Knowledge (XXG)

Constructive proof

Source đź“ť

1693:
conjecture (in the former case) or a constructive proof that Goldbach's conjecture is false (in the latter case). Because no such proof is known, the quoted statement must also not have a known constructive proof. However, it is entirely possible that Goldbach's conjecture may have a constructive proof (as we do not know at present whether it does), in which case the quoted statement would have a constructive proof as well, albeit one that is unknown at present. The main practical use of weak counterexamples is to identify the "hardness" of a problem. For example, the counterexample just shown shows that the quoted statement is "at least as hard to prove" as Goldbach's conjecture. Weak counterexamples of this sort are often related to the
1656: 1487: 1445:
to show that the statement is non-constructive. This sort of counterexample shows that the statement implies some principle that is known to be non-constructive. If it can be proved constructively that the statement implies some principle that is not constructively provable, then the statement itself
1692:
Several facts about the real number α can be proved constructively. However, based on the different meaning of the words in constructive mathematics, if there is a constructive proof that "α = 0 or α ≠ 0" then this would mean that there is a constructive proof of Goldbach's
1651:{\displaystyle a(n)={\begin{cases}(1/2)^{n}&{\mbox{if every even natural number in the interval }}{\mbox{ is the sum of two primes}},\\(1/2)^{k}&{\mbox{if }}k{\mbox{ is the least even natural number in the interval }}{\mbox{ which is not the sum of two primes}}\end{cases}}} 1468:
Brouwer also provided "weak" counterexamples. Such counterexamples do not disprove a statement, however; they only show that, at present, no constructive proof of the statement is known. One weak counterexample begins by taking some unsolved problem of mathematics, such as
1171: 1331: 574:
is constructive. But a common way of simplifying Euclid's proof postulates that, contrary to the assertion in the theorem, there are only a finite number of them, in which case there is a largest one, denoted
60:), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an 1066: 774: 1465:
develops this idea further by classifying various principles in terms of "how nonconstructive" they are, by showing they are equivalent to various fragments of the law of the excluded middle.
364: 850: 1230: 1013: 720: 431: 477: 289: 227: 79:
is a mathematical philosophy that rejects all proof methods that involve the existence of objects that are not explicitly built. This excludes, in particular, the use of the
118: 1057: 937: 808: 1371: 1396: 511: 548: 666: 1033: 980: 960: 913: 893: 873: 639: 619: 1425:". However, the proof of the existence of this finite set is not constructive, and the forbidden minors are not actually specified. They are still unknown. 1722: 91:, and induces a different meaning for some terminology (for example, the term "or" has a stronger meaning in constructive mathematics than in classical). 1706: 1774:
Circles disturbed: the interplay of mathematics and narrative — Chapter 4. Hilbert on Theology and Its Discontents The Origin Myth of Modern Mathematics
1821:
Hermann, Grete (1926). "Die Frage der endlich vielen Schritte in der Theorie der Polynomideale: Unter Benutzung nachgelassener Sätze von K. Hentzelt".
1449:
For example, a particular statement may be shown to imply the law of the excluded middle. An example of a Brouwerian counterexample of this type is
1192:; it merely gives a number of possibilities (in this case, two mutually exclusive possibilities) and shows that one of them—but does not show 2114: 2078: 157:
Until the end of 19th century, all mathematical proofs were essentially constructive. The first non-constructive constructions appeared with
94:
Some non-constructive proofs show that if a certain proposition is false, a contradiction ensues; consequently the proposition must be true (
1254: 1870: 1248:
proof of the theorem that a power of an irrational number to an irrational exponent may be rational gives an actual example, such as:
2061: 2039: 1789: 180:. From a philosophical point of view, the former is especially interesting, as implying the existence of a well specified object. 1694: 1462: 1166:{\displaystyle \left({\sqrt {2}}^{\sqrt {2}}\right)^{\sqrt {2}}={\sqrt {2}}^{({\sqrt {2}}\cdot {\sqrt {2}})}={\sqrt {2}}^{2}=2.} 126: 725: 1233: 675:
The following 1953 proof by Dov Jarden has been widely used as an example of a non-constructive proof since at least 1970:
2109: 2025: 1410: 173: 76: 297: 1689:
converges to some real number α, according to the usual treatment of real numbers in constructive mathematics.
517: 177: 134: 80: 146: 1748: 369:
Such a non-constructive existence theorem was such a surprise for mathematicians of that time that one of them,
1434: 816: 72: 1470: 1885:
Dov Jarden, "A simple proof that a power of an irrational number to an irrational exponent may be rational",
1202: 985: 692: 1458: 1450: 1184:, which is not valid within a constructive proof. The non-constructive proof does not construct an example 1473:, which asks whether every even natural number larger than 4 is the sum of two primes. Define a sequence 1181: 387: 99: 95: 436: 433:
which is not a constructive proof in the strong sense, as she used Hilbert's result. She proved that, if
248: 186: 2066: 1727: 1418: 1511: 1891: 1406: 722:
is either rational or irrational. If it is rational, our statement is proved. If it is irrational,
571: 43: 1975: 1932: 1846: 1803: 1038: 918: 789: 591:. Without establishing a specific prime number, this proves that one exists that is greater than 242: 122: 39: 2008: 1909: 1343: 672:." This theorem can be proven by using both a constructive proof, and a non-constructive proof. 172:
The first use of non-constructive proofs for solving previously considered problems seems to be
2092: 1994: 1376: 482: 2074: 2057: 2035: 1967: 1838: 1795: 1785: 1717: 687:
A Simple Proof That a Power of an Irrational Number to an Irrational Exponent May Be Rational.
599: 130: 84: 55: 1866:, "The Root-2 Proof as an Example of Non-constructivity", unpublished paper, September 2014, 1461:, since the axiom of choice implies the law of excluded middle in such systems. The field of 1959: 1924: 1867: 1863: 1830: 1777: 1422: 1337: 810: 523: 644: 1874: 1682: 1454: 669: 138: 88: 2070: 1438: 1176:
At its core, this proof is non-constructive because it relies on the statement "Either
1018: 965: 945: 898: 878: 858: 624: 604: 238: 142: 1776:. Doxiadēs, Apostolos K., 1953-, Mazur, Barry. Princeton: Princeton University Press. 17: 2103: 1850: 1807: 1711: 381: 1936: 587:
numbers). Either this number is prime, or all of its prime factors are greater than
46:
by creating or providing a method for creating the object. This is in contrast to a
2049: 563: 162: 158: 107: 2030: 1236:, but this fact is irrelevant to the correctness of the non-constructive proof. 778:     Dov Jarden     Jerusalem 370: 166: 31: 2045: 1781: 1399: 230: 1971: 1842: 1799: 106:) has been accepted in some varieties of constructive mathematics, including 114: 1928: 1402:, 9 would be equal to 2, but the former is odd, and the latter is even. 1979: 1834: 1441:, as in classical mathematics. However, it is also possible to give a 520:, by considering as unknowns the finite number of coefficients of the 1755:(Summer 2018 ed.), Metaphysics Research Lab, Stanford University 1326:{\displaystyle a={\sqrt {2}}\,,\quad b=\log _{2}9\,,\quad a^{b}=3\,.} 567: 1963: 2073:(1988) "Constructivism in Mathematics: Volume 1" Elsevier Science. 516:
This provides an algorithm, as the problem is reduced to solving a
113:
Constructive proofs can be seen as defining certified mathematical
71:
may also refer to the stronger concept of a proof that is valid in
1414: 1910:"Nonconstructive tools for proving polynomial-time decidability" 1677:
is a well defined sequence, constructively. Moreover, because
1714:- author of the book "Foundations of Constructive Analysis". 1615: is the least even natural number in the interval  1644: 562:
First consider the theorem that there are an infinitude of
1180:
is rational or it is irrational"—an instance of the
129:
between proofs and programs, and such logical systems as
1908:
Fellows, Michael R.; Langston, Michael A. (1988-06-01).
1950:
Mandelkern, Mark (1989). "Brouwerian Counterexamples".
769:{\displaystyle ({\sqrt {2}}^{\sqrt {2}})^{\sqrt {2}}=2} 2096:
by Mark van Atten, Stanford Encyclopedia of Philosophy
1635: 1613: 1603: 1563: 1541: 1490: 1380: 1346: 1257: 1205: 1069: 1041: 1021: 988: 968: 948: 921: 901: 881: 861: 819: 792: 728: 695: 647: 627: 607: 526: 485: 439: 390: 300: 251: 189: 1650: 1543:if every even natural number in the interval  1390: 1365: 1325: 1224: 1165: 1051: 1027: 1007: 974: 954: 931: 907: 887: 867: 844: 802: 768: 714: 660: 633: 613: 542: 505: 471: 425: 358: 283: 221: 1718:Existence theorem § 'Pure' existence results 1673:) can be determined by exhaustive search, and so 479:exist, they can be found with degrees less than 183:The Nullstellensatz may be stated as follows: If 359:{\displaystyle f_{1}g_{1}+\ldots +f_{k}g_{k}=1.} 1998:, Lecture Notes in Mathematics 95, 1969, p. 102 962:is irrational, then the theorem is true, with 8: 875:is rational, then the theorem is true, with 852:. Either it is rational or it is irrational. 1723:Non-constructive algorithm existence proofs 1437:, a statement may be disproved by giving a 241:coefficients, which have no common complex 2056:(Fifth Edition). Oxford University Press. 1707:Constructivism (philosophy of mathematics) 1409:. A consequence of this theorem is that a 1196:one—must yield the desired example. 1747:Bridges, Douglas; Palmgren, Erik (2018), 1634: 1612: 1602: 1594: 1582: 1562: 1540: 1532: 1520: 1506: 1489: 1378: 1351: 1345: 1319: 1307: 1298: 1286: 1271: 1264: 1256: 1214: 1207: 1204: 1151: 1144: 1128: 1118: 1114: 1107: 1095: 1083: 1076: 1068: 1042: 1040: 1020: 997: 990: 987: 967: 947: 922: 920: 900: 880: 860: 845:{\displaystyle q={\sqrt {2}}^{\sqrt {2}}} 834: 827: 818: 813:, and 2 is rational. Consider the number 793: 791: 752: 740: 733: 727: 704: 697: 694: 652: 646: 626: 606: 531: 525: 495: 490: 484: 463: 444: 438: 414: 395: 389: 344: 334: 315: 305: 299: 275: 256: 250: 213: 194: 188: 119:Brouwer–Heyting–Kolmogorov interpretation 2054:An Introduction to the Theory of Numbers 1637: which is not the sum of two primes 1373:is also irrational: if it were equal to 375:"this is not mathematics, it is theology 2011:", Stanford Encyclopedia of Mathematics 1753:The Stanford Encyclopedia of Philosophy 1739: 1225:{\displaystyle {\sqrt {2}}^{\sqrt {2}}} 1008:{\displaystyle {\sqrt {2}}^{\sqrt {2}}} 715:{\displaystyle {\sqrt {2}}^{\sqrt {2}}} 598:Now consider the theorem "there exist 595:, contrary to the original postulate. 2031:Proof in Mathematics: An Introduction 42:that demonstrates the existence of a 7: 1446:cannot be constructively provable. 583:! + 1 (1 + the product of the first 426:{\displaystyle g_{1},\ldots ,g_{k},} 384:provided an algorithm for computing 1421:belong to a certain finite set of " 472:{\displaystyle g_{1},\ldots ,g_{k}} 284:{\displaystyle g_{1},\ldots ,g_{k}} 222:{\displaystyle f_{1},\ldots ,f_{k}} 1685:with a fixed rate of convergence, 1481:) of rational numbers as follows: 1457:is non-constructive in systems of 1405:A more substantial example is the 1340:is irrational, and 3 is rational. 25: 1772:McLarty, Colin (April 15, 2008). 1695:limited principle of omniscience 1463:constructive reverse mathematics 1302: 1275: 165:, and the formal definition of 117:: this idea is explored in the 1631: 1619: 1591: 1576: 1565: is the sum of two primes 1559: 1547: 1529: 1514: 1500: 1494: 1135: 1115: 749: 729: 27:Method of proof in mathematics 1: 1751:, in Zalta, Edward N. (ed.), 1417:if, and only if, none of its 1398:, then, by the properties of 1232:is irrational because of the 245:, then there are polynomials 2115:Constructivism (mathematics) 1453:, which shows that the full 1052:{\displaystyle {\sqrt {2}}} 932:{\displaystyle {\sqrt {2}}} 803:{\displaystyle {\sqrt {2}}} 579:. Then consider the number 127:Curry–Howard correspondence 2131: 1995:Principles of Intuitionism 1749:"Constructive Mathematics" 1429:Brouwerian counterexamples 1366:{\displaystyle \log _{2}9} 518:system of linear equations 135:intuitionistic type theory 81:law of the excluded middle 1782:10.1515/9781400842681.105 1443:Brouwerian counterexample 1391:{\displaystyle m \over n} 1234:Gelfond–Schneider theorem 506:{\displaystyle 2^{2^{n}}} 380:Twenty five years later, 174:Hilbert's Nullstellensatz 147:calculus of constructions 1435:constructive mathematics 73:constructive mathematics 2007:Mark van Atten, 2015, " 1459:constructive set theory 558:Non-constructive proofs 178:Hilbert's basis theorem 1652: 1392: 1367: 1327: 1226: 1182:law of excluded middle 1167: 1053: 1029: 1009: 976: 956: 933: 909: 889: 869: 846: 804: 782:In a bit more detail: 780: 770: 716: 662: 635: 615: 544: 543:{\displaystyle g_{i}.} 507: 473: 427: 360: 285: 223: 100:principle of explosion 96:proof by contradiction 57:pure existence theorem 48:non-constructive proof 18:Non-constructive proof 1823:Mathematische Annalen 1653: 1471:Goldbach's conjecture 1393: 1368: 1328: 1227: 1168: 1054: 1030: 1010: 977: 957: 934: 910: 890: 870: 847: 805: 776:proves our statement. 771: 717: 677: 663: 661:{\displaystyle a^{b}} 636: 616: 545: 508: 474: 428: 361: 286: 224: 2093:Weak counterexamples 2067:Anne Sjerp Troelstra 2028:and A. Daoud (2011) 2009:Weak Counterexamples 1952:Mathematics Magazine 1728:Probabilistic method 1488: 1451:Diaconescu's theorem 1413:can be drawn on the 1377: 1344: 1255: 1203: 1067: 1039: 1019: 986: 966: 946: 919: 899: 879: 859: 817: 790: 726: 693: 645: 625: 605: 524: 483: 437: 388: 298: 249: 237:indeterminates with 187: 153:A historical example 2110:Mathematical proofs 1929:10.1145/44483.44491 1892:Scripta Mathematica 1407:graph minor theorem 1240:Constructive proofs 44:mathematical object 1917:Journal of the ACM 1873:2014-10-23 at the 1835:10.1007/BF01206635 1648: 1643: 1639: 1617: 1607: 1567: 1545: 1384: 1363: 1323: 1222: 1163: 1049: 1025: 1005: 972: 952: 929: 905: 885: 865: 842: 800: 766: 712: 658: 631: 611: 600:irrational numbers 540: 503: 469: 423: 356: 281: 219: 123:constructive logic 104:ex falso quodlibet 69:constructive proof 50:(also known as an 36:constructive proof 2079:978-0-444-70506-8 1992:A. S. Troelstra, 1638: 1616: 1606: 1566: 1544: 1388: 1269: 1219: 1212: 1199:As it turns out, 1149: 1133: 1123: 1112: 1100: 1088: 1081: 1047: 1028:{\displaystyle b} 1002: 995: 975:{\displaystyle a} 955:{\displaystyle q} 927: 908:{\displaystyle b} 888:{\displaystyle a} 868:{\displaystyle q} 839: 832: 798: 757: 745: 738: 709: 702: 634:{\displaystyle b} 614:{\displaystyle a} 85:axiom of infinity 16:(Redirected from 2122: 2012: 2005: 1999: 1990: 1984: 1983: 1947: 1941: 1940: 1914: 1905: 1899: 1883: 1877: 1864:J. Roger Hindley 1861: 1855: 1854: 1818: 1812: 1811: 1769: 1763: 1762: 1761: 1760: 1744: 1657: 1655: 1654: 1649: 1647: 1646: 1640: 1636: 1618: 1614: 1608: 1604: 1599: 1598: 1586: 1568: 1564: 1546: 1542: 1537: 1536: 1524: 1423:forbidden minors 1397: 1395: 1394: 1389: 1379: 1372: 1370: 1369: 1364: 1356: 1355: 1338:square root of 2 1332: 1330: 1329: 1324: 1312: 1311: 1291: 1290: 1270: 1265: 1231: 1229: 1228: 1223: 1221: 1220: 1215: 1213: 1208: 1172: 1170: 1169: 1164: 1156: 1155: 1150: 1145: 1139: 1138: 1134: 1129: 1124: 1119: 1113: 1108: 1102: 1101: 1096: 1094: 1090: 1089: 1084: 1082: 1077: 1058: 1056: 1055: 1050: 1048: 1043: 1034: 1032: 1031: 1026: 1014: 1012: 1011: 1006: 1004: 1003: 998: 996: 991: 981: 979: 978: 973: 961: 959: 958: 953: 938: 936: 935: 930: 928: 923: 914: 912: 911: 906: 894: 892: 891: 886: 874: 872: 871: 866: 851: 849: 848: 843: 841: 840: 835: 833: 828: 809: 807: 806: 801: 799: 794: 775: 773: 772: 767: 759: 758: 753: 747: 746: 741: 739: 734: 721: 719: 718: 713: 711: 710: 705: 703: 698: 667: 665: 664: 659: 657: 656: 640: 638: 637: 632: 620: 618: 617: 612: 549: 547: 546: 541: 536: 535: 512: 510: 509: 504: 502: 501: 500: 499: 478: 476: 475: 470: 468: 467: 449: 448: 432: 430: 429: 424: 419: 418: 400: 399: 365: 363: 362: 357: 349: 348: 339: 338: 320: 319: 310: 309: 290: 288: 287: 282: 280: 279: 261: 260: 236: 228: 226: 225: 220: 218: 217: 199: 198: 98:). However, the 21: 2130: 2129: 2125: 2124: 2123: 2121: 2120: 2119: 2100: 2099: 2088: 2083: 2021: 2019:Further reading 2016: 2015: 2006: 2002: 1991: 1987: 1964:10.2307/2689939 1949: 1948: 1944: 1912: 1907: 1906: 1902: 1884: 1880: 1875:Wayback Machine 1862: 1858: 1820: 1819: 1815: 1792: 1771: 1770: 1766: 1758: 1756: 1746: 1745: 1741: 1736: 1703: 1683:Cauchy sequence 1665:, the value of 1642: 1641: 1600: 1590: 1573: 1572: 1538: 1528: 1507: 1486: 1485: 1455:axiom of choice 1431: 1375: 1374: 1347: 1342: 1341: 1303: 1282: 1253: 1252: 1242: 1206: 1201: 1200: 1143: 1106: 1075: 1071: 1070: 1065: 1064: 1037: 1036: 1017: 1016: 989: 984: 983: 964: 963: 944: 943: 917: 916: 897: 896: 877: 876: 857: 856: 826: 815: 814: 788: 787: 777: 748: 732: 724: 723: 696: 691: 690: 689: 682: 648: 643: 642: 623: 622: 603: 602: 560: 555: 527: 522: 521: 491: 486: 481: 480: 459: 440: 435: 434: 410: 391: 386: 385: 340: 330: 311: 301: 296: 295: 271: 252: 247: 246: 234: 209: 190: 185: 184: 155: 139:Thierry Coquand 89:axiom of choice 62:effective proof 52:existence proof 38:is a method of 28: 23: 22: 15: 12: 11: 5: 2128: 2126: 2118: 2117: 2112: 2102: 2101: 2098: 2097: 2087: 2086:External links 2084: 2082: 2081: 2071:Dirk van Dalen 2064: 2043: 2022: 2020: 2017: 2014: 2013: 2000: 1985: 1942: 1923:(3): 727–739. 1900: 1878: 1856: 1829:(1): 736–788. 1813: 1790: 1764: 1738: 1737: 1735: 1732: 1731: 1730: 1725: 1720: 1715: 1709: 1702: 1699: 1659: 1658: 1645: 1633: 1630: 1627: 1624: 1621: 1611: 1601: 1597: 1593: 1589: 1585: 1581: 1578: 1575: 1574: 1571: 1561: 1558: 1555: 1552: 1549: 1539: 1535: 1531: 1527: 1523: 1519: 1516: 1513: 1512: 1510: 1505: 1502: 1499: 1496: 1493: 1439:counterexample 1430: 1427: 1387: 1383: 1362: 1359: 1354: 1350: 1334: 1333: 1322: 1318: 1315: 1310: 1306: 1301: 1297: 1294: 1289: 1285: 1281: 1278: 1274: 1268: 1263: 1260: 1241: 1238: 1218: 1211: 1174: 1173: 1162: 1159: 1154: 1148: 1142: 1137: 1132: 1127: 1122: 1117: 1111: 1105: 1099: 1093: 1087: 1080: 1074: 1061: 1060: 1046: 1024: 1001: 994: 971: 951: 940: 926: 904: 884: 864: 853: 838: 831: 825: 822: 797: 765: 762: 756: 751: 744: 737: 731: 708: 701: 655: 651: 630: 610: 559: 556: 554: 551: 539: 534: 530: 498: 494: 489: 466: 462: 458: 455: 452: 447: 443: 422: 417: 413: 409: 406: 403: 398: 394: 367: 366: 355: 352: 347: 343: 337: 333: 329: 326: 323: 318: 314: 308: 304: 278: 274: 270: 267: 264: 259: 255: 216: 212: 208: 205: 202: 197: 193: 154: 151: 131:Per Martin-Löf 77:Constructivism 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2127: 2116: 2113: 2111: 2108: 2107: 2105: 2095: 2094: 2090: 2089: 2085: 2080: 2076: 2072: 2068: 2065: 2063: 2062:0-19-853171-0 2059: 2055: 2051: 2050:Wright, E. M. 2047: 2044: 2041: 2040:0-646-54509-4 2037: 2034:. Kew Books, 2033: 2032: 2027: 2024: 2023: 2018: 2010: 2004: 2001: 1997: 1996: 1989: 1986: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1943: 1938: 1934: 1930: 1926: 1922: 1918: 1911: 1904: 1901: 1897: 1894: 1893: 1888: 1882: 1879: 1876: 1872: 1869: 1865: 1860: 1857: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1825:(in German). 1824: 1817: 1814: 1809: 1805: 1801: 1797: 1793: 1791:9781400842681 1787: 1783: 1779: 1775: 1768: 1765: 1754: 1750: 1743: 1740: 1733: 1729: 1726: 1724: 1721: 1719: 1716: 1713: 1712:Errett Bishop 1710: 1708: 1705: 1704: 1700: 1698: 1696: 1690: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1628: 1625: 1622: 1609: 1595: 1587: 1583: 1579: 1569: 1556: 1553: 1550: 1533: 1525: 1521: 1517: 1508: 1503: 1497: 1491: 1484: 1483: 1482: 1480: 1476: 1472: 1466: 1464: 1460: 1456: 1452: 1447: 1444: 1440: 1436: 1428: 1426: 1424: 1420: 1416: 1412: 1408: 1403: 1401: 1385: 1381: 1360: 1357: 1352: 1348: 1339: 1320: 1316: 1313: 1308: 1304: 1299: 1295: 1292: 1287: 1283: 1279: 1276: 1272: 1266: 1261: 1258: 1251: 1250: 1249: 1247: 1239: 1237: 1235: 1216: 1209: 1197: 1195: 1191: 1187: 1183: 1179: 1160: 1157: 1152: 1146: 1140: 1130: 1125: 1120: 1109: 1103: 1097: 1091: 1085: 1078: 1072: 1063: 1062: 1044: 1022: 999: 992: 969: 949: 941: 924: 902: 882: 862: 854: 836: 829: 823: 820: 812: 811:is irrational 795: 785: 784: 783: 779: 763: 760: 754: 742: 735: 706: 699: 688: 685: 681: 676: 673: 671: 653: 649: 628: 608: 601: 596: 594: 590: 586: 582: 578: 573: 569: 565: 564:prime numbers 557: 552: 550: 537: 532: 528: 519: 514: 496: 492: 487: 464: 460: 456: 453: 450: 445: 441: 420: 415: 411: 407: 404: 401: 396: 392: 383: 382:Grete Hermann 378: 376: 372: 353: 350: 345: 341: 335: 331: 327: 324: 321: 316: 312: 306: 302: 294: 293: 292: 276: 272: 268: 265: 262: 257: 253: 244: 240: 232: 214: 210: 206: 203: 200: 195: 191: 181: 179: 175: 170: 168: 164: 163:infinite sets 161:’s theory of 160: 152: 150: 148: 144: 140: 136: 132: 128: 124: 120: 116: 111: 109: 105: 101: 97: 92: 90: 86: 82: 78: 74: 70: 65: 63: 59: 58: 53: 49: 45: 41: 37: 33: 19: 2091: 2053: 2046:Hardy, G. H. 2029: 2003: 1993: 1988: 1955: 1951: 1945: 1920: 1916: 1903: 1895: 1890: 1886: 1881: 1859: 1826: 1822: 1816: 1773: 1767: 1757:, retrieved 1752: 1742: 1691: 1686: 1678: 1674: 1670: 1666: 1662: 1660: 1478: 1474: 1467: 1448: 1442: 1432: 1404: 1335: 1246:constructive 1245: 1243: 1198: 1193: 1189: 1185: 1177: 1175: 786:Recall that 781: 686: 683: 679: 678: 674: 597: 592: 588: 584: 580: 576: 561: 515: 379: 374: 368: 182: 171: 167:real numbers 159:Georg Cantor 156: 112: 108:intuitionism 103: 93: 68: 66: 61: 56: 51: 47: 35: 29: 2026:J. Franklin 1958:(1): 3–27. 1898::229 (1953) 1889:No. 339 in 915:both being 371:Paul Gordan 291:such that 231:polynomials 143:GĂ©rard Huet 32:mathematics 2104:Categories 1759:2019-10-25 1734:References 1400:logarithms 641:such that 115:algorithms 87:, and the 1972:0025-570X 1868:full text 1851:115897210 1843:0025-5831 1808:170826113 1800:775873004 1661:For each 1358:⁡ 1293:⁡ 1126:⋅ 454:… 405:… 373:, wrote: 325:… 266:… 204:… 1937:16587284 1871:Archived 1701:See also 1605:if  670:rational 553:Examples 2052:(1979) 2042:, ch. 4 1980:2689939 1887:Curiosa 1059:, since 680:CURIOSA 239:complex 2077:  2060:  2048:& 2038:  1978:  1970:  1935:  1849:  1841:  1806:  1798:  1788:  1419:minors 1035:being 982:being 568:Euclid 137:, and 125:, the 83:, the 1976:JSTOR 1933:S2CID 1913:(PDF) 1847:S2CID 1804:S2CID 1681:is a 1415:torus 1411:graph 1194:which 572:proof 243:zeros 40:proof 2075:ISBN 2069:and 2058:ISBN 2036:ISBN 1968:ISSN 1839:ISSN 1796:OCLC 1786:ISBN 1336:The 1188:and 1015:and 895:and 684:339. 621:and 229:are 176:and 141:and 34:, a 1960:doi 1925:doi 1831:doi 1778:doi 1433:In 1349:log 1284:log 942:If 855:If 668:is 570:'s 377:". 233:in 145:'s 133:'s 121:of 54:or 30:In 2106:: 1974:. 1966:. 1956:62 1954:. 1931:. 1921:35 1919:. 1915:. 1896:19 1845:. 1837:. 1827:95 1802:. 1794:. 1784:. 1697:. 1244:A 1161:2. 566:. 513:. 354:1. 169:. 149:. 110:. 75:. 67:A 64:. 1982:. 1962:: 1939:. 1927:: 1853:. 1833:: 1810:. 1780:: 1687:a 1679:a 1675:a 1671:n 1669:( 1667:a 1663:n 1632:] 1629:n 1626:, 1623:4 1620:[ 1610:k 1596:k 1592:) 1588:2 1584:/ 1580:1 1577:( 1570:, 1560:] 1557:n 1554:, 1551:4 1548:[ 1534:n 1530:) 1526:2 1522:/ 1518:1 1515:( 1509:{ 1504:= 1501:) 1498:n 1495:( 1492:a 1479:n 1477:( 1475:a 1386:n 1382:m 1361:9 1353:2 1321:. 1317:3 1314:= 1309:b 1305:a 1300:, 1296:9 1288:2 1280:= 1277:b 1273:, 1267:2 1262:= 1259:a 1217:2 1210:2 1190:b 1186:a 1178:q 1158:= 1153:2 1147:2 1141:= 1136:) 1131:2 1121:2 1116:( 1110:2 1104:= 1098:2 1092:) 1086:2 1079:2 1073:( 1045:2 1023:b 1000:2 993:2 970:a 950:q 939:. 925:2 903:b 883:a 863:q 837:2 830:2 824:= 821:q 796:2 764:2 761:= 755:2 750:) 743:2 736:2 730:( 707:2 700:2 654:b 650:a 629:b 609:a 593:n 589:n 585:n 581:n 577:n 538:. 533:i 529:g 497:n 493:2 488:2 465:k 461:g 457:, 451:, 446:1 442:g 421:, 416:k 412:g 408:, 402:, 397:1 393:g 351:= 346:k 342:g 336:k 332:f 328:+ 322:+ 317:1 313:g 307:1 303:f 277:k 273:g 269:, 263:, 258:1 254:g 235:n 215:k 211:f 207:, 201:, 196:1 192:f 102:( 20:)

Index

Non-constructive proof
mathematics
proof
mathematical object
pure existence theorem
constructive mathematics
Constructivism
law of the excluded middle
axiom of infinity
axiom of choice
proof by contradiction
principle of explosion
intuitionism
algorithms
Brouwer–Heyting–Kolmogorov interpretation
constructive logic
Curry–Howard correspondence
Per Martin-Löf
intuitionistic type theory
Thierry Coquand
GĂ©rard Huet
calculus of constructions
Georg Cantor
infinite sets
real numbers
Hilbert's Nullstellensatz
Hilbert's basis theorem
polynomials
complex
zeros

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑