Knowledge (XXG)

Neutron detection

Source πŸ“

864:
example would be a common planar Si diode coated with either B or LiF. This type of detector was first proposed by Babcock et al. The concept is straightforward. A neutron is absorbed in the reactive film and spontaneously emits energetic reaction products. A reaction product may reach the semiconductor surface, and upon entering the semiconductor produces electron-hole pairs. Under a reverse bias voltage, these electrons and holes are drifted through the diode to produce an induced current, usually integrated in pulse mode to form a voltage output. The maximum intrinsic efficiency for single-coated devices is approximately 5% for thermal neutrons (0.0259 eV), and the design and operation are thoroughly described in the literature. The neutron detection efficiency limitation is a consequence of reaction-product self-absorption. For instance, the range in a boron film of 1.47 MeV Ξ± particles from the B(n,Ξ±) Li reaction is approximately 4.5 microns, and the range in LiF of 2.7 MeV tritons from the B(n,Ξ±) Li reaction is approximately 28 microns. Reaction products originating at distances further from the film/semiconductor interface can not reach the semiconductor surface, and consequently will not contribute to neutron detection. Devices coated with natural Gd have also been explored, mainly because of its large thermal neutron microscopic cross section of 49,000 barns. However, the Gd(n,Ξ³) reaction products of interest are mainly low energy conversion electrons, mostly grouped around 70 keV. Consequently, discrimination between neutron induced events and gamma-ray events (mainly producing Compton scattered electrons) is difficult for Gd-coated semiconductor diodes. A compensated pixel design sought to remedy the problem. Overall, devices coated with either B or LiF are preferred mainly because the energetic charged-particle reaction products are much easier to discriminate from background radiations.
813:
interact with the glass matrix to produce ionization, which transfers energy to Ce ions and results in the emission of photons with wavelength 390 nm – 600 nm as the excited state Ce ions return to the ground state. The event results in a flash of light of several thousand photons for each neutron absorbed. A portion of the scintillation light propagates through the glass fiber, which acts as a waveguide. The fibers ends are optically coupled to a pair of photomultiplier tubes (PMTs) to detect photon bursts. The detectors can be used to detect both neutrons and gamma rays, which are typically distinguished using pulse-height discrimination. Substantial effort and progress in reducing fiber detector sensitivity to gamma radiation has been made. Original detectors suffered from false neutrons in a 0.02 mR gamma field. Design, process, and algorithm improvements now enable operation in gamma fields up to 20 mR/h (Co).
922:
are designed for use as gamma-ray spectrometers and, hence, are intrinsically sensitive to the gamma-ray background. With adequate energy resolution, pulse height discrimination can be used to separate the prompt gamma-ray emissions from neutron interactions. However, the effective neutron detection efficiency is compromised because of the relatively small Compton ratio. In other words, the majority of events add to the Compton continuum rather than to the full energy peak, thus, making discrimination between neutrons and background gamma rays difficult. Also, both natural Cd and Hg have relatively large thermal-neutron (n,Ξ³) cross sections of 2444 b and 369.8 b, respectively. Consequently, most thermal neutrons are absorbed near the detector surface so that nearly half of the prompt gamma rays are emitted in directions away from the detector bulk and, thus, produce poor gamma-ray reabsorption or interaction efficiency.
872: 944:
capability to distinguish between neutrons and gammas is excellent in noble gas based 4-He detectors due to their low electron density and excellent pulse shape discrimination property. In fact, inorganic scintillators such as zinc sulfide has been shown to exhibit large differences in their decay times for protons and electrons; a feature that has been exploited by combining the inorganic crystal with a neutron converter (such as polymethyl methacrylate) in the Micro-Layered Fast-Neutron Detector. Such detection systems are capable of selectively detecting only fast neutrons in a mixed neutron-gamma radiation field without requiring any additional discrimination techniques such as pulse shape discrimination.
914:
crystals have been reported. Finally, traditional semiconductor materials with neutron reactive dopants have been investigated, namely, Si(Li) detectors. Neutrons interact with the lithium dopant in the material and produce energetic reaction products. However, the dopant concentration is relatively low in Li drifted Si detectors (or other doped semiconductors), typically less than 10 cm. For a degenerate concentration of Li on the order of 10 cm, a 5-cm thick block of natural Si(Li) would have less than 1% thermal-neutron detection efficiency, while a 5-cm thick block of a Si(Li) detector would have only 4.6% thermal-neutron detection efficiency.
880:
greater than 30% thermal neutron detection efficiency. Although MSNDs can operate on the built-in potential (zero applied voltage), they perform best when 2-3 volts are applied. There are several groups now working on MSND variations. The most successful types are the variety backfilled with LiF material. MSNDs are now manufactured and sold commercially by Radiation Detection Technologies, Inc. Advanced experimental versions of double-sided MSNDs with opposing microstructures on both sides of a semiconductor wafer have been reported with over 65% thermal neutron detection efficiency, and are theoretically capable of over 70% efficiency.
1236:(ADC). The total deposited charge is a direct measure of the energy of the ionizing particle (neutron or photon) entering the neutron detector. This signal integration technique is an established method for measuring ionization in the detector in nuclear physics. The ADC has a higher dead time than the oscilloscope, which has limited memory and needs to transfer events quickly to the ADC. Thus, the ADC samples out approximately one in every 30 events from the oscilloscope for analysis. Since the typical event rate is around 10 neutrons every second, this sampling will still accumulate thousands of events every second. 817:
in a variety of applications. Further, they do not rely on He or any raw material that has limited availability, nor do they contain toxic or regulated materials. Their performance matches or exceeds that of He tubes for gross neutron counting due to the higher density of neutron absorbing species in the solid glass compared to high-pressure gaseous He. Even though the thermal neutron cross section of Li is low compared to He (940 barns vs. 5330 barns), the atom density of Li in the fiber is fifty times greater, resulting in an advantage in effective capture density ratio of approximately 10:1.
771:) enriched to 96% boron-10 (natural boron is 20% B, 80% B). Boron trifluoride is highly toxic. The sensitivity of this detector is around 35-40 CPS/nv (counts per second per neutron flux) whereas that of Boron lined is about 4 CPS/nv. This is because in Boron lined, n reacts with Boron and hence produce ion pairs inside the layer. Hence charged particles produced (Alpha and Li) they lose some of their energy inside that layer. Low energy charged particles are unable to reach the Ionization chamber's gas environment. Hence, the number of ionizations produced in gas is also lower. 1329:
Scintillation detectors were invented in 1903 by Crookes but were not very efficient until the PMT (photomultiplier tube) was developed by Curran and Baker in 1944. The PMT gives a reliable and efficient method of detection since it can multiply the initial signal of a single scintillation photon hitting the PMT face millions of times into a measurable electrical pulse. Even so, scintillator detector design has room for improvement as do other options for neutron detection besides scintillation.
31: 855:
capabilities as 3He or CLYC or CLLB detectors at a lower cost.Li (95% enriched) co-doping introduces efficient thermal neutron detection to the most established gamma-ray scintillator while retaining the favorable scintillation properties of standard NaI(Tl). NaIL can provide large volume, single material detectors for both gammas and neutrons at a low price per volume.
1271: 666:(Si(n,p) Al)) have extremely large cross sections for the capture of neutrons within a very narrow band of energy. Use of multiple absorber samples allows characterization of the neutron energy spectrum. Activation also enables the reconstruction of an historic neutron exposure (e.g., forensic reconstruction of neutron exposures during an 1245:
is well-centered. This fact can be used to identify incoming neutrons and to count the total rate of incoming neutrons. The steps leading to this separation (those that are usually performed at leading national laboratories, Jefferson Lab specifically among them) are gated pulse extraction and plotting-the-difference.
1131:, plastic, thermo-coal, etc. Thus, photons cause major interference in neutron detection, since it is uncertain if neutrons or photons are being detected by the neutron detector. Both register similar energies after scattering into the detector from the target or ambient light, and are thus hard to distinguish. 1279:
same tail-energy value. In this case, plotted points are simply made denser with more overlapping dots on the two-dimensional plot, and can thus be used to eyeball the number of events corresponding to each energy-deposition. A considerable random fraction (1/30) of all events is plotted on the graph.
2508:
McGregor, D.S.; Klann, R.T.; Sanders, J.D.; Lindsay, J.T.; Linden, K.J.; Gersch, H.K.; De Lurgio, P.M.; Fink, C.L.; Ariesanti, E. (2002). James, Ralph B; Franks, Larry A; Burger, Arnold; Westbrook, Edwin M; Durst, Roger D (eds.). "Recent Results From Thin-Film-Coated Semiconductor Neutron Detectors".
1257:
in continuous time (having a stream of "1" and "0" pulses as one input and the current signal as the other), the tail portion of every current pulse signal is extracted. This gated discrimination method is used on a regular basis on liquid scintillators. The gated delay unit is precisely to this end,
1244:
The ADC sends its data to a DAQ unit that sorts the data in presentable form for analysis. The key to further analysis lies in the difference between the shape of the photon ionization-current pulse and that of the neutron. The photon pulse is longer at the ends (or "tails") whereas the neutron pulse
883:
Semiconductor detectors in which one of more constituent atoms are neutron reactive are called bulk semiconductor neutron detectors. Bulk solid-state neutron detectors can be divided into two basic categories: those that rely on the detection of charged-particle reaction products and those that rely
863:
There are two basic types of semiconductor neutron detectors, the first being electron devices coated with a neutron reactive material and the second being a semiconductor being partly composed of neutron reactive material. The most successful of these configurations is the coated device type, and an
1143:
If the detector lies in a region of high beam activity, it is hit continuously by neutrons and background noise at overwhelmingly high rates. This obfuscates collected data, since there is extreme overlap in measurement, and separate events are not easily distinguished from each other. Thus, part of
921:
have been successfully used as neutron detectors. These detectors rely upon the prompt gamma-ray emissions from the Cd(n, Ξ³)Cd reaction (producing 558.6 keV and 651.3 keV gamma rays) and the Hg(n, Ξ³) Hg reaction (producing 368.1 keV and 661.1 keV gamma rays). However, these semiconductor materials
812:
The scintillating glass fibers work by incorporating Li and Ce into the glass bulk composition. The Li has a high cross-section for thermal neutron absorption through the Li(n,Ξ±) reaction. Neutron absorption produces a tritium ion, an alpha particle, and kinetic energy. The alpha particle and triton
750:
Helium-3 is an effective neutron detector material because it reacts by absorbing thermal neutrons, producing a H and H ion. Its sensitivity to gamma rays is negligible, providing a very useful neutron detector. Unfortunately the supply of He is limited to production as a byproduct from the decay of
734:
Further refinements are usually necessary to differentiate the neutron signal from the effects of other types of radiation. Since the energy of a thermal neutron is relatively low, charged particle reactions are discrete (i.e., essentially monoenergetic and lie within a narrow bandwidth of energies)
1286:
The effectiveness of any detection analysis can be seen by its ability to accurately count and separate the number of neutrons and photons striking the detector. Also, the effectiveness of the second and third steps reveals whether event rates in the experiment are manageable. If clear plots can be
1278:
In this step lies the crucial point of the analysis: the extracted ionization values are plotted. Specifically, the graph plots energy deposition in the tail against energy deposition in the entire signal for a range of neutron energies. Typically, for a given energy, there are many events with the
939:
Fast neutrons are often detected by first moderating (slowing) them to thermal energies. However, during that process the information on the original energy of the neutron, its direction of travel, and the time of emission is lost. For many applications, the detection of "fast" neutrons that retain
909:
C. These boron-based films are often grown upon n-type Si substrates, which can form a p–n junction with the Si and, therefore, produce a coated Si diode as described at the beginning of this section. Consequently, the neutron response from the device can be easily mistaken as a bulk response when
879:
The MSND device configuration was first proposed by Muminov and Tsvang, and later by Schelten et al. It was years later when the first working example of a MSND was fabricated and demonstrated , then having only 3.3% thermal neutron detection efficiency. Since that initial work, MSNDs have achieved
867:
The low efficiency of coated planar diodes led to the development of microstructured semiconductor neutron detectors (MSND). These detectors have microscopic structures etched into a semiconductor substrate, subsequently formed into a pin style diode. The microstructures are backfilled with neutron
837:
has the advantage over other materials that the number of optical photons produced per neutron capture is around 30.000 which is 5 times higher than for example in neutron-sensitive scintillating glass fibers. This property makes neutron photon discrimination easier. Due to its high Li density this
832:
is a neutron sensitive inorganic scintillator crystal which like neutron-sensitive scintillating glass fiber detectors makes use of neutron capture by Li. Unlike scintillating glass fiber detectors however the Li is part of the crystalline structure of the scintillator giving it a naturally high Li
816:
The scintillating fiber detectors have excellent sensitivity, they are rugged, and have fast timing (~60 ns) so that a large dynamic range in counting rates is possible. The detectors have the advantage that they can be formed into any desired shape, and can be made very large or very small for use
1328:
Although sometimes facilitated by higher incoming neutron energies, neutron detection is generally a difficult task, for all the reasons stated earlier. Thus, better scintillator design is also in the foreground and has been the topic of pursuit ever since the invention of scintillation detectors.
1304:
It is important here to observe precisely those variables that matter, since there may be false indicators along the way. For example, ionization currents might get periodic high surges, which do not imply high rates but just high energy depositions for stray events. These surges will be tabulated
1282:
If the tail size extracted is a fixed proportion of the total pulse, then there will be two lines on the plot, having different slopes. The line with the greater slope will correspond to photon events and the line with the lesser slope to neutron events. This is precisely because the photon energy
1231:
The oscilloscope registers a current pulse with every event. The pulse is merely the ionization current in the detector caused by this event plotted against time. The total energy of the incident particle can be found by integrating this current pulse with respect to time to yield the total charge
854:
Sodium Iodide crystal co-doped with Thallium and Lithium a.k.a. NaIL has the ability to detect Gamma radiation and Thermal Neutrons in a single crystal with exceptional Pulse-shape Discrimination.The use of low Li concentrations in NaIL and large thicknesses can achieve the same neutron detection
808:
in 1987 and major advances were made in the late 1980s and early 1990s at Pacific Northwest National Laboratory where it was developed as a classified technology. It was declassified in 1994 and first licensed by Oxford Instruments in 1997, followed by a transfer to Nucsafe in 1999. The fiber and
947:
Detection of fast neutrons poses a range of special problems. A directional fast-neutron detector has been developed using multiple proton recoils in separated planes of plastic scintillator material. The paths of the recoil nuclei created by neutron collision are recorded; determination of the
913:
Li-containing semiconductors, categorized as Nowotny–Juza compounds, have also been investigated as bulk neutron detectors. The Nowotny–Juza compound LiZnAs has been demonstrated as a neutron detector; however, the material is difficult and expensive to synthesize, and only small semiconductor
943:
Typical fast neutron detectors are liquid scintillators, 4-He based noble gas detectors and plastic detectors. Fast neutron detectors differentiate themselves from one another by their (1) capability of neutron/gamma discrimination (through pulse shape discrimination) and (2) sensitivity. The
904:
BN can be formed as either simple hexagonal, cubic (zincblende) or wurtzite crystals, depending on the growth temperature, and it is usually grown by thin film methods. It is the simple hexagonal form of BN that has been most studied as a neutron detector. Thin film chemical vapor deposition
1295:
Detection rates can be kept low in many ways. Sampling of events can be used to choose only a few events for analysis. If the rates are so high that one event cannot be distinguished from another, physical experimental parameters (shielding, detector-target distance, solid-angle, etc.) can be
677:
reactions. Neutrons collide with the nuclei of atoms in the detector, transferring energy to those nuclei and creating ions, which are detected. Since the maximum transfer of energy occurs when the mass of the atom with which the neutron collides is comparable to the neutron mass, hydrogenous
1227:
in this unit, implying that no matter how fast particles are coming in, it is very unlikely for this unit to fail to count an event (e.g. incoming particle). The low dead time is due to sophisticated electronics in this unit, which take little time to recover from the relatively easy task of
895:
Boron-based semiconductors in cubic form are difficult to grow as bulk crystals, mainly because they require high temperatures and high pressure for synthesis. BP and Bas can decompose into undesirable crystal structures (cubic to icosahedral form) unless synthesized under high pressure.
868:
reactive material, usually LiF, although B has been used. The increased semiconductor surface area adjacent to the reactive material and the increased probability that a reaction product will enter the semiconductor greatly increase the intrinsic neutron detection efficiency.
1083:, in which the neutrons are produced by spallation reaction, and the traditional research reactor facilities in which neutrons are produced during fission of uranium isotopes. Noteworthy among the various neutron detection experiments is the trademark experiment of the 2896:
Ochs, T.R.; Bellinger, S.L.; Fronk, R.G.; Henson, L.C.; Huddleston, D.E.; Lyric, Z.I.; Shultis, J.K.; Smith C.T.; Sobering, T.J.; McGregor, D.S. (2017). "Present Status of the Microstructured Semiconductor Neutron Detector-Based Direct Helium-3 Replacement".
930:
Activation samples may be placed in a neutron field to characterize the energy spectrum and intensity of the neutrons. Activation reactions that have differing energy thresholds can be used including Fe(n,p) Mn, Al(n,Ξ±)Na, Nb(n,2n) Nb, & Si(n,p)Al.
1287:
obtained in the above steps, allowing for easy neutron-photon separation, the detection can be termed effective and the rates manageable. On the other hand, smudging and indistinguishability of data points will not allow for easy separation of events.
900:
C also forms icosahedral units in a rhombohedral crystal structure, an undesirable transformation because the icosahedral structure has relatively poor charge collection properties which make these icosahedral forms unsuitable for neutron detection.
1324:
less, as mentioned above. This means that is it highly unlikely for there to be two particles generating one current pulse. The current pulses last 50 ns each, and start to register the next event after a gap from the previous event.
1223:. The scaler unit is merely used to count the number of incoming particles or events. It does so by incrementing its tally of particles every time it detects a surge in the detector signal from the zero-point. There is very little 2402:
McGregor, D.S.; Hammig, M.D.; Yang Y-H.; Gersch, H.K.; Klann, R.T. (2003). "Design Considerations for Thin Film Coated Semiconductor Thermal Neutron Detectors – I: Basics Regarding Alpha Particle Emitting Neutron Reactive Films".
887:
The bulk materials that rely upon charged-particle emissions are based on boron and lithium containing semiconductors. In the search for bulk semiconductor neutron detectors, the boron-based materials, such as BP, BAs, BN, and
1957:
Seymour, R.; Crawford, T.; et al. (2001). "Portal, freight and vehicle monitor performance using scintillating glass fiber detectors for the detection of plutonium in the Illicit Trafficking Radiation Assessment Program".
1261:
After extracting the tail, the usual current integration is carried out on both the tail section and the complete signal. This yields two ionization values for each event, which are stored in the event table in the DAQ system.
3438:; J. L. Dolan; E. C. Miller; M. Flaska; S. D. Clarke; A. Enqvist; P. Peerani; M. A. Smith-Nelson; E. Padovani; J. B. Czirr; L. B. Rees (2011). "Evaluation of New and Existing Organic Scintillators for Fast Neutron Detection". 786:
gas-filled proportional detectors, with the exception that the walls are coated with B. In this design, since the reaction takes place on the surface, only one of the two particles will escape into the proportional counter.
1182: 1517:
Kawaguchi, N.; Yanagida, T.; Yokota, Y.; Watanabe, K.; Kamada, K.; Fukuda, K.; Suyama, T.; Yoshikawa, A. (2009). "Study of crystal growth and scintillation properties as a neutron detector of 2-inch diameter eu doped
1152:
Neutrons are neutral and thus do not respond to electric fields. This makes it hard to direct their course towards a detector to facilitate detection. Neutrons also do not ionize atoms except by direct collision, so
385:
Charge: Neutrons are neutral particles and do not ionize directly; hence they are harder than charged particles to detect directly. Further, their paths of motion are only weakly affected by electric and magnetic
2783:
Fronk, R.G.; Bellinger, S.L.; Henson, L.C.; Huddleston, D.E.; Ochs, T.R.; Sobering, T.J.; McGregor, D.S. (2015). "High-Efficiency Microstructured Semiconductor Neutron Detectors for Direct Helium-3 Replacement".
1228:
registering a logical high every time an event occurs. The trigger unit coordinates all the electronics of the system and gives a logical high to these units when the whole setup is ready to record an event run.
3776:
Cerny, J. C., Dolemal, Z., Ivanov, M. P., Kuzmin, E. P., Svejda, J., Wilhelm, I. (2003). "Study of neutron response and n–γ discrimination by charge comparison method for small liquid scintillation detector".
1890:
Bliss, M.; Craig R. A.; Reeder P. L. (1994). "The Physics and Structure-property Relationships of Scintillator Materials: Effect of Thermal History and Chemistry on the Light Output of Scintillating Glasses".
2040:
Seymour, R. S.; Richardson B.; Morichi M.; Bliss M.; Craig R. A.; Sunberg D. S. (2000). "Scintillating-glass-fiber neutron sensors, their application and performance for plutonium detection and monitoring".
1788:
Bliss, M.; Brodzinski R. L.; Craig R. A.; Geelhood B. D.; Knopf M. A.; Miley H. S.; Perkins R. W.; Reeder P. L.; Sunberg D. S.; Warner R. A.; Wogman N. A. (1995). Johnson, C. Bruce; Fenyves, Ervin J (eds.).
803:
Scintillating Li glass for neutron detection was first reported in the scientific literature in 1957 and key advances were made in the 1960s and 1970s. Scintillating fiber was demonstrated by Atkinson M.
3091:
Doan, T.C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J.Y.; Jiang, H.X. (2015). "Hexagonal Boron Nitride Thin Film Thermal Neutron Detectors with High Energy Resolution of the Reaction Products".
381:
Atomic and subatomic particles are detected by the signature they produce through interaction with their surroundings. The interactions result from the particles' fundamental characteristics.
2811:
Uher, J.; Jakubek, J.; Kenney, C.; Kohout, Z.; Linhart, V.; Parker, S.; Petersson, S.; Pospisil, S.; Thungstrom, G. (2007). "Characterization of 3D Thermal Neutron Semiconductor Detectors".
368:
and detector shielding. Detection software consists of analysis tools that perform tasks such as graphical analysis to measure the number and energies of neutrons striking the detector.
2748:
McGregor, D.S.; Klann, R.T.; Gersch, H.K.; Ariesanti, E.; Sanders, J.D.; Van Der Elzen, B. (2002). "New Surface Morphology for Low Stress Thin-Film-Coated Thermal Neutron Detectors".
2713:
McGregor, D.S.; Klann, R.T.; Gersch, H.K.; Ariesanti, E.; Sanders, J.D.; Van Der Elzen, B. (2001). "New Surface Morphology for Low Stress Thin-Film-Coated Thermal Neutron Detectors".
1283:
deposition current, plotted against time, leaves a longer "tail" than does the neutron deposition plot, giving the photon tail more proportion of the total energy than neutron tails.
3194:
Vradii, A.G.; Krapivin, M.I.; Maslova, L.V.; Matveev, O.A.; Khusainov, A.Kh.; Shashurin, V.K. (1977). "Possibilities of Recording Thermal Neutrons with Cadmium Telluride Detectors".
833:
density. A doping agent is added to provide the crystal with its scintillating properties, two common doping agents are trivalent cerium and divalent europium. Europium doped LiCaAlF
3935: 3840: 3779: 1059:
Experiments that make use of this science include scattering experiments in which neutrons directed and then scattered from a sample are to be detected. Facilities include the
360:. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used (the most common today is the 3988: 1308:
One might ask how experimenters can be sure that every current pulse in the oscilloscope corresponds to exactly one event. This is true because the pulse lasts about 50 
751:
tritium (which has a 12.3 year half-life); tritium is produced either as part of weapons programs as a booster for nuclear weapons or as a byproduct of reactor operation.
595:
Absorptive reactions with prompt reactions - low energy neutrons are typically detected indirectly through absorption reactions. Typical absorber materials used have high
2252: 4023: 3978: 3921: 3875: 3824: 99: 2682:
Schelten, J.; Balzhauser, M.; Hongesberg, F.; Engels, R.; Reinartz, R. (1997). "A New Neutron Detector Development Based on Silicon Semiconductor and LiF Converter".
1091:
and now termed the "EMC experiment." The same experiment is performed today with more sophisticated equipment to obtain more definite results related to the original
884:
on the detection of prompt capture gamma rays. In general, this type of neutron detector is difficult to make reliably and presently are not commercially available.
2002: 1790: 1476:
Yousuke, I.; Daiki, S.; Hirohiko, K.; Nobuhiro, S.; Kenji, I. (2000). "Deterioration of pulse-shape discrimination in liquid organic scintillator at high energies".
336: 3986:
Cecil, R. A., Anderson, B. D., Madey, R. (1979). "Improved Predictions of Neutron Detection Efficiency for Hydrocarbon Scintillators from 1 MeV to about 300 MeV".
3362:
van Eijk, C. W. E.; de Haas, J. T. M.; Dorenbos, P.; Kramer, K. W.; Gudel, H. U. (2005). "Development of Elpasolite and Monoclinic Thermal Neutron Scintillators".
414:
producing an excited nucleus, or absorption with transmutation of the resulting nucleus. Most detection approaches rely on detecting the various reaction products.
1194: 268: 1609:
Miyanaga, N.; Ohba, N.; Fujimoto, K. (1997). "Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment".
1204:
In this setup, the incoming particles, comprising neutrons and photons, strike the neutron detector; this is typically a scintillation detector consisting of
364:) and to the electronics used in the detection setup. Further, the hardware setup also defines key experimental parameters, such as source-detector distance, 3403:
Stromswold, D.C.; AJ Peurrung; RR Hansen; PL Reeder (1999). "Direct Fast-Neutron Detection. PNNL-13068, Pacific Northwest National Laboratory, Richland, WA".
3025:
Caruso, A.N.; Dowben, P.A.; Balkir, N.; Schemm, N.; Osberg, K.; Fairchild, R.W.; Flores, O.B.; Balaz, S.; Harken, A.D.; Robertson, B.W.; Brand, J.I. (2006).
948:
energy and momentum of two recoil nuclei allow calculation of the direction of travel and energy of the neutron that underwent elastic scattering with them.
4030: 1189:
Figure 1 shows the typical main components of the setup of a neutron detection unit. In principle, the diagram shows the setup as it would be in any modern
846:
makes it less suitable for measurements in high radiation environments, the Ce doped variant has a shorter decay time but suffers from a lower light-yield.
1144:
the challenge lies in keeping detection rates as low as possible and in designing a detector that can keep up with the high rates to yield coherent data.
989:
Materials science: Elastic and inelastic neutron scattering enables experimentalists to characterize the morphology of materials from scales ranging from
2263: 871: 3578:
Vanier, P. E.; Forman, L.; Dioszegi, I.; Salwen, C.; Ghosh, V. J. (2007). "Calibration and testing of a large-area fast-neutron directional detector".
3537:
Ghosh, P.; D. M. Nichols; W. Fu; J. A. Roberts; D. S. McGregor (2019). "Gamma-Ray Rejection of the SiPM-coupled Micro-Layered Fast-Neutron Detector".
1274:
Figure 2: Expected plot of tail energy against energy in the complete pulse plotted for all event energies. Dots represent number densities of events.
968:
may have dozens of neutron detectors, one per fuel assembly. Most neutron detectors used in thermal-spectrum nuclear reactors are optimized to detect
158: 1836:
Abel, K. H.; Arthur R. J.; Bliss M.; Brite D. W.; et al. (1993). "Performance and Applications of Scintillating-Glass-Fiber Neutron Sensors".
1258:
and makes a delayed copy of the original signal in such a way that its tail section is seen alongside its main section on the oscilloscope screen.
458:(about 14 minutes, 46 seconds). Free neutrons decay by emission of an electron and an electron antineutrino to become a proton, a process known as 258: 3838:
Jastaniah, S. D., Sellin, P. J. (2003). "Digital techniques for n–γ pulse shape discrimination capture-gated neutron spectroscopy using liquid".
2364:
Popisil, S.; Sopko, B.; Havrankova, E.; Janout, Z.; Konicek, J.; Macha, I.; Pavlu, J. (1993). "Si Diode as a Small Detector of Slow Neutrons".
3453:
Lewis, J.M.; R. P. Kelley; D. Murer; K. A. Jordan (2014). "Fission signal detection using helium-4 gas fast neutron scintillation detectors".
2606:
McGregor, D.S.; Bellinger, S.L.; Fronk, R.G.; Henson, L.C.; Huddleston, D.E.; Ochs, T.R.; Shultis, J.K.; Sobering, T.J.; Taylor, R.D. (2015).
774:
Whereas In BF3 gas filled, N reacts with B in gas and fully energetic Alpha and Li are able to produce more ionizations and give more pulses.
4055: 3597: 3554: 3379: 2274: 1539: 1493: 1436: 910:
it is actually a coated diode response. To date, there is sparse evidence of boron-based semiconductors producing intrinsic neutron signals.
1103:
Neutron detection in an experimental environment is not an easy science. The major challenges faced by modern-day neutron detection include
619:
of which can be detected by a number of means. Commonly used reactions include He(n,p) H, Li(n,t) He, B(n,Ξ±) Li and the fission of uranium.
290: 2264:
Li co-doped NaI:Tl (NaIL) βˆ’ A Large Volume Neutron-Gamma Scintillator with Exceptional Pulse Shape Discrimination 2017 IEEE Presentation.
329: 3440:
Proceedings of the Institute of Nuclear Materials Management 52nd Annual Meeting on CD-ROM, Palm Desert, California, USA. July 17 – 22
1270: 3638: 1013: 244: 178: 121: 3757: 2181:
Kole, M.; et al. (2013). "A Balloon-borne Measurement of High Latitude Atmospheric Neutrons Using a LiCAF Neutron Detector".
673:
Elastic scattering reactions (also referred to as proton-recoil) - High energy neutrons are typically detected indirectly through
3126:
Domnich, V.; Reynaud, S.; Haber, R.A.; Chowalla, M. (2011). "Boron Carbide: Structure, Properties, and Stability Under Stress".
735:
while other reactions such as gamma reactions will span a broad energy range, it is possible to discriminate among the sources.
3931:"Analysis of neutron and photon detection position for the calibration of plastic (BC-420) and liquid (BC-501) scintillators" 3662: 2847: 1064: 440: 322: 116: 94: 3026: 1714:
Spowart, A. R. (1976). "Neutron Scintillating Glasses .1. Activation By External Charged-Particles And Thermal-Neutrons".
1072: 795:
Scintillation neutron detectors include liquid organic scintillators, crystals, plastics, glass and scintillation fibers.
582:
produced by neutron decay are detectable, the decay rate is too low to serve as the basis for a practical detector system.
300: 3155:"Device Fabrication, Characterization, and Thermal Neutron Detection Response of LiZnP and LiZnAs Semiconducting Devices" 2555: 2383:
Babcock, R.V.; Davis, R.E.; Ruby, S.L.; Sun, K.H.; Wolley, E.D. (1959). "Coated Semiconductor is Tiny Neutron Detector".
286: 111: 1219:
The detection signal from the neutron detector is connected to the scaler unit, gated delay unit, trigger unit and the
4050: 1366: 1350: 1344: 1233: 1154: 1084: 956:
Neutron detection is used for varying purposes. Each application has different requirements for the detection system.
154: 2253:
Large Format Li Co-doped NaI:Tl Scintilation Detector for Gamma-ray and Neutron Dual Detection, 2017 Technical Paper.
282: 2001:
Seymour, R. S.; Craig R. A.; Bliss M.; Richardson B.; Hull C. D.; Barnett D. S. (1998). Robertson, David E. (ed.).
310: 1644:
Egelstaff, P. A.; et al. (1957). "Glass Scintillators For Prompt Detection Of Intermediate Energy Neutrons".
842:
has been used for neutron detection at high altitudes on balloon missions. The long decay time of Eu doped LiCaAlF
1068: 252: 240: 3153:
Montag, B.W.; Reichenberger, M.A.; Edwards, N.; Ugorwoski, P.B.; Sunder, M.; Weeks, J.; McGregor, D.S. (2016).
2003:"Performance of a neutron-sensitive scintillating glass-fiber panel for portal, freight and vehicle monitoring" 1035: 274: 3686:
John F. Beacom & Mark R. Vagins (2004). "Antineutrino Spectroscopy with Large Water Čerenkov Detectors".
2940:
Ananthanarayanan, K.P.; Gielisse, P.J.; Choudry, A. (1974). "Boron Compounds for Thermal Neutron Detection".
3688: 1305:
and viewed with cynicism if unjustifiable, especially since there is so much background noise in the setup.
1170: 1080: 1076: 616: 596: 418: 294: 727:(i.e., neutrons that have slowed to equilibrium with their surroundings), they are typically surrounded by 3056:
McGregor, D.S.; Unruh, T.; McNeil, W.J. (2008). "Thermal Neutron Detection with Pyrolytic Boron Nitride".
2518: 1369:– position sensitive neutron detectors are developed using technologies of the microchannel plate detector 1205: 1198: 168: 126: 1460: 4017: 3972: 3869: 3818: 3408: 2107: 965: 704: 361: 104: 63: 2099: 1679:
Bollinger, L. M.; Thomas, G. E.; Ginther, R. J. (1962). "Neutron Detection With Glass Scintillators".
1574:
Bollinger, L. M.; Thomas, G. E.; Ginther, R. J. (1962). "Neutron Detection With Glass Scintillators".
979:. For example, the detected neutron rate from a plasma can give information about the ion temperature. 3997: 3944: 3849: 3798: 3707: 3501: 3462: 3320: 3281: 3246: 3166: 3100: 3065: 2999: 2949: 2906: 2859: 2820: 2757: 2722: 2687: 2619: 2570: 2482: 2447: 2412: 2338: 2227: 2196: 2147: 2050: 1967: 1900: 1864: 1802: 1762: 1723: 1688: 1653: 1618: 1583: 1562: 1005: 976: 692: 667: 411: 173: 3488:
Ghosh, P.; W. Fu; M. J. Harrison; P. K. Doyle; N. S. Edwards; J. A. Roberts; D. S. McGregor (2018).
2523: 1216:
tube (PMT), and will be connected to a data acquisition (DAQ) system to register detection details.
2975:
Kumashiro, Y.; Okada, Y.; Misawa, S.; Koshiro, T. (1987). "The Preparation of BP Single Crystals".
1132: 1060: 1047: 436:, techniques for detection of the magnetic moment are too insensitive to use for neutron detection. 89: 45: 1320:
events every second. This number is much higher than the actual typical rate, which is usually an
964:, neutron detectors provide an important measure of power in nuclear power and research reactors. 3960: 3788: 3731: 3697: 3603: 3560: 3519: 3385: 3344: 3211: 2922: 2664: 2536: 2311: 2186: 2163: 2066: 2022: 1983: 1818: 1545: 1499: 1321: 1135:
detection can also be used to discriminate real neutron events from photons and other radiation.
674: 407: 230: 164: 149: 80: 71: 67: 2990:
Emin, D.; Aselage, T.L. (2005). "A Proposed Boron-Carbide-Based Solid-State Neutron Detector".
2647:
Muminov, R.A.; Tsvang, L.D. (1987). "High-Efficiency Semiconductor Thermal-Neutron Detectors".
1428: 838:
material is suitable for producing light weight compact neutron detectors, as a result LiCaAlF
630:
or similar reaction, producing reaction products that then decay at some later time, releasing
3915: 3894: 3723: 3668: 3658: 3634: 3593: 3550: 3375: 3336: 2303: 2100:"Alternative Neutron Detector Technologies for Homeland Security PIET-43741-TM-840 PNNL-18471" 1535: 1489: 1432: 983: 764: 739: 728: 212: 206: 131: 58: 54: 3490:"A high-efficiency, low-Ĉerenkov Micro-Layered Fast-Neutron Detector for the TREAT hodoscope" 2286:
Caruso, A.N. (2010). "The Physics of Solid-State Neutron Detector Materials and Geometries".
4045: 4005: 3952: 3857: 3806: 3715: 3626: 3585: 3542: 3509: 3470: 3367: 3328: 3289: 3254: 3203: 3174: 3135: 3108: 3073: 3038: 3007: 2957: 2914: 2867: 2828: 2793: 2765: 2730: 2695: 2656: 2627: 2586: 2578: 2528: 2490: 2455: 2420: 2346: 2295: 2235: 2155: 2058: 2014: 1975: 1939: 1927: 1908: 1872: 1852: 1810: 1770: 1731: 1696: 1661: 1626: 1591: 1527: 1481: 1420: 1190: 1104: 1009: 430: 198: 3930: 3579: 3308: 1363:– position sensitive neutron detectors are developed using technologies of the Anger camera 1119:, which aren't easily eliminated by physical barriers. The other sources of noise, such as 591:
As a result of these properties, detection of neutrons fall into several major categories:
3421: 3229:
McGregor, D.S.; Lindsay, J.T.; Olsen, R.W. (1996). "Thermal Neutron Detection with Cadmium
2438:
Rauch, H.; Grass, F.; Feigl, B. (1967). "Ein Neuartiger Detektor fur Langsame Neutronen".
2120: 1213: 1166: 1028: 1020: 969: 763:
As elemental boron is not gaseous, neutron detectors containing boron may alternately use
724: 623: 403:
is not directly detectable, but does influence reactions through which it can be detected.
2299: 960:
Reactor instrumentation: Since reactor power is essentially linearly proportional to the
4001: 3948: 3853: 3802: 3711: 3546: 3505: 3466: 3324: 3285: 3250: 3170: 3104: 3069: 3003: 2953: 2910: 2863: 2824: 2761: 2726: 2691: 2623: 2608:"Development of Compact High Efficiency Microstructured Semiconductor Neutron Detectors" 2574: 2486: 2451: 2416: 2342: 2231: 2200: 2151: 2054: 1971: 1904: 1868: 1806: 1766: 1727: 1692: 1657: 1622: 1587: 1253:
Ionization current signals are all pulses with a local peak in between. Using a logical
707:
allows the detector to respond to neutrons. Nuclides commonly used for this purpose are
30: 1120: 1001: 990: 975:
Plasma physics: Neutron detection is used in fusion plasma physics experiments such as
194: 3272:
Beyerle, A.G.; Hull, K.L. (1987). "Neutron Detection with Mercuric Iodide Detectors".
3258: 2699: 2632: 2607: 2424: 4039: 4009: 3964: 3901: 3564: 3523: 3293: 3139: 2961: 2668: 2494: 2459: 2350: 2026: 1912: 1822: 1774: 1735: 1700: 1665: 1595: 1503: 1421: 1355: 1338: 1124: 1043: 631: 447: 399: 3735: 3607: 3389: 3348: 3215: 2926: 2540: 2167: 2070: 1987: 1050:, yielding neutrons. Neutrons detectors can be used for monitor for SNM in commerce. 2582: 2315: 2214:
Iwanowska, J.; et al. (2011). "Thermal neutron detection with Ce doped LiCaAlF
1549: 1360: 1220: 1165:
Detectors relying on neutron absorption are generally more sensitive to low-energy
961: 50: 3719: 3621:
Frenje, J. (1996), "The MPR Neutron Diagnostic at Jet β€” an ITER Prototype Study",
1173:, on the other hand, have trouble registering the impacts of low-energy neutrons. 304: 3630: 3589: 3371: 1531: 1039: 720: 622:
Activation processes - Neutrons may be detected by reacting with absorbers in a
612: 443:, which has not yet been detected. Hence it is not a viable detection signature. 365: 216: 3956: 3861: 3810: 3514: 3489: 3179: 3154: 3112: 3077: 3042: 2832: 2797: 2329:
Rose, A. (1967). "Sputtered Boron Films on Silicon Surface Barrier Detectors".
2239: 1485: 1296:
manipulated to give the lowest rates possible and thus distinguishable events.
982:
Particle physics: Neutron detection has been proposed as a method of enhancing
782:
Alternately, boron-lined gas-filled proportional counters react similarly to BF
3435: 2848:"6:1 Aspect Ratio Silicon Pillar Based Thermal Neutron Detector Filled with B" 2062: 1979: 1309: 1092: 1024: 994: 696: 627: 459: 202: 3895:"Neutron Tagged Bound Proton Structure to Probe the Origin of the EMC Effect" 2918: 2846:
Nikolic, R.J.; Conway, A.M.; Reinhart, C.E.; Graff, R.T.; Wang, T.F. (2008).
1928:"Relationship Between Microstructure and Efficiency of Scintillating Glasses" 1115:
The main components of background noise in neutron detection are high-energy
3672: 3539:
2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
3332: 2769: 2734: 1347:– A field portable neutron spectrometer based on the Bonner Sphere Principle 1224: 1209: 809:
fiber detectors are now manufactured and sold commercially by Nucsafe, Inc.
712: 635: 604: 3727: 2307: 2159: 1478:
2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149)
1400: 1389: 1943: 1926:
Bliss, M.; Craig R. A.; Reeder P. L.; Sunberg D. S.; Weber M. J. (1994).
1876: 1791:"Glass-fiber-based neutron detectors for high- and low-flux environments" 1254: 1012:. Neutron detectors used for radiation safety must take into account the 875:
Basic design of a microstructured semiconductor neutron detector (MSND).
708: 695:
can be adapted to detect neutrons. While neutrons do not typically cause
655: 615:. Each of these reacts by emission of high energy ionized particles, the 608: 600: 357: 3793: 1751:"Initial Tests Of A High-Resolution Scintillating Fiber (Scifi) Tracker" 1232:
deposited at the end of the PMT. This integration is carried out in the
3702: 3207: 2660: 700: 663: 659: 647: 353: 22: 3474: 3011: 2871: 2591: 2532: 2134:
Yanagida, T.; et al. (2011). "Europium and Sodium Codoped LiCaAlF
2018: 1851:
Abel, K. H.; Arthur R. J.; Bliss M.; Brite D. W.; et al. (1994).
1814: 1630: 1169:, and are orders of magnitude less sensitive to high-energy neutrons. 1107:, high detection rates, neutron neutrality, and low neutron energies. 3340: 3027:"The All Boron Carbide Diode Neutron Detector: Comparison and Theory" 1838:
Proceedings of the SCIFI 93 Workshop on Scintillating Fiber Detectors
1116: 639: 439:
Electric dipole moment: The neutron is predicted to have only a tiny
278: 264: 1750: 2556:"Present Status of Microstructured Semiconductor Neutron Detectors" 4031:
DOE Fundamentals Handbook on Instrumentation and Control, Volume 2
2191: 1269: 1180: 870: 716: 446:
Decay: Outside the nucleus, free neutrons are unstable and have a
1427:(2nd ed.). Washington, D.C.: Taylor & Francis. pp.  731:
to reduce their energy and increase the likelihood of detection.
2715:
IEEE Nucl Sci. Symp. Conf. Rec., San Diego, California, Nov. 4-9
1181: 1128: 1088: 1000:
Radiation safety: Neutron radiation is a hazard associated with
651: 643: 1524:
2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)
1451:
Materials with a high hydrogen content such as water or plastic
917:
Prompt gamma-ray emitting semiconductors, such as CdTe, and HgI
892:
C, have been investigated more than other potential materials.
2977:
Proc. Tenth International Conference Chemical Vapor Deposition
1099:
Challenges in neutron detection in an experimental environment
1019:
Cosmic ray detection: Secondary neutrons are one component of
3494:
Nuclear Instruments and Methods in Physics Research Section A
1016:(i.e., the way damage caused by neutrons varies with energy). 406:
Reactions: Neutrons react with a number of materials through
2884: 1127:, can be eliminated by various shielding materials, such as 678:
materials are often the preferred medium for such detectors.
248: 3929:
Pozzi, S. A., Mullens, J. A., and Mihalczo, J. T. (2003).
3623:
Diagnostics for Experimental Thermonuclear Fusion Reactors
2098:
Van Ginhoven, R. M.; Kouzes R. T.; Stephens D. L. (2009).
2083: 905:
methods are usually employed to produce BP, BAs, BN, or B
738:
As a class, gas ionization detectors measure the number (
1031:, are employed to monitor variations in cosmic ray flux. 3754:
Techniques for Nuclear and Particle Physics Experiments
3657:(2nd ed.). Cambridge: Cambridge University Press. 2554:
McGregor, D.S.; Bellinger, S.L.; Shultis, J.K. (2013).
2473:
Feigl, B.; Rauch, H. (1968). "Der Gd-neutronenzahler".
3364:
IEEE Nuclear Science Symposium Conference Record, 2005
1749:
Atkinson, M.; Fent J.; Fisher C.; et al. (1987).
723:. Since these materials are most likely to react with 3936:
Nuclear Instruments and Methods in Physics Research A
3841:
Nuclear Instruments and Methods in Physics Research A
3780:
Nuclear Instruments and Methods in Physics Research A
3581:
2007 IEEE Nuclear Science Symposium Conference Record
2513:. X-Ray and Gamma-Ray Detectors and Applications IV. 2220:
Nuclear Instruments and Methods in Physics Research A
2093: 2091: 1893:
Nuclear Instruments and Methods in Physics Research A
1755:
Nuclear Instruments and Methods in Physics Research A
1390:
Particle Data Group's Review of Particle Physics 2006
799:
Neutron-sensitive scintillating glass fiber detectors
3989:
Nuclear Instruments and Methods in Physics Research
1797:. Photoelectronic Detectors, Cameras, and Systems. 1563:
Example crystal scintillator based neutron monitor.
1027:. Dedicated ground-level neutron detectors, namely 3307:Bell, Z.W.; Pohl, K.R.; Van Den Berg, L. (2004). 1853:"Scintillating Glass Fiber-Optic Neutron Sensors" 1401:Particle Data Group Summary Data Table on Baryons 2043:Journal of Radioanalytical and Nuclear Chemistry 1960:Journal of Radioanalytical and Nuclear Chemistry 850:NaIL Dual Detection Neutron-Gamma Scintillator 2009:. Nuclear Waste Instrumentation Engineering. 1193:lab, but the specifics describe the setup in 377:Signatures by which a neutron may be detected 330: 8: 4022:: CS1 maint: multiple names: authors list ( 3977:: CS1 maint: multiple names: authors list ( 3920:: CS1 maint: multiple names: authors list ( 3893:Cates, G. D., Day, D., Liyanage, N. (2004). 3874:: CS1 maint: multiple names: authors list ( 3823:: CS1 maint: multiple names: authors list ( 2183:Nuclear Science Symposium Conference Record 1480:. Vol. 1. IEEE. pp. 6/219–6/221. 417:Magnetic moment: Although neutrons have a 337: 323: 17: 3792: 3701: 3513: 3178: 2631: 2590: 2522: 2190: 3771: 3769: 3767: 3309:"Neutron Detection with Mercuric Iodide" 3366:. Vol. 1. IEEE. pp. 239–243. 1414: 1412: 1410: 1408: 1379: 1341:– tool for determining neutron energies 599:for absorption of neutrons and include 229: 186: 141: 79: 37: 20: 4015: 3970: 3913: 3867: 3816: 3747: 3745: 3417: 3406: 2116: 2105: 1423:Measurement and Detection of Radiation 940:this information is highly desirable. 2138:Scintillator for Neutron Detection". 1385: 1383: 7: 3237:Telluride Semiconductor Detectors". 2750:IEEE Transactions on Nuclear Science 2275:Example Gamma-Neutron Dual detector. 1034:Special nuclear material detection: 746:He gas-filled proportional detectors 163:Fundamental research with neutrons: 742:), and not the energy of neutrons. 1023:produced in Earth's atmosphere by 778:Boron lined proportional detectors 14: 3625:, Springer US, pp. 417–420, 3547:10.1109/NSS/MIC42101.2019.9059869 2633:10.1016/j.radphyschem.2015.05.025 2405:Nuclear Instruments and Methods A 1014:relative biological effectiveness 759:gas-filled proportional detectors 587:Classic neutron detection options 3655:Principles of plasma diagnostics 3140:10.1111/j.1551-2916.2011.04865.x 1611:Review of Scientific Instruments 1240:Separating neutrons from photons 1185:Figure 1: The experimental setup 1077:Spallation Neutron Source (SINQ) 159:Prompt gamma activation analysis 29: 2475:Nuclear Instruments and Methods 2440:Nuclear Instruments and Methods 2331:Nuclear Instruments and Methods 1716:Nuclear Instruments and Methods 1681:Nuclear Instruments and Methods 1646:Nuclear Instruments and Methods 1576:Nuclear Instruments and Methods 1419:Tsoulfanidis, Nicholas (1995). 859:Semiconductor neutron detectors 791:Scintillation neutron detectors 410:producing a recoiling nucleus, 2583:10.1016/j.jcrysgro.2012.10.061 2366:Radiation Protection Dosimetry 2300:10.1088/0953-8984/22/44/443201 1065:Rutherford Appleton Laboratory 1055:Experimental neutron detection 352:is the effective detection of 95:Small-angle neutron scattering 1: 3720:10.1103/PhysRevLett.93.171101 3259:10.1016/S0168-9002(96)00580-3 2700:10.1016/S0921-4526(97)00024-0 2425:10.1016/S0168-9002(02)02078-8 1177:Experimental setup and method 1073:Oak Ridge National Laboratory 4056:Ionising radiation detectors 4010:10.1016/0029-554X(79)90417-8 3631:10.1007/978-1-4613-0369-5_49 3294:10.1016/0168-9002(87)90236-1 2962:10.1016/0029-554X(74)90683-1 2495:10.1016/0029-554X(68)90250-4 2460:10.1016/0029-554X(67)90408-9 2351:10.1016/0029-554X(67)90576-9 1913:10.1016/0168-9002(94)90263-1 1775:10.1016/0168-9002(87)90022-2 1736:10.1016/0029-554X(76)90057-4 1701:10.1016/0029-554X(62)90178-7 1666:10.1016/0369-643x(57)90042-7 1596:10.1016/0029-554X(62)90178-7 1526:. IEEE. pp. 1493–1495. 1312:, allowing for a maximum of 1161:Varying behavior with energy 1155:gaseous ionization detectors 926:Neutron activation detectors 638:. Selected materials (e.g., 287:ISIS Neutron and Muon Source 112:Inelastic neutron scattering 3590:10.1109/NSSMIC.2007.4436312 3372:10.1109/NSSMIC.2005.1596245 2684:Physica B: Condensed Matter 1532:10.1109/NSSMIC.2009.5402299 1367:Microchannel plate detector 1351:Large Area Neutron Detector 1345:Nested Neutron Spectrometer 1085:European Muon Collaboration 356:entering a well-positioned 127:Backscattering spectrometer 122:Time-of-flight spectrometer 4072: 3957:10.1016/j.nima.2003.12.036 3862:10.1016/j.nima.2003.08.178 3811:10.1016/j.nima.2004.03.179 3653:Hutchinson, I. H. (2002). 3584:. IEEE. pp. 179–184. 3515:10.1016/j.nima.2018.07.035 3180:10.1016/j.nima.2016.08.037 3113:10.1016/j.nima.2015.02.045 3078:10.1016/j.nima.2008.03.002 3043:10.1016/j.mseb.2006.08.049 2833:10.1016/j.nima.2007.01.115 2798:10.1016/j.nima.2015.01.041 2240:10.1016/j.nima.2010.09.182 1486:10.1109/NSSMIC.2000.949173 693:Gas proportional detectors 688:Gas proportional detectors 683:Types of neutron detectors 389:Mass: The neutron mass of 2288:J. Phys.: Condens. Matter 1069:Spallation Neutron Source 1036:Special nuclear materials 3274:Nucl. Instrum. Methods A 3239:Nucl. Instrum. Methods A 3159:Nucl. Instrum. Methods A 3093:Nucl. Instrum. Methods A 3058:Nucl. Instrum. Methods A 2919:10.1109/TNS.2017.2653719 2858:(13): 133502 (3 pages). 2813:Nucl. Instrum. Methods A 2786:Nucl. Instrum. Methods A 1234:analog-digital converter 117:Triple-axis spectrometer 3689:Physical Review Letters 3333:10.1109/TNS.2004.829651 2770:10.1109/TNS.2002.801697 2735:10.1109/TNS.2002.801697 2140:Applied Physics Express 2063:10.1023/A:1016009726996 1980:10.1023/A:1010692712292 1266:Plotting the difference 1171:Scintillation detectors 1081:Paul Scherrer Institute 179:Neutron capture therapy 3416:Cite journal requires 2998:(1): 013529–013529–3. 2942:Nucl. Instrum. Methods 2686:. 234–236: 1084–1086. 2294:(44): 443201 (32 pp). 2115:Cite journal requires 1300:Finer detection points 1275: 1249:Gated pulse extraction 1206:scintillating material 1199:Newport News, Virginia 1186: 1148:Neutrality of neutrons 966:Boiling water reactors 935:Fast neutron detectors 876: 668:accidental criticality 441:electric dipole moment 362:scintillation detector 132:Spin-echo spectrometer 3313:IEEE Trans. Nucl. Sci 2899:IEEE Trans. Nucl. Sci 2160:10.1143/apex.4.106401 1461:Boron Trifluoride (BF 1273: 1184: 1087:, first performed at 874: 705:neutron cross-section 662:(Nb(n,2n) Nb), & 2649:Soviet Atomic Energy 2084:Nucsafe Inc. website 1944:10.1557/PROC-348-195 1877:10.1557/PROC-348-203 1139:High detection rates 729:moderating materials 699:, the addition of a 412:inelastic scattering 309:Under construction: 174:Fast neutron therapy 4002:1979NucIM.161..439C 3949:2004NIMPA.524...92P 3854:2004NIMPA.517..202J 3803:2004NIMPA.527..512C 3752:Leo, W. R. (1994). 3712:2004PhRvL..93q1101B 3506:2018NIMPA.904..100G 3467:2014ApPhL.105a4102L 3325:2004ITNS...51.1163B 3286:1987NIMPA.256..377B 3251:1996NIMPA.381..498M 3171:2016NIMPA.836...30M 3105:2015NIMPA.783..121D 3070:2008NIMPA.591..530M 3004:2005JAP....97a3529E 2954:1974NucIM.118...45A 2911:2017ITNS...64.1846O 2864:2008ApPhL..93m3502N 2825:2007NIMPA.576...32U 2762:2002ITNS...49.1999M 2727:2002ITNS...49.1999M 2692:1997PhyB..234.1084S 2624:2015RaPC..116...32M 2575:2013JCrGr.379...99M 2487:1968NucIM..61..349F 2452:1967NucIM..46..153R 2417:2003NIMPA.500..272M 2343:1967NucIM..52..166R 2232:2011NIMPA.652..319I 2201:2013arXiv1311.5531K 2152:2011APExp...4j6401Y 2055:2000JRNC..243..387S 1972:2001JRNC..248..699S 1905:1994NIMPA.342..357B 1869:1994mrs..meetR...4A 1807:1995SPIE.2551..108B 1767:1987NIMPA.254..500A 1728:1976NucIM.135..441S 1693:1962NucIM..17...97B 1658:1957NucIn...1..197E 1623:1997RScI...68..621M 1588:1962NucIM..17...97B 1465:) Neutron Detectors 1061:ISIS neutron source 1048:spontaneous fission 155:Activation analysis 90:Neutron diffraction 46:Neutron temperature 4051:Particle detectors 3208:10.1007/BF01119710 3196:Sov. Atomic Energy 3031:Mater. Sci. Eng. B 2661:10.1007/BF01123372 2218:single crystals". 1322:order of magnitude 1276: 1187: 984:neutrino detectors 877: 675:elastic scattering 408:elastic scattering 231:Neutron facilities 165:Ultracold neutrons 150:Neutron tomography 142:Other applications 81:Neutron scattering 3599:978-1-4244-0922-8 3556:978-1-7281-4164-0 3475:10.1063/1.4887366 3381:978-0-7803-9221-2 3134:(11): 3605–3628. 3128:J. Am. Ceram. Soc 3012:10.1063/1.1823579 2979:. 87–88: 813–818. 2885:RDT, Inc. website 2872:10.1063/1.2985817 2533:10.1117/12.455697 2019:10.1117/12.339067 1815:10.1117/12.218622 1631:10.1063/1.1147667 1541:978-1-4244-3961-4 1522:single crystal". 1495:978-0-7803-6503-2 1438:978-1-56032-317-4 1157:are ineffective. 765:boron trifluoride 624:radiative capture 350:Neutron detection 347: 346: 207:Neutron moderator 4063: 4027: 4021: 4013: 3982: 3976: 3968: 3925: 3919: 3911: 3909: 3908: 3899: 3880: 3879: 3873: 3865: 3848:(1–3): 202–210. 3835: 3829: 3828: 3822: 3814: 3796: 3773: 3762: 3761: 3749: 3740: 3739: 3705: 3683: 3677: 3676: 3650: 3644: 3643: 3618: 3612: 3611: 3575: 3569: 3568: 3541:. pp. 1–3. 3534: 3528: 3527: 3517: 3485: 3479: 3478: 3455:Appl. Phys. Lett 3450: 3444: 3443: 3432: 3426: 3425: 3419: 3414: 3412: 3404: 3400: 3394: 3393: 3359: 3353: 3352: 3319:(3): 1163–1165. 3304: 3298: 3297: 3269: 3263: 3262: 3245:(2–3): 498–501. 3226: 3220: 3219: 3191: 3185: 3184: 3182: 3150: 3144: 3143: 3123: 3117: 3116: 3088: 3082: 3081: 3053: 3047: 3046: 3022: 3016: 3015: 2987: 2981: 2980: 2972: 2966: 2965: 2937: 2931: 2930: 2905:(7): 1846–1850. 2893: 2887: 2882: 2876: 2875: 2852:Appl. Phys. Lett 2843: 2837: 2836: 2808: 2802: 2801: 2780: 2774: 2773: 2756:(4): 1999–2004. 2745: 2739: 2738: 2710: 2704: 2703: 2679: 2673: 2672: 2644: 2638: 2637: 2635: 2603: 2597: 2596: 2594: 2563:J. Cryst. Growth 2560: 2551: 2545: 2544: 2526: 2505: 2499: 2498: 2470: 2464: 2463: 2435: 2429: 2428: 2411:(1–3): 272–308. 2399: 2393: 2392: 2380: 2374: 2373: 2361: 2355: 2354: 2326: 2320: 2319: 2283: 2277: 2272: 2266: 2261: 2255: 2250: 2244: 2243: 2211: 2205: 2204: 2194: 2178: 2172: 2171: 2131: 2125: 2124: 2118: 2113: 2111: 2103: 2095: 2086: 2081: 2075: 2074: 2037: 2031: 2030: 1998: 1992: 1991: 1954: 1948: 1947: 1923: 1917: 1916: 1899:(2–3): 357–393. 1887: 1881: 1880: 1848: 1842: 1841: 1833: 1827: 1826: 1785: 1779: 1778: 1746: 1740: 1739: 1711: 1705: 1704: 1676: 1670: 1669: 1641: 1635: 1634: 1606: 1600: 1599: 1571: 1565: 1560: 1554: 1553: 1514: 1508: 1507: 1473: 1467: 1458: 1452: 1449: 1443: 1442: 1426: 1416: 1403: 1398: 1392: 1387: 1319: 1317: 1191:particle physics 1167:thermal neutrons 1111:Background noise 1105:background noise 1029:neutron monitors 1021:particle showers 1010:nuclear reactors 1004:, space travel, 970:thermal neutrons 725:thermal neutrons 617:ionization track 581: 580: 579: 572: 571: 563: 562: 561: 554: 553: 538: 537: 536: 529: 526: 525: 517: 516: 515: 508: 507: 499: 498: 497: 490: 489: 481: 480: 479: 472: 471: 457: 455: 428: 426: 402: 397: 394: 339: 332: 325: 211:Neutron optics: 199:Research reactor 33: 18: 4071: 4070: 4066: 4065: 4064: 4062: 4061: 4060: 4036: 4035: 4014: 3985: 3969: 3943:(1–3): 92–101. 3928: 3912: 3906: 3904: 3897: 3892: 3889: 3887:Further reading 3884: 3883: 3866: 3837: 3836: 3832: 3815: 3794:nucl-ex/0311022 3775: 3774: 3765: 3751: 3750: 3743: 3685: 3684: 3680: 3665: 3652: 3651: 3647: 3641: 3620: 3619: 3615: 3600: 3577: 3576: 3572: 3557: 3536: 3535: 3531: 3487: 3486: 3482: 3452: 3451: 3447: 3434: 3433: 3429: 3415: 3405: 3402: 3401: 3397: 3382: 3361: 3360: 3356: 3306: 3305: 3301: 3271: 3270: 3266: 3236: 3232: 3228: 3227: 3223: 3193: 3192: 3188: 3152: 3151: 3147: 3125: 3124: 3120: 3090: 3089: 3085: 3055: 3054: 3050: 3024: 3023: 3019: 2989: 2988: 2984: 2974: 2973: 2969: 2939: 2938: 2934: 2895: 2894: 2890: 2883: 2879: 2845: 2844: 2840: 2810: 2809: 2805: 2782: 2781: 2777: 2747: 2746: 2742: 2712: 2711: 2707: 2681: 2680: 2676: 2646: 2645: 2641: 2612:Rad. Phys. Chem 2605: 2604: 2600: 2558: 2553: 2552: 2548: 2524:10.1.1.510.5968 2507: 2506: 2502: 2472: 2471: 2467: 2437: 2436: 2432: 2401: 2400: 2396: 2382: 2381: 2377: 2363: 2362: 2358: 2328: 2327: 2323: 2285: 2284: 2280: 2273: 2269: 2262: 2258: 2251: 2247: 2217: 2213: 2212: 2208: 2180: 2179: 2175: 2137: 2133: 2132: 2128: 2114: 2104: 2097: 2096: 2089: 2082: 2078: 2039: 2038: 2034: 2000: 1999: 1995: 1956: 1955: 1951: 1932:MRS Proceedings 1925: 1924: 1920: 1889: 1888: 1884: 1857:MRS Proceedings 1850: 1849: 1845: 1835: 1834: 1830: 1787: 1786: 1782: 1748: 1747: 1743: 1713: 1712: 1708: 1678: 1677: 1673: 1643: 1642: 1638: 1608: 1607: 1603: 1573: 1572: 1568: 1561: 1557: 1542: 1521: 1516: 1515: 1511: 1496: 1475: 1474: 1470: 1464: 1459: 1455: 1450: 1446: 1439: 1418: 1417: 1406: 1399: 1395: 1388: 1381: 1376: 1335: 1315: 1313: 1302: 1293: 1268: 1251: 1242: 1214:photomultiplier 1179: 1163: 1150: 1141: 1113: 1101: 1057: 1002:neutron sources 954: 937: 928: 920: 908: 899: 891: 861: 852: 845: 841: 836: 831: 826: 824: 801: 793: 785: 780: 770: 761: 758: 748: 690: 685: 589: 578: 576: 575: 574: 570: 568: 567: 566: 565: 560: 558: 557: 556: 552: 550: 549: 548: 547: 535: 532: 531: 530: 527: 524: 522: 521: 520: 519: 514: 512: 511: 510: 506: 504: 503: 502: 501: 496: 494: 493: 492: 488: 486: 485: 484: 483: 478: 476: 475: 474: 470: 468: 467: 466: 465: 453: 451: 434: 424: 422: 419:magnetic moment 395: 392: 390: 379: 374: 343: 195:Neutron sources 12: 11: 5: 4069: 4067: 4059: 4058: 4053: 4048: 4038: 4037: 4034: 4033: 4028: 3996:(3): 439–447. 3983: 3926: 3888: 3885: 3882: 3881: 3830: 3787:(3): 512–518. 3763: 3741: 3703:hep-ph/0309300 3696:(17): 171101. 3678: 3663: 3645: 3639: 3613: 3598: 3570: 3555: 3529: 3480: 3445: 3427: 3418:|journal= 3395: 3380: 3354: 3299: 3280:(2): 377–380. 3264: 3234: 3230: 3221: 3186: 3145: 3118: 3083: 3064:(3): 530–533. 3048: 3037:(2): 129–133. 3017: 2982: 2967: 2932: 2888: 2877: 2838: 2803: 2775: 2740: 2705: 2674: 2655:(4): 316–319. 2639: 2598: 2546: 2500: 2481:(3): 349–356. 2465: 2446:(1): 153–156. 2430: 2394: 2375: 2356: 2337:(1): 166–170. 2321: 2278: 2267: 2256: 2245: 2226:(1): 319–322. 2215: 2206: 2173: 2146:(10): 106401. 2135: 2126: 2117:|journal= 2087: 2076: 2049:(2): 387–388. 2032: 1993: 1966:(3): 699–705. 1949: 1918: 1882: 1843: 1828: 1780: 1761:(3): 500–514. 1741: 1722:(3): 441–453. 1706: 1671: 1652:(4): 197–199. 1636: 1617:(1): 621–623. 1601: 1566: 1555: 1540: 1519: 1509: 1494: 1468: 1462: 1453: 1444: 1437: 1404: 1393: 1378: 1377: 1375: 1372: 1371: 1370: 1364: 1358: 1353: 1348: 1342: 1334: 1331: 1301: 1298: 1292: 1289: 1267: 1264: 1250: 1247: 1241: 1238: 1178: 1175: 1162: 1159: 1149: 1146: 1140: 1137: 1125:beta particles 1112: 1109: 1100: 1097: 1056: 1053: 1052: 1051: 1038:(SNM) such as 1032: 1017: 998: 987: 980: 973: 953: 950: 936: 933: 927: 924: 918: 906: 897: 889: 860: 857: 851: 848: 843: 839: 834: 829: 825: 822: 819: 800: 797: 792: 789: 783: 779: 776: 768: 760: 756: 753: 747: 744: 689: 686: 684: 681: 680: 679: 671: 654:(Fe(n,p) Mn), 632:beta particles 620: 597:cross sections 588: 585: 584: 583: 577: 569: 559: 551: 543: 542: 541: 540: 533: 523: 513: 505: 495: 487: 477: 469: 444: 437: 432: 415: 404: 387: 378: 375: 373: 370: 345: 344: 342: 341: 334: 327: 319: 316: 315: 314: 313: 307: 297: 271: 261: 255: 234: 233: 227: 226: 225: 224: 219: 209: 189: 188: 187:Infrastructure 184: 183: 182: 181: 176: 171: 169:Interferometry 161: 152: 144: 143: 139: 138: 137: 136: 135: 134: 129: 124: 119: 109: 108: 107: 102: 97: 84: 83: 77: 76: 75: 74: 61: 48: 40: 39: 35: 34: 26: 25: 13: 10: 9: 6: 4: 3: 2: 4068: 4057: 4054: 4052: 4049: 4047: 4044: 4043: 4041: 4032: 4029: 4025: 4019: 4011: 4007: 4003: 3999: 3995: 3991: 3990: 3984: 3980: 3974: 3966: 3962: 3958: 3954: 3950: 3946: 3942: 3938: 3937: 3932: 3927: 3923: 3917: 3903: 3902:Jefferson Lab 3896: 3891: 3890: 3886: 3877: 3871: 3863: 3859: 3855: 3851: 3847: 3843: 3842: 3834: 3831: 3826: 3820: 3812: 3808: 3804: 3800: 3795: 3790: 3786: 3782: 3781: 3772: 3770: 3768: 3764: 3759: 3755: 3748: 3746: 3742: 3737: 3733: 3729: 3725: 3721: 3717: 3713: 3709: 3704: 3699: 3695: 3691: 3690: 3682: 3679: 3674: 3670: 3666: 3660: 3656: 3649: 3646: 3642: 3640:9781461380207 3636: 3632: 3628: 3624: 3617: 3614: 3609: 3605: 3601: 3595: 3591: 3587: 3583: 3582: 3574: 3571: 3566: 3562: 3558: 3552: 3548: 3544: 3540: 3533: 3530: 3525: 3521: 3516: 3511: 3507: 3503: 3499: 3495: 3491: 3484: 3481: 3476: 3472: 3468: 3464: 3461:(1): 014102. 3460: 3456: 3449: 3446: 3441: 3437: 3431: 3428: 3423: 3410: 3399: 3396: 3391: 3387: 3383: 3377: 3373: 3369: 3365: 3358: 3355: 3350: 3346: 3342: 3338: 3334: 3330: 3326: 3322: 3318: 3314: 3310: 3303: 3300: 3295: 3291: 3287: 3283: 3279: 3275: 3268: 3265: 3260: 3256: 3252: 3248: 3244: 3240: 3225: 3222: 3217: 3213: 3209: 3205: 3201: 3197: 3190: 3187: 3181: 3176: 3172: 3168: 3164: 3160: 3156: 3149: 3146: 3141: 3137: 3133: 3129: 3122: 3119: 3114: 3110: 3106: 3102: 3098: 3094: 3087: 3084: 3079: 3075: 3071: 3067: 3063: 3059: 3052: 3049: 3044: 3040: 3036: 3032: 3028: 3021: 3018: 3013: 3009: 3005: 3001: 2997: 2993: 2992:J. Appl. Phys 2986: 2983: 2978: 2971: 2968: 2963: 2959: 2955: 2951: 2947: 2943: 2936: 2933: 2928: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2892: 2889: 2886: 2881: 2878: 2873: 2869: 2865: 2861: 2857: 2853: 2849: 2842: 2839: 2834: 2830: 2826: 2822: 2818: 2814: 2807: 2804: 2799: 2795: 2791: 2787: 2779: 2776: 2771: 2767: 2763: 2759: 2755: 2751: 2744: 2741: 2736: 2732: 2728: 2724: 2720: 2716: 2709: 2706: 2701: 2697: 2693: 2689: 2685: 2678: 2675: 2670: 2666: 2662: 2658: 2654: 2650: 2643: 2640: 2634: 2629: 2625: 2621: 2617: 2613: 2609: 2602: 2599: 2593: 2588: 2584: 2580: 2576: 2572: 2568: 2564: 2557: 2550: 2547: 2542: 2538: 2534: 2530: 2525: 2520: 2516: 2512: 2504: 2501: 2496: 2492: 2488: 2484: 2480: 2476: 2469: 2466: 2461: 2457: 2453: 2449: 2445: 2441: 2434: 2431: 2426: 2422: 2418: 2414: 2410: 2406: 2398: 2395: 2390: 2386: 2379: 2376: 2371: 2367: 2360: 2357: 2352: 2348: 2344: 2340: 2336: 2332: 2325: 2322: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2282: 2279: 2276: 2271: 2268: 2265: 2260: 2257: 2254: 2249: 2246: 2241: 2237: 2233: 2229: 2225: 2221: 2210: 2207: 2202: 2198: 2193: 2188: 2184: 2177: 2174: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2130: 2127: 2122: 2109: 2101: 2094: 2092: 2088: 2085: 2080: 2077: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2036: 2033: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 1997: 1994: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1953: 1950: 1945: 1941: 1937: 1933: 1929: 1922: 1919: 1914: 1910: 1906: 1902: 1898: 1894: 1886: 1883: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1844: 1839: 1832: 1829: 1824: 1820: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1784: 1781: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1745: 1742: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1707: 1702: 1698: 1694: 1690: 1687:(1): 97–116. 1686: 1682: 1675: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1640: 1637: 1632: 1628: 1624: 1620: 1616: 1612: 1605: 1602: 1597: 1593: 1589: 1585: 1582:(1): 97–116. 1581: 1577: 1570: 1567: 1564: 1559: 1556: 1551: 1547: 1543: 1537: 1533: 1529: 1525: 1513: 1510: 1505: 1501: 1497: 1491: 1487: 1483: 1479: 1472: 1469: 1466: 1457: 1454: 1448: 1445: 1440: 1434: 1430: 1425: 1424: 1415: 1413: 1411: 1409: 1405: 1402: 1397: 1394: 1391: 1386: 1384: 1380: 1373: 1368: 1365: 1362: 1359: 1357: 1356:Neutron probe 1354: 1352: 1349: 1346: 1343: 1340: 1339:Bonner sphere 1337: 1336: 1332: 1330: 1326: 1323: 1311: 1306: 1299: 1297: 1290: 1288: 1284: 1280: 1272: 1265: 1263: 1259: 1256: 1248: 1246: 1239: 1237: 1235: 1229: 1226: 1222: 1217: 1215: 1211: 1207: 1202: 1200: 1196: 1195:Jefferson Lab 1192: 1183: 1176: 1174: 1172: 1168: 1160: 1158: 1156: 1147: 1145: 1138: 1136: 1134: 1130: 1126: 1122: 1118: 1110: 1108: 1106: 1098: 1096: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1054: 1049: 1045: 1044:plutonium-239 1041: 1037: 1033: 1030: 1026: 1022: 1018: 1015: 1011: 1007: 1003: 999: 996: 993:to about one 992: 988: 985: 981: 978: 974: 971: 967: 963: 959: 958: 957: 951: 949: 945: 941: 934: 932: 925: 923: 915: 911: 902: 893: 885: 881: 873: 869: 865: 858: 856: 849: 847: 820: 818: 814: 810: 807: 798: 796: 790: 788: 777: 775: 772: 766: 754: 752: 745: 743: 741: 736: 732: 730: 726: 722: 718: 714: 710: 706: 702: 698: 694: 687: 682: 676: 672: 669: 665: 661: 658:(Al(n,Ξ±)Na), 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 618: 614: 610: 606: 602: 598: 594: 593: 592: 586: 546:Although the 545: 544: 464: 463: 461: 449: 448:mean lifetime 445: 442: 438: 435: 420: 416: 413: 409: 405: 401: 388: 384: 383: 382: 376: 372:Basic physics 371: 369: 367: 363: 359: 355: 351: 340: 335: 333: 328: 326: 321: 320: 318: 317: 312: 308: 306: 302: 298: 296: 292: 288: 284: 280: 276: 272: 270: 266: 262: 260: 256: 254: 250: 246: 242: 238: 237: 236: 235: 232: 228: 223: 220: 218: 214: 210: 208: 204: 200: 196: 193: 192: 191: 190: 185: 180: 177: 175: 172: 170: 166: 162: 160: 156: 153: 151: 148: 147: 146: 145: 140: 133: 130: 128: 125: 123: 120: 118: 115: 114: 113: 110: 106: 105:Reflectometry 103: 101: 98: 96: 93: 92: 91: 88: 87: 86: 85: 82: 78: 73: 69: 65: 64:Cross section 62: 60: 56: 52: 49: 47: 44: 43: 42: 41: 36: 32: 28: 27: 24: 21:Science with 19: 16: 4018:cite journal 3993: 3987: 3973:cite journal 3940: 3934: 3905:. Retrieved 3898:(PostScript) 3870:cite journal 3845: 3839: 3833: 3819:cite journal 3784: 3778: 3753: 3693: 3687: 3681: 3654: 3648: 3622: 3616: 3580: 3573: 3538: 3532: 3497: 3493: 3483: 3458: 3454: 3448: 3439: 3436:Pozzi, S. A. 3430: 3409:cite journal 3398: 3363: 3357: 3316: 3312: 3302: 3277: 3273: 3267: 3242: 3238: 3224: 3199: 3195: 3189: 3162: 3158: 3148: 3131: 3127: 3121: 3096: 3092: 3086: 3061: 3057: 3051: 3034: 3030: 3020: 2995: 2991: 2985: 2976: 2970: 2948:(1): 45–48. 2945: 2941: 2935: 2902: 2898: 2891: 2880: 2855: 2851: 2841: 2819:(1): 32–37. 2816: 2812: 2806: 2789: 2785: 2778: 2753: 2749: 2743: 2718: 2714: 2708: 2683: 2677: 2652: 2648: 2642: 2615: 2611: 2601: 2566: 2562: 2549: 2514: 2510: 2503: 2478: 2474: 2468: 2443: 2439: 2433: 2408: 2404: 2397: 2388: 2384: 2378: 2369: 2365: 2359: 2334: 2330: 2324: 2291: 2287: 2281: 2270: 2259: 2248: 2223: 2219: 2209: 2182: 2176: 2143: 2139: 2129: 2108:cite journal 2079: 2046: 2042: 2035: 2010: 2006: 1996: 1963: 1959: 1952: 1935: 1931: 1921: 1896: 1892: 1885: 1860: 1856: 1846: 1837: 1831: 1798: 1794: 1783: 1758: 1754: 1744: 1719: 1715: 1709: 1684: 1680: 1674: 1649: 1645: 1639: 1614: 1610: 1604: 1579: 1575: 1569: 1558: 1523: 1512: 1477: 1471: 1456: 1447: 1422: 1396: 1361:Anger camera 1327: 1307: 1303: 1294: 1291:Rate control 1285: 1281: 1277: 1260: 1252: 1243: 1230: 1221:oscilloscope 1218: 1203: 1188: 1164: 1151: 1142: 1114: 1102: 1058: 1006:accelerators 962:neutron flux 955: 952:Applications 946: 942: 938: 929: 916: 912: 903: 894: 886: 882: 878: 866: 862: 853: 827: 815: 811: 805: 802: 794: 781: 773: 762: 749: 737: 733: 691: 590: 380: 349: 348: 221: 15: 3500:: 100–106. 3099:: 121–127. 2721:(4): 1999. 2517:: 164–182. 2013:: 148–155. 1938:: 195–202. 1863:: 203–208. 1133:Coincidence 1040:uranium-233 1025:cosmic rays 721:uranium-235 613:uranium-235 366:solid angle 257:Australia: 217:Supermirror 38:Foundations 4040:Categories 3907:2005-06-09 3664:0521803896 2592:2097/16983 2569:: 99–110. 2511:Proc. SPIE 2391:: 116–122. 2385:Nucleonics 2372:: 115–118. 2007:Proc. SPIE 1840:: 463–472. 1795:Proc. SPIE 1374:References 1093:EMC effect 1075:, and the 995:micrometer 740:count rate 703:with high 697:ionization 628:spallation 460:beta decay 456:0.8 s 299:Historic: 239:America: 203:Spallation 72:Activation 68:Absorption 3965:122721397 3565:204877955 3524:126130994 3202:: 64–66. 3165:: 30–36. 2792:: 25–32. 2669:119511403 2618:: 32–37. 2519:CiteSeerX 2192:1311.5531 2027:137600990 1823:137395702 1504:119538680 1225:dead time 1210:waveguide 1046:decay by 991:Γ₯ngstrΓΆms 713:lithium-6 605:lithium-6 398:(6)  222:Detection 213:Reflector 59:Transport 55:Radiation 3916:cite web 3758:Springer 3736:10472028 3728:15525063 3673:50124576 3608:26211444 3390:44200145 3349:62773581 3216:95935837 2927:38524621 2541:14303554 2308:21403341 2168:94408433 2071:94700090 1988:94473173 1333:See also 1255:AND gate 1212:, and a 717:boron-10 709:helium-3 656:aluminum 609:boron-10 601:helium-3 358:detector 354:neutrons 273:Europe: 249:NIST CNR 23:neutrons 4046:Neutron 3998:Bibcode 3945:Bibcode 3850:Bibcode 3799:Bibcode 3708:Bibcode 3502:Bibcode 3463:Bibcode 3321:Bibcode 3282:Bibcode 3247:Bibcode 3167:Bibcode 3101:Bibcode 3066:Bibcode 3000:Bibcode 2950:Bibcode 2907:Bibcode 2860:Bibcode 2821:Bibcode 2758:Bibcode 2723:Bibcode 2688:Bibcode 2620:Bibcode 2571:Bibcode 2483:Bibcode 2448:Bibcode 2413:Bibcode 2339:Bibcode 2316:1841640 2228:Bibcode 2197:Bibcode 2148:Bibcode 2051:Bibcode 1968:Bibcode 1901:Bibcode 1865:Bibcode 1803:Bibcode 1801:: 108. 1763:Bibcode 1724:Bibcode 1689:Bibcode 1654:Bibcode 1619:Bibcode 1584:Bibcode 1550:5807137 1518:LiCaAlF 1117:photons 1079:at the 1071:at the 1063:at the 828:LiCaAlF 821:LiCaAlF 701:nuclide 664:silicon 660:niobium 648:rhodium 386:fields. 3963:  3734:  3726:  3671:  3661:  3637:  3606:  3596:  3563:  3553:  3522:  3388:  3378:  3347:  3341:812511 3339:  3214:  2925:  2667:  2539:  2521:  2314:  2306:  2166:  2069:  2025:  1986:  1821:  1548:  1538:  1502:  1492:  1435:  1431:–501. 1067:, the 806:et al. 640:indium 636:gammas 611:, and 528:ν 429:  423:βˆ’1.913 279:FRM II 275:BER II 269:HANARO 265:J-PARC 263:Asia: 245:LANSCE 100:GISANS 3961:S2CID 3789:arXiv 3732:S2CID 3698:arXiv 3604:S2CID 3561:S2CID 3520:S2CID 3386:S2CID 3345:S2CID 3212:S2CID 2923:S2CID 2665:S2CID 2559:(PDF) 2537:S2CID 2312:S2CID 2187:arXiv 2164:S2CID 2067:S2CID 2023:S2CID 1984:S2CID 1819:S2CID 1546:S2CID 1500:S2CID 1121:alpha 452:885.7 391:1.008 4024:link 3979:link 3922:link 3876:link 3825:link 3724:PMID 3669:OCLC 3659:ISBN 3635:ISBN 3594:ISBN 3551:ISBN 3422:help 3376:ISBN 3337:OSTI 3233:Zinc 2515:4784 2304:PMID 2121:help 2011:3536 1799:2551 1536:ISBN 1490:ISBN 1433:ISBN 1208:, a 1129:lead 1123:and 1089:CERN 1042:and 1008:and 719:and 652:iron 644:gold 564:and 425:0427 396:9156 305:HFBR 301:IPNS 295:SINQ 291:JINR 259:OPAL 241:HFIR 51:Flux 4006:doi 3994:161 3953:doi 3941:524 3858:doi 3846:517 3807:doi 3785:527 3716:doi 3627:doi 3586:doi 3543:doi 3510:doi 3498:904 3471:doi 3459:105 3368:doi 3329:doi 3290:doi 3278:256 3255:doi 3243:381 3231:1βˆ’x 3204:doi 3175:doi 3163:836 3136:doi 3109:doi 3097:783 3074:doi 3062:591 3039:doi 3035:135 3008:doi 2958:doi 2946:118 2915:doi 2868:doi 2829:doi 2817:576 2794:doi 2790:779 2766:doi 2731:doi 2696:doi 2657:doi 2628:doi 2616:116 2587:hdl 2579:doi 2567:379 2529:doi 2491:doi 2456:doi 2421:doi 2409:500 2347:doi 2296:doi 2236:doi 2224:652 2156:doi 2059:doi 2047:243 2015:doi 1976:doi 1964:248 1940:doi 1936:348 1909:doi 1897:342 1873:doi 1861:348 1811:doi 1771:doi 1759:254 1732:doi 1720:135 1697:doi 1662:doi 1627:doi 1592:doi 1528:doi 1482:doi 1429:467 1201:). 977:JET 767:(BF 634:or 450:of 427:(5) 421:of 393:664 311:ESS 283:ILL 253:SNS 4042:: 4020:}} 4016:{{ 4004:. 3992:. 3975:}} 3971:{{ 3959:. 3951:. 3939:. 3933:. 3918:}} 3914:{{ 3900:. 3872:}} 3868:{{ 3856:. 3844:. 3821:}} 3817:{{ 3805:. 3797:. 3783:. 3766:^ 3756:. 3744:^ 3730:. 3722:. 3714:. 3706:. 3694:93 3692:. 3667:. 3633:, 3602:. 3592:. 3559:. 3549:. 3518:. 3508:. 3496:. 3492:. 3469:. 3457:. 3413:: 3411:}} 3407:{{ 3384:. 3374:. 3343:. 3335:. 3327:. 3317:51 3315:. 3311:. 3288:. 3276:. 3253:. 3241:. 3210:. 3200:42 3198:. 3173:. 3161:. 3157:. 3132:94 3130:. 3107:. 3095:. 3072:. 3060:. 3033:. 3029:. 3006:. 2996:97 2994:. 2956:. 2944:. 2921:. 2913:. 2903:64 2901:. 2866:. 2856:93 2854:. 2850:. 2827:. 2815:. 2788:. 2764:. 2754:49 2752:. 2729:. 2719:49 2717:. 2694:. 2663:. 2653:62 2651:. 2626:. 2614:. 2610:. 2585:. 2577:. 2565:. 2561:. 2535:. 2527:. 2489:. 2479:61 2477:. 2454:. 2444:46 2442:. 2419:. 2407:. 2389:17 2387:. 2370:46 2368:. 2345:. 2335:52 2333:. 2310:. 2302:. 2292:22 2290:. 2234:. 2222:. 2195:. 2185:. 2162:. 2154:. 2142:. 2112:: 2110:}} 2106:{{ 2090:^ 2065:. 2057:. 2045:. 2021:. 2005:. 1982:. 1974:. 1962:. 1934:. 1930:. 1907:. 1895:. 1871:. 1859:. 1855:. 1817:. 1809:. 1793:. 1769:. 1757:. 1753:. 1730:. 1718:. 1695:. 1685:17 1683:. 1660:. 1648:. 1625:. 1615:68 1613:. 1590:. 1580:17 1578:. 1544:. 1534:. 1498:. 1488:. 1407:^ 1382:^ 1318:10 1310:ns 1095:. 755:BF 715:, 711:, 670:). 650:, 646:, 642:, 626:, 607:, 603:, 518:+ 500:+ 482:β†’ 462:: 400:Da 303:, 293:, 289:, 285:, 281:, 277:, 267:, 247:, 243:, 215:, 205:, 201:, 197:: 167:, 157:, 70:, 66:, 57:, 53:, 4026:) 4012:. 4008:: 4000:: 3981:) 3967:. 3955:: 3947:: 3924:) 3910:. 3878:) 3864:. 3860:: 3852:: 3827:) 3813:. 3809:: 3801:: 3791:: 3760:. 3738:. 3718:: 3710:: 3700:: 3675:. 3629:: 3610:. 3588:: 3567:. 3545:: 3526:. 3512:: 3504:: 3477:. 3473:: 3465:: 3442:. 3424:) 3420:( 3392:. 3370:: 3351:. 3331:: 3323:: 3296:. 3292:: 3284:: 3261:. 3257:: 3249:: 3235:x 3218:. 3206:: 3183:. 3177:: 3169:: 3142:. 3138:: 3115:. 3111:: 3103:: 3080:. 3076:: 3068:: 3045:. 3041:: 3014:. 3010:: 3002:: 2964:. 2960:: 2952:: 2929:. 2917:: 2909:: 2874:. 2870:: 2862:: 2835:. 2831:: 2823:: 2800:. 2796:: 2772:. 2768:: 2760:: 2737:. 2733:: 2725:: 2702:. 2698:: 2690:: 2671:. 2659:: 2636:. 2630:: 2622:: 2595:. 2589:: 2581:: 2573:: 2543:. 2531:: 2497:. 2493:: 2485:: 2462:. 2458:: 2450:: 2427:. 2423:: 2415:: 2353:. 2349:: 2341:: 2318:. 2298:: 2242:. 2238:: 2230:: 2216:6 2203:. 2199:: 2189:: 2170:. 2158:: 2150:: 2144:4 2136:6 2123:) 2119:( 2102:. 2073:. 2061:: 2053:: 2029:. 2017:: 1990:. 1978:: 1970:: 1946:. 1942:: 1915:. 1911:: 1903:: 1879:. 1875:: 1867:: 1825:. 1813:: 1805:: 1777:. 1773:: 1765:: 1738:. 1734:: 1726:: 1703:. 1699:: 1691:: 1668:. 1664:: 1656:: 1650:1 1633:. 1629:: 1621:: 1598:. 1594:: 1586:: 1552:. 1530:: 1520:6 1506:. 1484:: 1463:3 1441:. 1316:Γ— 1314:2 1197:( 997:. 986:. 972:. 919:2 907:4 898:4 896:B 890:4 888:B 844:6 840:6 835:6 830:6 823:6 784:3 769:3 757:3 573:e 555:p 539:. 534:e 509:e 491:p 473:n 454:Β± 433:N 431:ΞΌ 338:e 331:t 324:v 251:-

Index

neutrons

Neutron temperature
Flux
Radiation
Transport
Cross section
Absorption
Activation
Neutron scattering
Neutron diffraction
Small-angle neutron scattering
GISANS
Reflectometry
Inelastic neutron scattering
Triple-axis spectrometer
Time-of-flight spectrometer
Backscattering spectrometer
Spin-echo spectrometer
Neutron tomography
Activation analysis
Prompt gamma activation analysis
Ultracold neutrons
Interferometry
Fast neutron therapy
Neutron capture therapy
Neutron sources
Research reactor
Spallation
Neutron moderator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑