: 277: 240:Coincidence detection 1494:Bernhard Hassenstein 1427:Ultrasound avoidance 1402:Fixed action pattern 1365:Coincidence detector 597:Long-term depression 336:improve this section 143:improve this article 1561:Animal echolocation 1499:Werner E. Reichardt 1449:Walter Heiligenberg 909:2007PNAS..104.4700K 818:1997Natur.385..533F 754:1988PNAS...85.8311C 660:1997PNAS...94..735M 582:Coincidence circuit 567:work together in a 246:process in which a 18:Coincidence circuit 1524:Fernando Nottebohm 1422:Sound localization 1397:Lateral inhibition 622:Sound localization 423:Masakazu Konishi's 406:sound localization 402: 391:Sound localization 297:membrane potential 284: 264:computational maps 1658: 1657: 1545:Slice preparation 1407:Krogh's Principle 1382:Feature detection 1231:(Pt 1): 109–119. 1188:(16): 4166–4177. 903:(11): 4700–4705. 812:(6616): 533–536. 748:(21): 8311–8315. 526:adenylate cyclase 511:adenylate cyclase 507:second messengers 414:Lloyd A. Jeffress 372: 371: 364: 237: 236: 229: 219: 218: 211: 193: 117: 116: 109: 61: 1678: 1646: 1645: 1634: 1633: 1611:Mechanoreception 1606:Electroreception 1519:Masakazu Konishi 1484:Jörg-Peter Ewert 1339: 1332: 1325: 1316: 1293: 1283: 1274:(6): 1235–1238. 1258: 1248: 1215: 1205: 1163: 1162: 1128: 1108: 1102: 1101: 1065: 1059: 1058: 1040: 1000: 994: 993: 967: 947: 941: 940: 930: 920: 888: 882: 881: 863: 854: 853: 826:10.1038/385533a0 801: 795: 792: 786: 785: 775: 765: 733: 727: 726: 715:10.1037/h0061495 698: 692: 691: 681: 671: 639: 460:pyramidal neuron 367: 360: 356: 353: 347: 316: 308: 293:action potential 232: 225: 214: 207: 203: 200: 194: 192: 151: 127: 119: 112: 105: 101: 98: 92: 72: 71: 64: 53: 31: 30: 23: 1686: 1685: 1681: 1680: 1679: 1677: 1676: 1675: 1661: 1660: 1659: 1654: 1622: 1576:Vision in toads 1549: 1528: 1479:Erich von Holst 1474:Karl von Frisch 1432: 1348: 1343: 1305: 1261: 1218: 1175: 1172: 1170:Further reading 1167: 1166: 1126:10.1.1.465.5011 1110: 1109: 1105: 1067: 1066: 1062: 1002: 1001: 997: 965:10.1.1.336.3746 958:(3): 965–1010. 949: 948: 944: 890: 889: 885: 878: 865: 864: 857: 803: 802: 798: 793: 789: 735: 734: 730: 700: 699: 695: 641: 640: 636: 631: 626: 577: 561: 555: 546:climbing fibers 542:parallel fibers 534: 487:protein kinases 472: 444: 393: 368: 357: 351: 348: 333: 317: 306: 272: 233: 222: 221: 220: 215: 204: 198: 195: 152: 150: 140: 128: 113: 102: 96: 93: 85:help improve it 82: 73: 69: 32: 28: 21: 12: 11: 5: 1684: 1682: 1674: 1673: 1663: 1662: 1656: 1655: 1653: 1652: 1640: 1627: 1624: 1623: 1621: 1620: 1619: 1618: 1608: 1603: 1598: 1596:Vocal learning 1593: 1588: 1583: 1578: 1573: 1568: 1563: 1557: 1555: 1551: 1550: 1548: 1547: 1542: 1536: 1534: 1530: 1529: 1527: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1469:Donald Kennedy 1466: 1464:Donald Griffin 1461: 1456: 1454:Niko Tinbergen 1451: 1446: 1440: 1438: 1434: 1433: 1431: 1430: 1424: 1419: 1414: 1412:Hebbian theory 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1367: 1362: 1356: 1354: 1350: 1349: 1344: 1342: 1341: 1334: 1327: 1319: 1313: 1312: 1304: 1303:External links 1301: 1300: 1299: 1294: 1259: 1216: 1171: 1168: 1165: 1164: 1119:(3): 165–205. 1103: 1060: 1015:(4): 525–533. 995: 942: 883: 876: 855: 796: 787: 728: 693: 654:(2): 735–740. 633: 632: 630: 627: 625: 624: 619: 614: 609: 604: 599: 594: 592:Hebbian theory 589: 584: 578: 576: 573: 559: 553: 533: 530: 522:adenyl cyclase 501:called TORC1 ( 491:AMPA receptors 483:NMDA receptors 471: 468: 443: 440: 392: 389: 370: 369: 320: 318: 311: 305: 302: 271: 268: 266:in the brain. 248:neural circuit 235: 234: 217: 216: 131: 129: 122: 115: 114: 76: 74: 67: 62: 36: 35: 33: 26: 13: 10: 9: 6: 4: 3: 2: 1683: 1672: 1669: 1668: 1666: 1651: 1650: 1641: 1639: 1638: 1629: 1628: 1625: 1617: 1614: 1613: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1558: 1556: 1552: 1546: 1543: 1541: 1538: 1537: 1535: 1531: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1459:Konrad Lorenz 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1441: 1439: 1435: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1392:NMDA receptor 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1372: 1368: 1366: 1363: 1361: 1358: 1357: 1355: 1351: 1347: 1346:Neuroethology 1340: 1335: 1333: 1328: 1326: 1321: 1320: 1317: 1310: 1307: 1306: 1302: 1298: 1295: 1291: 1287: 1282: 1277: 1273: 1269: 1265: 1260: 1256: 1252: 1247: 1242: 1238: 1234: 1230: 1226: 1222: 1217: 1213: 1209: 1204: 1199: 1195: 1191: 1187: 1183: 1179: 1174: 1173: 1169: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1127: 1122: 1118: 1114: 1107: 1104: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1061: 1056: 1052: 1048: 1044: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 999: 996: 991: 987: 983: 979: 975: 971: 966: 961: 957: 953: 946: 943: 938: 934: 929: 924: 919: 914: 910: 906: 902: 898: 894: 887: 884: 879: 877:9780878937257 873: 869: 862: 860: 856: 851: 847: 843: 839: 835: 831: 827: 823: 819: 815: 811: 807: 800: 797: 791: 788: 783: 779: 774: 769: 764: 759: 755: 751: 747: 743: 739: 732: 729: 724: 720: 716: 712: 708: 704: 697: 694: 689: 685: 680: 675: 670: 665: 661: 657: 653: 649: 645: 638: 635: 628: 623: 620: 618: 615: 613: 612:Neuroethology 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 579: 574: 572: 570: 566: 562: 551: 547: 543: 539: 531: 529: 527: 523: 518: 516: 512: 508: 504: 498: 496: 492: 488: 484: 480: 476: 469: 467: 465: 461: 457: 453: 449: 441: 439: 437: 432: 428: 424: 420: 415: 411: 407: 397: 390: 388: 384: 381: 376: 366: 363: 355: 352:November 2013 345: 341: 337: 331: 330: 326: 321:This section 319: 315: 310: 309: 303: 301: 298: 294: 290: 281: 276: 269: 267: 265: 261: 257: 253: 249: 245: 241: 231: 228: 213: 210: 202: 199:November 2013 191: 188: 184: 181: 177: 174: 170: 167: 163: 160: –  159: 155: 154:Find sources: 148: 144: 138: 137: 132:This article 130: 126: 121: 120: 111: 108: 100: 97:November 2013 90: 86: 80: 77:This article 75: 66: 65: 60: 58: 51: 50: 45: 44: 39: 34: 25: 24: 19: 1647: 1635: 1616:Lateral line 1566:Waggle dance 1504:Eric Knudsen 1369: 1364: 1271: 1267: 1228: 1224: 1185: 1181: 1116: 1112: 1106: 1073: 1069: 1063: 1012: 1008: 998: 955: 951: 945: 900: 896: 886: 868:Neuroscience 867: 809: 805: 799: 790: 745: 741: 731: 709:(1): 35–39. 706: 702: 696: 651: 647: 637: 617:Quantum mind 607:Neurobiology 550:metabotropic 535: 525: 521: 519: 499: 473: 451: 445: 438:in mammals. 403: 385: 377: 373: 358: 349: 334:Please help 322: 285: 260:neuroscience 239: 238: 223: 205: 196: 186: 179: 172: 165: 153: 141:Please help 136:verification 133: 103: 94: 78: 54: 47: 41: 40:Please help 37: 1540:Patch clamp 1509:Eric Kandel 1489:Franz Huber 1360:Feedforward 1076:: 145–174. 479:hippocampus 448:Donald Hebb 1514:Nobuo Suga 1429:in insects 629:References 538:cerebellum 431:hair cells 408:along the 169:newspapers 43:improve it 1143:1079-9893 1121:CiteSeerX 1090:0362-1642 1029:1420-682X 982:0031-9333 960:CiteSeerX 834:0028-0836 495:glutamate 446:In 1949, 427:barn owls 425:study on 323:does not 49:talk page 1665:Category 1637:Category 1377:Instinct 1353:Concepts 1255:10373693 1212:16624937 1159:12407397 1151:15521361 1098:11264454 1055:10849274 1047:10357223 1038:11147090 990:17615394 937:17360587 723:18904764 575:See also 278:Fig. 1: 244:neuronal 1649:Commons 1554:Systems 1533:Methods 1290:9883717 1246:2269393 1203:3071735 928:1838663 905:Bibcode 850:4339789 842:9020359 814:Bibcode 782:3186725 750:Bibcode 688:9012854 656:Bibcode 515:synapse 477:in the 410:azimuth 400:inputs. 344:removed 329:sources 183:scholar 83:Please 1437:People 1371:Umwelt 1288:  1268:Neuron 1253:  1243:  1210:  1200:  1157:  1149:  1141:  1123:  1096:  1088:  1053:  1045:  1035:  1027:  988:  980:  962:  935:  925:  874:  848:  840:  832:  806:Nature 780:  773:282419 770:  721:  686:  676:  563:, and 256:memory 252:jitter 185:  178:  171:  164:  156:  1155:S2CID 1051:S2CID 846:S2CID 679:19583 503:CRTC1 242:is a 190:JSTOR 176:books 1286:PMID 1251:PMID 1208:PMID 1147:PMID 1139:ISSN 1094:PMID 1086:ISSN 1043:PMID 1025:ISSN 986:PMID 978:ISSN 933:PMID 872:ISBN 838:PMID 830:ISSN 778:PMID 719:PMID 684:PMID 544:and 524:and 327:any 325:cite 289:EPSP 162:news 1276:doi 1241:PMC 1233:doi 1229:518 1198:PMC 1190:doi 1131:doi 1078:doi 1033:PMC 1017:doi 970:doi 923:PMC 913:doi 901:104 822:doi 810:385 768:PMC 758:doi 711:doi 674:PMC 664:doi 565:DAG 475:LTP 338:by 145:by 87:to 1667:: 1284:. 1272:21 1270:. 1266:. 1249:. 1239:. 1227:. 1223:. 1206:. 1196:. 1186:26 1184:. 1180:. 1153:. 1145:. 1137:. 1129:. 1117:24 1115:. 1092:. 1084:. 1074:41 1072:. 1049:. 1041:. 1031:. 1023:. 1013:55 1011:. 1007:. 984:. 976:. 968:. 956:87 954:. 931:. 921:. 911:. 899:. 895:. 858:^ 844:. 836:. 828:. 820:. 808:. 776:. 766:. 756:. 746:85 744:. 740:. 717:. 707:41 705:. 682:. 672:. 662:. 652:94 650:. 646:. 558:IP 517:. 380:μm 52:. 1338:e 1331:t 1324:v 1292:. 1278:: 1257:. 1235:: 1214:. 1192:: 1161:. 1133:: 1100:. 1080:: 1057:. 1019:: 992:. 972:: 939:. 915:: 907:: 880:. 852:. 824:: 816:: 784:. 760:: 752:: 725:. 713:: 690:. 666:: 658:: 560:3 554:3 365:) 359:( 354:) 350:( 346:. 332:. 230:) 224:( 212:) 206:( 201:) 197:( 187:· 180:· 173:· 166:· 139:. 110:) 104:( 99:) 95:( 81:. 59:) 55:( 20:.

Index

Coincidence circuit
improve it
talk page
Learn how and when to remove these messages
help improve it
make it understandable to non-experts
Learn how and when to remove this message

verification
improve this article
adding citations to reliable sources
"Coincidence detection in neurobiology"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Learn how and when to remove this message
neuronal
neural circuit
jitter
memory
neuroscience
computational maps

Spatial and temporal summation
EPSP
action potential
membrane potential

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.