Knowledge (XXG)

Respiratory burst

Source 📝

649:, the NADPH oxidase subunits RbohD and RbohF have overlapping functions are expressed in different tissues and at different levels. However, in contrast to animal phagocytes, wherein generated ROS are contained in the sealed phagolysosome, oxidative burst in plants is not contained. Consequently, generated ROS bear additional effects alongside pathogen toxicity. Hydrogen peroxide induces oxidative cross-linking of the plant’s cell wall glycoproteins. This reduces susceptibility to enzymatic degradation by pathogens. 613:. Hydrogen peroxide itself is also spermicidal. However, the generated reactive species are maintained at lower levels than in immunity to protect the fertilised egg itself from oxidative damage. This is achieved by the elimination of hydrogen peroxide primarily through the dual function of the same egg oxidase, and secondarily through cytoplasmic ROS scavengers, such as 526:) stimulation of respective receptors. Superoxide is dismutated to hydrogen peroxide at a rate close to the diffusion-limited rate. This spatial restriction for superoxide‘s dismutation allows for specificity of redox signalling. Specificity is also ensured by NOX1 localisation in specific microdomains in the cell’s plasma membrane. Through channels such as 507:(GSH:GSSG). Antioxidant enzymes counterbalance redox signalling by eliminating the involved molecules, importantly superoxide anion and nitric oxide. Redox signalling is critical for normal processes such as proliferation, differentiation, as well as vascular function and neurotransmission. It is also involved in disease states such as 456:. This is the fusion of granules with the phagolysosome, releasing their contents, including myeloperoxidase. As many microbicidal products are formed during respiratory burst, the importance of individual molecules in killing invading pathogens is not wholly understood. 437:, inducing protein crosslinking. Both oxidations result in protein aggregation, and ultimately, cell death. Sulfhydryl groups can be oxidised up to three times by three HClO molecules, forming sulfenic acids, sulfinic acids and 1724:
Wojtaszek P, Trethowan J, Bolwell GP (September 1995). "Specificity in the immobilisation of cell wall proteins in response to different elicitor molecules in suspension-cultured cells of French bean (Phaseolus vulgaris L.)".
657:, which is the death of a small number of host cells at the site of infection, for the purpose of limiting pathogenic infection. ROS production in plants can be used as a readout for successful pathogen recognition via a 414:, releasing Fe for the Fenton reaction. Peroxynitrite may also react with various amino acids in the peptide chain, thereby altering protein structure and subsequently, protein function. It most commonly oxidises 586:, NADPH oxidase inhibitors have been shown to be sufficient to block these growth factor pathways. Tumorigenic cells also simultaneously maintain high levels of antioxidants to protect against cancer cell death. 542:, usually produce far lower levels of ROS than neutrophils, and may require activation for their bactericidal properties. Instead, their transient oxidative burst regulates the inflammatory response by inducing 554:
Cancer cells can manipulate cell signalling by producing excess levels of ROS, thereby constitutively activating pathways to promote their cellular growth and proliferation. Implicated pathways include
239: 887:
Winterbourn CC (June 1985). "Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite".
478:, wherein NOX2 is defective. Phagocytosis may still occur, but without proper functioning NOX2, there is no superoxide production, and therefore no respiratory burst. The bacterial 223:
or enzymatically react with other molecules to give rise to other ROS. The phagocytic membrane reseals to limit exposure of the extracellular environment to the generated reactive
922:
Prütz WA (January 1998). "Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates".
852:
Pereira WE, Hoyano Y, Summons RE, Bacon VA, Duffield AM (June 1973). "Chlorination studies. II. The reaction of aqueous hypochlorous acid with alpha-amino acids and dipeptides".
1681:
Bradley DJ, Kjellbom P, Lamb CJ (July 1992). "Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response".
1479:
Bradley DJ, Kjellbom P, Lamb CJ (July 1992). "Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response".
1091: 422:
nitration through other generated RNS. Altered protein function includes changes in enzyme catalytic activity, cytoskeletal organisation and cell signal transduction.
1524:"Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley" 1298:
Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et al. (March 1997). "Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts".
1921:
Levine A, Tenhaken R, Dixon R, Lamb C (November 1994). "H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response".
530:
or diffusion, hydrogen peroxide enters the cytosol. There, it oxidises the cysteine groups of redox-sensitive proteins, which can then transduce signals.
1452:
Doke N (1985-11-01). "NADPH-dependent O2− generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans".
1115:
Schafer FQ, Buettner GR (June 2001). "Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple".
238: 495:
In non-phagocytic cells, oxidative burst products are used in intracellular signalling pathways. The generated ROS achieve this via shifting the cell
445:, which are increasingly irreversible and bactericidal. Meanwhile, methionine oxidation is reversible. HOCl can also react with primary or secondary 452:
Integral to hypochlorous acid formation is myeloperoxidase. Myeloperoxidase is most abundant in neutrophils, wherein phagocytosis is accompanied by
1583:"Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response" 459:
Due to the high toxicity of generated antimicrobial products including ROS, neutrophils have a short life span to limit host tissue damage during
449:, producing chloroamines which are toxic to bacteria. Protein cross linking and aggregation may also occur, as well as disruption of FeS groups. 1819:
Chen Z, Silva H, Klessig DF (December 1993). "Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid".
653:, which is analogous to innate immunity in animals, is also induced in the exposed plant cells. Hydrogen peroxide exposure may also result in 630: 1006:
Hampton MB, Kettle AJ, Winterbourn CC (November 1998). "Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing".
410:, which are responsible for its bactericidal effects. It may react directly with proteins that contain transition metal centers, such as 1642:"The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity" 1236:
Forman HJ, Torres M (December 2002). "Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling".
1150:
Forman HJ, Torres M (December 2002). "Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling".
1964:
Keppler LD (1989). "Active Oxygen Production During a Bacteria-Induced Hypersensitive Reaction in Tobacco Suspension Cells".
471: 425:
Hypochlorous acid reacts with a range of biomolecules, including DNA, lipids and proteins. HClO may oxidise cysteines and
650: 1187:"The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells" 141: 1271:
Szatrowski TP, Nathan CF (February 1991). "Production of large amounts of hydrogen peroxide by human tumor cells".
538:
Oxidative burst in phagocytes is most commonly associated with bacterial killing. However, macrophages, especially
242:
Generation of reactive oxygen and reactive nitrogen species in the phagolysosome, implicated in respiratory burst.
564: 247: 179: 270: 1998: 654: 523: 38: 2014: 1341:
Gorrini C, Harris IS, Mak TW (December 2013). "Modulation of oxidative stress as an anticancer strategy".
504: 330: 167: 1875: 1828: 1594: 1535: 391:
The exposure to these reactive species in the respiratory burst results in pathology. This is due to
258: 152: 2019: 539: 274: 220: 1770:"Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance" 1946: 1750: 1706: 1504: 1366: 1323: 1031: 546:
synthesis for redox signalling, resulting in an influx of neutrophils and activated macrophages.
403: 251: 629:
Oxidative burst acts as a defence mechanism to pathogen infection in plants. This is seen post
571:. In humans, mitochondrial ROS is required alongside those released in the oxidative burst for 1938: 1903: 1844: 1801: 1742: 1698: 1663: 1622: 1563: 1496: 1434: 1358: 1315: 1280: 1253: 1218: 1167: 1132: 1072: 1023: 1019: 988: 939: 904: 869: 834: 785: 750: 715: 306: 58: 1994: 1973: 1930: 1893: 1883: 1836: 1791: 1781: 1734: 1690: 1653: 1612: 1602: 1553: 1543: 1488: 1461: 1424: 1413:"The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1" 1393: 1350: 1307: 1245: 1208: 1198: 1159: 1124: 1062: 1015: 978: 970: 931: 896: 861: 824: 816: 777: 742: 705: 695: 392: 266: 17: 781: 399: 262: 94: 1049:
Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (May 2000).
733:
Leto TL, Geiszt M (September 2006). "Role of Nox family NADPH oxidases in host defense".
1879: 1832: 1598: 1539: 1213: 1186: 983: 958: 829: 804: 710: 683: 646: 638: 602: 434: 171: 83: 1796: 1769: 1617: 1582: 1128: 2008: 1934: 1898: 1863: 1694: 1558: 1523: 1492: 1465: 900: 865: 642: 641:). As in animals, the production of reactive oxygen species in plants is mediated by 519: 453: 438: 367: 189:
membrane. Post bacterial phagocytosis, it is activated, producing superoxide via its
186: 159: 125: 90: 1754: 1710: 1508: 1384:
Warburg O (January 1908). "Beobachtungen über die Oxydationsprozesse im Seeigelei".
1370: 1327: 1035: 1950: 460: 338: 305:
ions, prominently chloride ions, myeloperoxidase uses hydrogen peroxide to produce
224: 121: 1311: 158:
Respiratory burst requires a 10 to 20 fold increase in oxygen consumption through
1429: 1412: 1397: 618: 605:
activity following an increase in oxygen consumption. This is essential for the
500: 117: 1868:
Proceedings of the National Academy of Sciences of the United States of America
1587:
Proceedings of the National Academy of Sciences of the United States of America
1528:
Proceedings of the National Academy of Sciences of the United States of America
820: 1067: 1050: 662: 610: 606: 598:
egg. This is believed to be evolutionally divergent from that in neutrophils.
595: 583: 475: 426: 354: 133: 129: 106: 102: 42: 1888: 1840: 746: 576: 572: 527: 479: 407: 334: 137: 1907: 1805: 1667: 1626: 1607: 1548: 1438: 1362: 1257: 1222: 1171: 1136: 1076: 992: 935: 838: 789: 754: 719: 700: 246:
There are 3 main pathways for the generation of reactive oxygen species or
1942: 1848: 1786: 1746: 1702: 1567: 1500: 1319: 1284: 1027: 974: 943: 908: 873: 1977: 1658: 1641: 1249: 1203: 1163: 614: 556: 543: 419: 415: 342: 175: 148: 144: 1738: 658: 140:, and the respiratory burst is vital for the subsequent degradation of 1864:"Function of the oxidative burst in hypersensitive disease resistance" 1092:"Chronic Granulomatous Disease (CGD) - Immunology; Allergic Disorders" 1055:
Laboratory Investigation; A Journal of Technical Methods and Pathology
508: 433:
and sulfur groups respectively. The former leads to the formation of
302: 1354: 594:
Most notably, oxidative burst post fertilisation can be seen in the
499:
state. This may be monitored by the ratio of the antioxidant enzyme
1522:
Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (April 1997).
1051:"Neutrophils: molecules, functions and pathophysiological aspects" 496: 446: 430: 237: 190: 1640:
Morales J, Kadota Y, Zipfel C, Molina A, Torres MA (March 2016).
634: 579: 568: 560: 515: 163: 98: 1862:
Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (May 1995).
136:, are especially implicated in the respiratory burst. They are 411: 684:"Functions of ROS in Macrophages and Antimicrobial Immunity" 193:
centre, which transfers electrons from cytosolic NADPH to O
1238:
American Journal of Respiratory and Critical Care Medicine
1152:
American Journal of Respiratory and Critical Care Medicine
518:
transiently produces a burst of superoxide in response to
366:
Nitric oxide may react with superoxide anions to produce
178:
breakdown is vital to produce NADPH. This occurs via the
889:
Biochimica et Biophysica Acta (BBA) - General Subjects
805:"Nitric oxide and peroxynitrite in health and disease" 1386:
Hoppe-Seyler's Zeitschrift für physiologische Chemie
1185:Di Marzo N, Chisci E, Giovannoni R (October 2018). 959:"Antimicrobial actions of reactive oxygen species" 633:detection by cell-surface located receptors (e.g. 768:Imlay JA (2003). "Pathways of oxidative damage". 1768:Brisson LF, Tenhaken R, Lamb C (December 1994). 803:Pacher P, Beckman JS, Liaudet L (January 2007). 265:) generates hydrogen peroxide from superoxide. 1581:Torres MA, Dangl JL, Jones JD (January 2002). 1411:Wong JL, Créton R, Wessel GM (December 2004). 97:. Respiratory burst is also implicated in the 8: 333:(the inducible isoform, iNOS, in immunity) 1997:at the U.S. National Library of Medicine 1897: 1887: 1795: 1785: 1657: 1616: 1606: 1557: 1547: 1428: 1212: 1202: 1066: 1020:10.1182/blood.V92.9.3007.421k47_3007_3017 982: 828: 709: 699: 398:Notably, peroxynitrite is a very strong 234:Pathways for reactive species generation 924:Archives of Biochemistry and Biophysics 674: 609:of the ovum proteins to prevent lethal 582:cells. However, in oncogenic Kras mice 89:This is usually utilised for mammalian 782:10.1146/annurev.micro.57.030502.090938 166:in humans) activity. NADPH is the key 277:, of which are both catalyzed by Fe. 151:. This is an important aspect of the 7: 1117:Free Radical Biology & Medicine 682:Herb M, Schramm M (February 2021). 735:Antioxidants & Redox Signaling 25: 601:Hydrogen peroxide is produced by 474:is an inherited disease of human 185:The NOX2 enzyme is bound in the 1096:MSD Manual Professional Edition 349:2L-arginine + 3NADPH + 3 H + 4O 1646:Journal of Experimental Botany 1343:Nature Reviews. Drug Discovery 37:) is the rapid release of the 1: 1454:Physiological Plant Pathology 1312:10.1126/science.275.5306.1649 1129:10.1016/S0891-5849(01)00480-4 854:Biochimica et Biophysica Acta 770:Annual Review of Microbiology 472:Chronic Granulomatous Disease 406:, protein oxidation, protein 27:Immune system chemical weapon 1935:10.1016/0092-8674(94)90544-4 1695:10.1016/0092-8674(92)90530-p 1493:10.1016/0092-8674(92)90530-P 1466:10.1016/0048-4059(85)90044-X 1430:10.1016/j.devcel.2004.10.014 957:Fang FC (6 September 2011). 901:10.1016/0304-4165(85)90120-5 866:10.1016/0304-4165(73)90198-0 651:Systemic acquired resistance 418:, and may indirectly induce 18:Neutrophil respiratory burst 1398:10.1515/bchm2.1908.57.1-2.1 269:are then generated via the 128:. Myeloid cells, including 93:, but also plays a role in 2036: 821:10.1152/physrev.00029.2006 514:The NADPH oxidase isoform 395:to the engulfed bacteria. 1068:10.1038/labinvest.3780067 503:to its oxidised product, 387:Defense against pathogens 248:reactive nitrogen species 180:pentose phosphate pathway 1999:Medical Subject Headings 219:The superoxide can then 1889:10.1073/pnas.92.10.4158 1841:10.1126/science.8266079 1727:Plant Molecular Biology 747:10.1089/ars.2006.8.1549 655:hypersensitive response 575:pathway stimulation in 105:. It may also occur in 39:reactive oxygen species 1608:10.1073/pnas.012452499 1549:10.1073/pnas.94.9.4800 936:10.1006/abbi.1997.0440 701:10.3390/antiox10020313 505:glutathione disulphide 243: 1787:10.1105/tpc.6.12.1703 975:10.1128/mBio.00141-11 809:Physiological Reviews 331:Nitric oxide synthase 241: 101:of animals following 91:immunological defence 1978:10.1094/phyto-79-974 1250:10.1164/rccm.2206007 1204:10.3390/cells7100156 1164:10.1164/rccm.2206007 540:alveolar macrophages 491:Non-phagocytic cells 271:Haber–Weiss reaction 259:Superoxide dismutase 120:can be divided into 1880:1995PNAS...92.4158T 1833:1993Sci...262.1883C 1599:2002PNAS...99..517T 1540:1997PNAS...94.4800J 486:Cellular signalling 301:In the presence of 261:(or alternatively, 170:of NOX2, and bears 1739:10.1007/BF00032668 1659:10.1093/jxb/erv558 1417:Developmental Cell 404:lipid peroxidation 337:the production of 321:+ Cl —> ClO + H 244: 197:in the phagosome. 82:), from different 1995:Respiratory+burst 1780:(12): 1703–1712. 1306:(5306): 1649–52. 1244:(12 Pt 2): S4-8. 1158:(12 Pt 2): S4-8. 741:(9–10): 1549–61. 431:sulfhydryl groups 402:that can lead to 307:hypochlorous acid 293:—> OH + OH + O 267:Hydroxyl radicals 59:hydrogen peroxide 31:Respiratory burst 16:(Redirected from 2027: 1982: 1981: 1961: 1955: 1954: 1918: 1912: 1911: 1901: 1891: 1859: 1853: 1852: 1827:(5141): 1883–6. 1816: 1810: 1809: 1799: 1789: 1765: 1759: 1758: 1721: 1715: 1714: 1678: 1672: 1671: 1661: 1637: 1631: 1630: 1620: 1610: 1578: 1572: 1571: 1561: 1551: 1519: 1513: 1512: 1476: 1470: 1469: 1449: 1443: 1442: 1432: 1408: 1402: 1401: 1381: 1375: 1374: 1338: 1332: 1331: 1295: 1289: 1288: 1268: 1262: 1261: 1233: 1227: 1226: 1216: 1206: 1182: 1176: 1175: 1147: 1141: 1140: 1123:(11): 1191–212. 1112: 1106: 1105: 1103: 1102: 1087: 1081: 1080: 1070: 1046: 1040: 1039: 1003: 997: 996: 986: 954: 948: 947: 919: 913: 912: 884: 878: 877: 849: 843: 842: 832: 800: 794: 793: 765: 759: 758: 730: 724: 723: 713: 703: 679: 482:is not cleared. 393:oxidative damage 208:+ NADPH —> 2O 81: 80: 79: 71: 70: 56: 55: 54: 43:superoxide anion 21: 2035: 2034: 2030: 2029: 2028: 2026: 2025: 2024: 2005: 2004: 1991: 1986: 1985: 1963: 1962: 1958: 1920: 1919: 1915: 1874:(10): 4158–63. 1861: 1860: 1856: 1818: 1817: 1813: 1767: 1766: 1762: 1723: 1722: 1718: 1680: 1679: 1675: 1639: 1638: 1634: 1580: 1579: 1575: 1521: 1520: 1516: 1478: 1477: 1473: 1451: 1450: 1446: 1410: 1409: 1405: 1383: 1382: 1378: 1355:10.1038/nrd4002 1340: 1339: 1335: 1297: 1296: 1292: 1273:Cancer Research 1270: 1269: 1265: 1235: 1234: 1230: 1184: 1183: 1179: 1149: 1148: 1144: 1114: 1113: 1109: 1100: 1098: 1089: 1088: 1084: 1048: 1047: 1043: 1005: 1004: 1000: 956: 955: 951: 921: 920: 916: 886: 885: 881: 851: 850: 846: 802: 801: 797: 767: 766: 762: 732: 731: 727: 681: 680: 676: 671: 627: 592: 552: 536: 493: 488: 469: 442: 435:disulfide bonds 400:oxidising agent 389: 383: 381: 380: 376: 362: 360: 352: 347: 346: 327: 326: 324: 320: 316: 311: 310: 298: 297: 296: 292: 288: 284: 279: 278: 275:Fenton reaction 263:myeloperoxidase 236: 230: 216: 214: 211: 207: 200: 196: 153:innate immunity 115: 95:cell signalling 78: 75: 74: 73: 69: 66: 65: 64: 62: 53: 50: 49: 48: 46: 35:oxidative burst 28: 23: 22: 15: 12: 11: 5: 2033: 2031: 2023: 2022: 2017: 2007: 2006: 2003: 2002: 1990: 1989:External links 1987: 1984: 1983: 1966:Phytopathology 1956: 1913: 1854: 1811: 1774:The Plant Cell 1760: 1733:(6): 1075–87. 1716: 1673: 1652:(6): 1663–76. 1632: 1573: 1514: 1471: 1460:(3): 311–322. 1444: 1403: 1376: 1349:(12): 931–47. 1333: 1290: 1263: 1228: 1177: 1142: 1107: 1082: 1041: 1014:(9): 3007–17. 998: 949: 914: 879: 844: 815:(1): 315–424. 795: 760: 725: 673: 672: 670: 667: 647:plant immunity 626: 623: 591: 588: 551: 548: 535: 532: 492: 489: 487: 484: 468: 465: 440: 388: 385: 378: 374: 372: 364: 363: 358: 350: 348: 328: 322: 318: 314: 312: 299: 294: 290: 286: 282: 280: 252:effector cells 235: 232: 209: 205: 202: 194: 172:reducing power 126:lymphoid cells 114: 111: 76: 67: 51: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2032: 2021: 2018: 2016: 2015:Immune system 2013: 2012: 2010: 2000: 1996: 1993: 1992: 1988: 1979: 1975: 1971: 1967: 1960: 1957: 1952: 1948: 1944: 1940: 1936: 1932: 1929:(4): 583–93. 1928: 1924: 1917: 1914: 1909: 1905: 1900: 1895: 1890: 1885: 1881: 1877: 1873: 1869: 1865: 1858: 1855: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1815: 1812: 1807: 1803: 1798: 1793: 1788: 1783: 1779: 1775: 1771: 1764: 1761: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1720: 1717: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1677: 1674: 1669: 1665: 1660: 1655: 1651: 1647: 1643: 1636: 1633: 1628: 1624: 1619: 1614: 1609: 1604: 1600: 1596: 1593:(1): 517–22. 1592: 1588: 1584: 1577: 1574: 1569: 1565: 1560: 1555: 1550: 1545: 1541: 1537: 1534:(9): 4800–5. 1533: 1529: 1525: 1518: 1515: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1475: 1472: 1467: 1463: 1459: 1455: 1448: 1445: 1440: 1436: 1431: 1426: 1423:(6): 801–14. 1422: 1418: 1414: 1407: 1404: 1399: 1395: 1392:(1–2): 1–16. 1391: 1387: 1380: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1337: 1334: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1294: 1291: 1286: 1282: 1278: 1274: 1267: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1232: 1229: 1224: 1220: 1215: 1210: 1205: 1200: 1196: 1192: 1188: 1181: 1178: 1173: 1169: 1165: 1161: 1157: 1153: 1146: 1143: 1138: 1134: 1130: 1126: 1122: 1118: 1111: 1108: 1097: 1093: 1090:Fernandez J. 1086: 1083: 1078: 1074: 1069: 1064: 1061:(5): 617–53. 1060: 1056: 1052: 1045: 1042: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1002: 999: 994: 990: 985: 980: 976: 972: 968: 964: 960: 953: 950: 945: 941: 937: 933: 930:(1): 183–91. 929: 925: 918: 915: 910: 906: 902: 898: 895:(2): 204–10. 894: 890: 883: 880: 875: 871: 867: 863: 860:(1): 170–80. 859: 855: 848: 845: 840: 836: 831: 826: 822: 818: 814: 810: 806: 799: 796: 791: 787: 783: 779: 775: 771: 764: 761: 756: 752: 748: 744: 740: 736: 729: 726: 721: 717: 712: 707: 702: 697: 693: 689: 685: 678: 675: 668: 666: 665:based assay. 664: 660: 656: 652: 648: 644: 643:NADPH oxidase 640: 636: 632: 624: 622: 620: 616: 612: 608: 607:cross-linking 604: 599: 597: 590:Fertilisation 589: 587: 585: 581: 578: 574: 570: 566: 562: 558: 549: 547: 545: 541: 533: 531: 529: 525: 521: 520:growth factor 517: 512: 510: 506: 502: 498: 490: 485: 483: 481: 477: 473: 466: 464: 462: 457: 455: 454:degranulation 450: 448: 444: 436: 432: 428: 423: 421: 417: 413: 409: 405: 401: 396: 394: 386: 384: 371: 369: 368:peroxynitrite 356: 344: 340: 336: 332: 329: 308: 304: 300: 276: 272: 268: 264: 260: 257: 256: 255: 253: 249: 240: 233: 231: 228: 226: 225:free radicals 222: 221:spontaneously 217: 213: 201: 198: 192: 188: 187:phagolysosome 183: 181: 177: 173: 169: 165: 161: 160:NADPH oxidase 156: 154: 150: 146: 143: 139: 135: 131: 127: 123: 122:myeloid cells 119: 112: 110: 108: 104: 103:fertilization 100: 96: 92: 87: 85: 60: 44: 40: 36: 32: 19: 1969: 1965: 1959: 1926: 1922: 1916: 1871: 1867: 1857: 1824: 1820: 1814: 1777: 1773: 1763: 1730: 1726: 1719: 1689:(1): 21–30. 1686: 1682: 1676: 1649: 1645: 1635: 1590: 1586: 1576: 1531: 1527: 1517: 1487:(1): 21–30. 1484: 1480: 1474: 1457: 1453: 1447: 1420: 1416: 1406: 1389: 1385: 1379: 1346: 1342: 1336: 1303: 1299: 1293: 1279:(3): 794–8. 1276: 1272: 1266: 1241: 1237: 1231: 1194: 1190: 1180: 1155: 1151: 1145: 1120: 1116: 1110: 1099:. Retrieved 1095: 1085: 1058: 1054: 1044: 1011: 1007: 1001: 966: 962: 952: 927: 923: 917: 892: 888: 882: 857: 853: 847: 812: 808: 798: 773: 769: 763: 738: 734: 728: 691: 688:Antioxidants 687: 677: 628: 600: 593: 553: 550:Cancer cells 537: 513: 494: 470: 461:inflammation 458: 451: 424: 397: 390: 382: 365: 339:nitric oxide 245: 229: 218: 215: 203: 199: 184: 157: 142:internalised 118:Immune cells 116: 88: 34: 30: 29: 1197:(10): 156. 776:: 395–418. 619:glutathione 603:egg oxidase 584:fibroblasts 534:Macrophages 501:glutathione 476:neutrophils 427:methionines 212:+ NADP + H 134:neutrophils 130:macrophages 107:plant cells 2020:Leukocytes 2009:Categories 1972:(9): 974. 1101:2020-03-12 694:(2): 313. 669:References 663:peroxidase 611:polyspermy 596:sea urchin 429:via their 377:+ NO → ONO 361:O + 3NADP 357:+ 2NO + 4H 355:citrulline 343:L-arginine 138:phagocytic 625:In plants 577:oncogenic 573:mitogenic 528:aquaporin 480:infection 408:nitration 335:catalyses 250:(RNS) in 168:substrate 149:pathogens 147:or other 1908:11607542 1806:12244231 1755:23319754 1711:12312001 1668:26798024 1627:11756663 1509:12312001 1439:15572124 1371:20604657 1363:24287781 1328:19733670 1258:12471082 1223:30287799 1172:12471082 1137:11368918 1077:10830774 1036:45991444 993:21896680 839:17237348 790:14527285 755:16987010 720:33669824 615:catalase 544:cytokine 420:tyrosine 416:cysteine 176:Glycogen 145:bacteria 113:Immunity 1951:1488844 1943:7954825 1876:Bibcode 1849:8266079 1829:Bibcode 1821:Science 1747:7548825 1703:1623521 1595:Bibcode 1568:9114072 1536:Bibcode 1501:1623521 1320:9054359 1300:Science 1285:1846317 1214:6211135 1028:9787133 984:3171981 944:9439597 909:2986713 874:4745674 830:2248324 711:7923022 659:luminol 467:Disease 370:anion. 353:—> 2 273:or the 86:types. 41:(ROS), 2001:(MeSH) 1949:  1941:  1906:  1896:  1847:  1804:  1797:160556 1794:  1753:  1745:  1709:  1701:  1666:  1625:  1618:117592 1615:  1566:  1556:  1507:  1499:  1437:  1369:  1361:  1326:  1318:  1283:  1256:  1221:  1211:  1170:  1135:  1075:  1034:  1026:  991:  981:  942:  907:  872:  837:  827:  788:  753:  718:  708:  522:(e.g. 509:cancer 447:amines 303:halide 57:) and 1947:S2CID 1899:41903 1751:S2CID 1707:S2CID 1559:20805 1505:S2CID 1367:S2CID 1324:S2CID 1191:Cells 1032:S2CID 1008:Blood 969:(5). 645:. In 631:PAMPs 569:MAPKs 557:NF-κB 497:redox 341:from 191:redox 1939:PMID 1923:Cell 1904:PMID 1845:PMID 1802:PMID 1743:PMID 1699:PMID 1683:Cell 1664:PMID 1623:PMID 1564:PMID 1497:PMID 1481:Cell 1435:PMID 1359:PMID 1316:PMID 1281:PMID 1254:PMID 1219:PMID 1168:PMID 1133:PMID 1073:PMID 1024:PMID 989:PMID 963:mBio 940:PMID 905:PMID 870:PMID 835:PMID 786:PMID 751:PMID 716:PMID 635:FLS2 617:and 580:KRAS 567:and 565:HIFs 561:PI3K 516:NOX1 439:R–SO 164:NOX2 132:and 124:and 99:ovum 84:cell 33:(or 1974:doi 1931:doi 1894:PMC 1884:doi 1837:doi 1825:262 1792:PMC 1782:doi 1735:doi 1691:doi 1654:doi 1613:PMC 1603:doi 1554:PMC 1544:doi 1489:doi 1462:doi 1425:doi 1394:doi 1351:doi 1308:doi 1304:275 1246:doi 1242:166 1209:PMC 1199:doi 1160:doi 1156:166 1125:doi 1063:doi 1016:doi 979:PMC 971:doi 932:doi 928:349 897:doi 893:840 862:doi 858:313 825:PMC 817:doi 778:doi 743:doi 706:PMC 696:doi 639:EFR 637:or 524:EGF 412:FeS 285:+ H 2011:: 1970:79 1968:. 1945:. 1937:. 1927:79 1925:. 1902:. 1892:. 1882:. 1872:92 1870:. 1866:. 1843:. 1835:. 1823:. 1800:. 1790:. 1776:. 1772:. 1749:. 1741:. 1731:28 1729:. 1705:. 1697:. 1687:70 1685:. 1662:. 1650:67 1648:. 1644:. 1621:. 1611:. 1601:. 1591:99 1589:. 1585:. 1562:. 1552:. 1542:. 1532:94 1530:. 1526:. 1503:. 1495:. 1485:70 1483:. 1458:27 1456:. 1433:. 1419:. 1415:. 1390:57 1388:. 1365:. 1357:. 1347:12 1345:. 1322:. 1314:. 1302:. 1277:51 1275:. 1252:. 1240:. 1217:. 1207:. 1193:. 1189:. 1166:. 1154:. 1131:. 1121:30 1119:. 1094:. 1071:. 1059:80 1057:. 1053:. 1030:. 1022:. 1012:92 1010:. 987:. 977:. 965:. 961:. 938:. 926:. 903:. 891:. 868:. 856:. 833:. 823:. 813:87 811:. 807:. 784:. 774:57 772:. 749:. 737:. 714:. 704:. 692:10 690:. 686:. 621:. 563:, 559:, 511:. 463:. 345:. 309:. 254:: 227:. 204:2O 182:. 174:. 155:. 109:. 1980:. 1976:: 1953:. 1933:: 1910:. 1886:: 1878:: 1851:. 1839:: 1831:: 1808:. 1784:: 1778:6 1757:. 1737:: 1713:. 1693:: 1670:. 1656:: 1629:. 1605:: 1597:: 1570:. 1546:: 1538:: 1511:. 1491:: 1468:. 1464:: 1441:. 1427:: 1421:7 1400:. 1396:: 1373:. 1353:: 1330:. 1310:: 1287:. 1260:. 1248:: 1225:. 1201:: 1195:7 1174:. 1162:: 1139:. 1127:: 1104:. 1079:. 1065:: 1038:. 1018:: 995:. 973:: 967:2 946:. 934:: 911:. 899:: 876:. 864:: 841:. 819:: 792:. 780:: 757:. 745:: 739:8 722:. 698:: 661:- 443:H 441:3 379:2 375:2 373:O 359:2 351:2 325:O 323:2 319:2 317:O 315:2 313:H 295:2 291:2 289:O 287:2 283:2 281:O 210:2 206:2 195:2 162:( 77:2 72:O 68:2 63:H 61:( 52:2 47:O 45:( 20:)

Index

Neutrophil respiratory burst
reactive oxygen species
superoxide anion
hydrogen peroxide
cell
immunological defence
cell signalling
ovum
fertilization
plant cells
Immune cells
myeloid cells
lymphoid cells
macrophages
neutrophils
phagocytic
internalised
bacteria
pathogens
innate immunity
NADPH oxidase
NOX2
substrate
reducing power
Glycogen
pentose phosphate pathway
phagolysosome
redox
spontaneously
free radicals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.