Knowledge (XXG)

Hilbert's basis theorem

Source 📝

476:
belong to the ideal generated by the preceding ones. Gröbner basis theory implies that this list is necessarily finite, and is thus a finite basis of the ideal. However, for deciding whether the list is complete, one must consider every element of the infinite sequence, which cannot be done in the finite time allowed to an algorithm.
475:
allow a direct proof that is as constructive as possible: Gröbner bases produce an algorithm for testing whether a polynomial belong to the ideal generated by other polynomials. So, given an infinite sequence of polynomials, one can construct algorithmically the list of those polynomials that do not
111:. For example, the basis theorem asserts that every ideal has a finite generator set, but the original proof does not provide any way to compute it for a specific ideal. This approach was so astonishing for mathematicians of that time that the first version of the article was rejected by 2395: 1156: 3439: 3016: 1635: 1464: 789: 2849: 2527: 1342: 2480: 2439: 3969: 2198: 1227: 115:, the greatest specialist of invariants of that time, with the comment "This is not mathematics. This is theology." Later, he recognized "I have convinced myself that even theology has its merits." 1955: 3490: 869: 1575: 2270: 2919: 3257: 2956: 1709: 596: 3853: 3719: 3167: 3079: 1531: 652: 2700: 1853: 735: 2621: 2064: 1986: 1017: 683: 3901: 3877: 2108: 2010: 1801: 1757: 1733: 951: 3130: 2591: 3301: 2224: 2033: 3648: 2733: 1662: 1494: 927: 900: 3989: 3772: 3750: 3614: 3541: 3513: 3187: 2875: 2641: 2547: 2278: 2084: 1873: 1777: 1250: 1037: 971: 541: 505: 430: 375: 347: 318: 291: 262: 242: 218: 198: 174: 141: 1045: 3312: 471:
on the number of variables, and, at each induction step use the non-constructive proof for one variable less. Introduced more eighty years later,
4184: 2961: 1580: 1353: 740: 4017: 4222: 2744: 2485: 1258: 3721:
and further as the locus of its generators, it follows that every affine variety is the locus of finitely many polynomials — i.e. the
80:, where he solved several problems on invariants. In this article, he proved also two other fundamental theorems on polynomials, the 4157: 2444: 2403: 4212: 3906: 2116: 1164: 1878: 4176: 3454: 798: 4202: 1536: 2229: 107:
Another aspect of this article had a great impact on mathematics of the 20th century; this is the systematic use of
3753: 39: 2880: 4207: 3722: 3198: 2924: 599: 1675: 562: 3779: 108: 3653: 3135: 3021: 1499: 605: 550:
We will give two proofs, in both only the "left" case is considered; the proof for the right case is similar.
3992: 437: 2652: 1806: 688: 4217: 4013: 2596: 792: 468: 464: 2038: 1960: 976: 657: 4045: 3882: 3858: 2089: 1991: 1782: 1738: 1714: 932: 457: 3091: 4149: 2558: 441: 93: 35: 27: 4070: 3268: 449: 445: 144: 89: 54: 4180: 4153: 4062: 88:(theorem on relations). These three theorems were the starting point of the interpretation of 4103: 4054: 3544: 2206: 2015: 472: 77: 3626: 2711: 1640: 1472: 905: 878: 3650:(i.e. a locus-set of a collection of polynomials) may be written as the locus of an ideal 3495:
Note that the only reason we had to split into two cases was to ensure that the powers of
2390:{\displaystyle \left\{f_{i},f_{j}^{(k)}\,:\ i<N,\,j<N^{(k)},\,k<d\right\}\!\!\;.} 512: 508: 81: 58: 31: 2086:, and so are finitely generated by the leading coefficients of finitely many members of 4139: 3974: 3757: 3735: 3620: 3558: 3526: 3498: 3172: 2860: 2626: 2532: 2069: 1858: 1779:, and so is finitely generated by the leading coefficients of finitely many members of 1762: 1235: 1022: 956: 872: 517: 490: 380: 360: 323: 303: 267: 247: 227: 203: 183: 150: 126: 85: 1151:{\displaystyle (a_{0})\subset (a_{0},a_{1})\subset (a_{0},a_{1},a_{2})\subset \cdots } 4196: 4074: 4040: 453: 221: 97: 73: 4168: 4005: 3726: 101: 4143: 112: 20: 4009: 177: 4066: 3434:{\displaystyle h_{0}=\sum _{j}u_{j}X^{\deg(h)-\deg(f_{j}^{(k)})}f_{j}^{(k)},} 3548: 65:
are Noetherian rings. So, the theorem can be generalized and restated as:
4004:
Formal proofs of Hilbert's basis theorem have been verified through the
4058: 3011:{\displaystyle h-h_{0}\in {\mathfrak {a}}\setminus {\mathfrak {a}}^{*}} 1630:{\displaystyle f_{N}-g\in {\mathfrak {a}}\setminus {\mathfrak {b}}_{N}} 1230: 62: 50: 1459:{\displaystyle g=\sum _{i<N}u_{i}X^{\deg(f_{N})-\deg(f_{i})}f_{i},} 784:{\displaystyle f_{n}\in {\mathfrak {a}}\setminus {\mathfrak {b}}_{n}} 598:
is a non-finitely generated left ideal. Then by recursion (using the
2844:{\displaystyle h_{0}=\sum _{j}u_{j}X^{\deg(h)-\deg(f_{j})}f_{j},} 2522:{\displaystyle h\in {\mathfrak {a}}\setminus {\mathfrak {a}}^{*}} 2482:. Suppose for the sake of contradiction this is not so. Then let 1337:{\displaystyle a_{N}=\sum _{i<N}u_{i}a_{i},\qquad u_{i}\in R.} 3515:
multiplying the factors were non-negative in the constructions.
67:
every polynomial ring over a Noetherian ring is also Noetherian
2529:
be of minimal degree, and denote its leading coefficient by
2475:{\displaystyle {\mathfrak {a}}\subseteq {\mathfrak {a}}^{*}} 2434:{\displaystyle {\mathfrak {a}}^{*}\subseteq {\mathfrak {a}}} 3964:{\displaystyle {\mathfrak {a}}=(p_{0},\dotsc ,p_{N-1})} 2193:{\displaystyle f_{0}^{(k)},\ldots ,f_{N^{(k)}-1}^{(k)}} 1222:{\displaystyle {\mathfrak {b}}=(a_{0},\ldots ,a_{N-1})} 96:. In particular, the basis theorem implies that every 4164:
The definitive English-language biography of Hilbert.
4043:(1890). "Über die Theorie der algebraischen Formen". 3977: 3909: 3885: 3861: 3782: 3760: 3738: 3656: 3629: 3561: 3529: 3501: 3457: 3315: 3271: 3201: 3175: 3138: 3094: 3024: 2964: 2927: 2883: 2863: 2747: 2714: 2655: 2629: 2599: 2561: 2535: 2488: 2447: 2406: 2281: 2232: 2209: 2119: 2092: 2072: 2041: 2018: 1994: 1963: 1950:{\displaystyle \{\deg(f_{0}),\ldots ,\deg(f_{N-1})\}} 1881: 1861: 1809: 1785: 1765: 1741: 1717: 1678: 1643: 1583: 1539: 1502: 1475: 1356: 1261: 1238: 1167: 1048: 1025: 979: 959: 935: 908: 881: 801: 743: 691: 660: 608: 565: 520: 493: 444:) in the course of his proof of finite generation of 383: 363: 326: 306: 270: 250: 230: 206: 186: 153: 129: 436:
Hilbert proved the theorem (for the special case of
3485:{\displaystyle {\mathfrak {a}}={\mathfrak {a}}^{*}} 864:{\displaystyle \{\deg(f_{0}),\deg(f_{1}),\ldots \}} 3983: 3963: 3895: 3871: 3847: 3766: 3744: 3713: 3642: 3608: 3535: 3507: 3484: 3433: 3295: 3251: 3181: 3161: 3124: 3073: 3010: 2950: 2913: 2869: 2843: 2727: 2694: 2635: 2615: 2585: 2541: 2521: 2474: 2433: 2389: 2264: 2218: 2192: 2102: 2078: 2058: 2027: 2004: 1980: 1949: 1867: 1847: 1795: 1771: 1751: 1727: 1703: 1656: 1629: 1569: 1525: 1488: 1458: 1336: 1244: 1221: 1150: 1031: 1011: 965: 945: 921: 894: 863: 783: 729: 677: 646: 590: 535: 499: 424: 369: 341: 312: 285: 256: 236: 212: 192: 168: 135: 2382: 2381: 1988:be the set of leading coefficients of members of 1735:be the set of leading coefficients of members of 1570:{\displaystyle f_{N}\notin {\mathfrak {b}}_{N}} 3447:we yield a similar contradiction as in Case 1. 2265:{\displaystyle {\mathfrak {a}}^{*}\subseteq R} 543:is also a left (resp. right) Noetherian ring. 4035: 4033: 3547:. Hilbert's basis theorem has some immediate 8: 3879:is an ideal. The basis theorem implies that 2914:{\displaystyle h_{0}\in {\mathfrak {a}}^{*}} 1944: 1882: 858: 802: 641: 609: 3252:{\displaystyle a=\sum _{j}u_{j}a_{j}^{(k)}} 2951:{\displaystyle h\notin {\mathfrak {a}}^{*}} 57:whose ideals have this property are called 2383: 1704:{\displaystyle {\mathfrak {a}}\subseteq R} 591:{\displaystyle {\mathfrak {a}}\subseteq R} 100:is the intersection of a finite number of 3976: 3946: 3927: 3911: 3910: 3908: 3887: 3886: 3884: 3863: 3862: 3860: 3848:{\displaystyle A\simeq R/{\mathfrak {a}}} 3839: 3838: 3833: 3818: 3799: 3781: 3759: 3737: 3696: 3677: 3658: 3657: 3655: 3634: 3628: 3591: 3572: 3560: 3528: 3500: 3476: 3470: 3469: 3459: 3458: 3456: 3416: 3411: 3390: 3385: 3353: 3343: 3333: 3320: 3314: 3281: 3276: 3270: 3237: 3232: 3222: 3212: 3200: 3174: 3153: 3147: 3146: 3137: 3093: 3044: 3023: 3002: 2996: 2995: 2985: 2984: 2975: 2963: 2942: 2936: 2935: 2926: 2905: 2899: 2898: 2888: 2882: 2862: 2832: 2817: 2785: 2775: 2765: 2752: 2746: 2719: 2713: 2686: 2676: 2666: 2654: 2628: 2607: 2606: 2598: 2560: 2534: 2513: 2507: 2506: 2496: 2495: 2487: 2466: 2460: 2459: 2449: 2448: 2446: 2425: 2424: 2415: 2409: 2408: 2405: 2366: 2351: 2340: 2321: 2309: 2304: 2291: 2280: 2241: 2235: 2234: 2231: 2208: 2178: 2159: 2154: 2129: 2124: 2118: 2094: 2093: 2091: 2071: 2050: 2044: 2043: 2040: 2017: 1996: 1995: 1993: 1972: 1966: 1965: 1962: 1929: 1898: 1880: 1860: 1833: 1814: 1808: 1787: 1786: 1784: 1764: 1743: 1742: 1740: 1719: 1718: 1716: 1680: 1679: 1677: 1648: 1642: 1621: 1615: 1614: 1604: 1603: 1588: 1582: 1561: 1555: 1554: 1544: 1538: 1517: 1511: 1510: 1501: 1480: 1474: 1447: 1432: 1407: 1393: 1383: 1367: 1355: 1319: 1305: 1295: 1279: 1266: 1260: 1237: 1204: 1185: 1169: 1168: 1166: 1133: 1120: 1107: 1088: 1075: 1056: 1047: 1024: 997: 984: 978: 958: 937: 936: 934: 913: 907: 886: 880: 843: 818: 800: 775: 769: 768: 758: 757: 748: 742: 715: 696: 690: 669: 663: 662: 659: 629: 616: 607: 567: 566: 564: 519: 492: 413: 394: 382: 362: 325: 305: 269: 264:is Noetherian, the same must be true for 249: 244:is "not too large", in the sense that if 229: 205: 185: 152: 128: 3714:{\displaystyle {\mathfrak {a}}\subset R} 3162:{\displaystyle a\in {\mathfrak {b}}_{k}} 3074:{\displaystyle \deg(h-h_{0})<\deg(h)} 2593:. Regardless of this condition, we have 1526:{\displaystyle g\in {\mathfrak {b}}_{N}} 16:Polynomial ideals are finitely generated 4029: 2991: 2502: 1610: 1469:whose leading term is equal to that of 764: 647:{\displaystyle \{f_{0},f_{1},\ldots \}} 1759:. This is obviously a left ideal over 4115: 2695:{\displaystyle a=\sum _{j}u_{j}a_{j}} 1848:{\displaystyle f_{0},\ldots ,f_{N-1}} 730:{\displaystyle f_{0},\ldots ,f_{n-1}} 602:) there is a sequence of polynomials 72:The theorem was stated and proved by 7: 4099: 4087: 2616:{\displaystyle a\in {\mathfrak {b}}} 3912: 3888: 3864: 3840: 3659: 3471: 3460: 3265:of the leading coefficients of the 3148: 2997: 2986: 2937: 2900: 2857:which has the same leading term as 2608: 2508: 2497: 2461: 2450: 2426: 2410: 2236: 2095: 2059:{\displaystyle {\mathfrak {b}}_{k}} 2045: 1997: 1981:{\displaystyle {\mathfrak {b}}_{k}} 1967: 1788: 1744: 1720: 1681: 1616: 1605: 1556: 1512: 1170: 1012:{\displaystyle a_{0},a_{1},\ldots } 938: 770: 759: 678:{\displaystyle {\mathfrak {b}}_{n}} 664: 568: 1039:is Noetherian the chain of ideals 76:in 1890 in his seminal article on 14: 4133:Ideals, Varieties, and Algorithms 3903:must be finitely generated, say 2272:be the left ideal generated by: 1664:, contradicting the minimality. 871:is a non-decreasing sequence of 448:. The theorem is interpreted in 3896:{\displaystyle {\mathfrak {a}}} 3872:{\displaystyle {\mathfrak {a}}} 3081:, which contradicts minimality. 2103:{\displaystyle {\mathfrak {a}}} 2005:{\displaystyle {\mathfrak {a}}} 1796:{\displaystyle {\mathfrak {a}}} 1752:{\displaystyle {\mathfrak {a}}} 1728:{\displaystyle {\mathfrak {b}}} 1314: 946:{\displaystyle {\mathfrak {b}}} 685:is the left ideal generated by 460:of finitely many polynomials. 61:. Every field, and the ring of 3958: 3920: 3830: 3792: 3708: 3670: 3603: 3565: 3423: 3417: 3402: 3397: 3391: 3378: 3366: 3360: 3288: 3282: 3244: 3238: 3125:{\displaystyle \deg(h)=k<d} 3107: 3101: 3068: 3062: 3050: 3031: 2823: 2810: 2798: 2792: 2574: 2568: 2358: 2352: 2316: 2310: 2259: 2253: 2185: 2179: 2166: 2160: 2136: 2130: 1941: 1922: 1904: 1891: 1698: 1692: 1438: 1425: 1413: 1400: 1216: 1178: 1139: 1100: 1094: 1068: 1062: 1049: 902:be the leading coefficient of 849: 836: 824: 811: 585: 579: 530: 524: 419: 387: 336: 330: 280: 274: 163: 157: 1: 4177:Graduate Texts in Mathematics 3492:which is finitely generated. 2586:{\displaystyle \deg(h)\geq d} 84:(zero-locus theorem) and the 4179:(Third ed.), Springer, 3189:is a left linear combination 2643:is a left linear combination 3296:{\displaystyle f_{j}^{(k)}} 2708:of the coefficients of the 377:is a Noetherian ring, then 320:is a Noetherian ring, then 46:in Hilbert's terminology). 4239: 4223:Theorems about polynomials 3451:Thus our claim holds, and 1875:be the maximum of the set 463:Hilbert's proof is highly 4131:Cox, Little, and O'Shea, 3555:By induction we see that 600:axiom of dependent choice 456:is the set of the common 4135:, Springer-Verlag, 1997. 3616:will also be Noetherian. 507:is a left (resp. right) 438:multivariate polynomials 298:Hilbert's Basis Theorem. 109:non-constructive methods 4213:Theorems in ring theory 4173:Advanced Linear Algebra 4118:, p. 136 §5 Theorem 5.9 24:Hilbert's basis theorem 4018:ring_theory.polynomial 3985: 3965: 3897: 3873: 3849: 3768: 3746: 3715: 3644: 3610: 3537: 3509: 3486: 3435: 3297: 3253: 3183: 3163: 3126: 3075: 3012: 2952: 2915: 2871: 2845: 2729: 2696: 2637: 2617: 2587: 2543: 2523: 2476: 2435: 2391: 2266: 2220: 2219:{\displaystyle \leq k} 2194: 2104: 2080: 2060: 2029: 2028:{\displaystyle \leq k} 2006: 1982: 1951: 1869: 1849: 1797: 1773: 1753: 1729: 1705: 1658: 1631: 1571: 1527: 1490: 1460: 1338: 1246: 1223: 1152: 1033: 1013: 967: 947: 923: 896: 865: 785: 731: 679: 648: 592: 537: 501: 434: 426: 371: 351: 343: 314: 287: 258: 238: 214: 194: 170: 137: 4046:Mathematische Annalen 3986: 3966: 3898: 3874: 3850: 3769: 3747: 3716: 3645: 3643:{\displaystyle R^{n}} 3611: 3538: 3510: 3487: 3436: 3298: 3254: 3184: 3164: 3127: 3076: 3013: 2953: 2916: 2872: 2846: 2730: 2728:{\displaystyle f_{j}} 2697: 2638: 2618: 2588: 2544: 2524: 2477: 2436: 2392: 2267: 2221: 2195: 2105: 2081: 2066:are left ideals over 2061: 2030: 2007: 1983: 1952: 1870: 1850: 1798: 1774: 1754: 1730: 1711:be a left ideal. Let 1706: 1659: 1657:{\displaystyle f_{N}} 1637:has degree less than 1632: 1572: 1528: 1491: 1489:{\displaystyle f_{N}} 1461: 1339: 1247: 1224: 1161:must terminate. Thus 1153: 1034: 1014: 968: 953:be the left ideal in 948: 924: 922:{\displaystyle f_{n}} 897: 895:{\displaystyle a_{n}} 866: 786: 732: 680: 649: 593: 538: 502: 432:is a Noetherian ring. 427: 372: 352: 349:is a Noetherian ring. 344: 315: 295: 288: 259: 239: 215: 195: 180:in the indeterminate 171: 138: 3975: 3907: 3883: 3859: 3780: 3776:, then we know that 3758: 3736: 3654: 3627: 3559: 3527: 3499: 3455: 3313: 3269: 3199: 3173: 3136: 3092: 3022: 2962: 2925: 2881: 2861: 2745: 2712: 2653: 2627: 2597: 2559: 2533: 2486: 2445: 2404: 2279: 2230: 2207: 2117: 2090: 2070: 2039: 2016: 1992: 1961: 1879: 1859: 1807: 1783: 1763: 1739: 1715: 1676: 1641: 1581: 1537: 1500: 1473: 1354: 1259: 1252:. So in particular, 1236: 1165: 1046: 1023: 977: 957: 933: 906: 879: 799: 795:. By construction, 741: 689: 658: 606: 563: 518: 491: 381: 361: 324: 304: 268: 248: 228: 204: 184: 151: 127: 4203:Commutative algebra 3754:finitely-generated 3427: 3401: 3292: 3248: 2320: 2189: 2140: 1577:, which means that 446:rings of invariants 176:denote the ring of 94:commutative algebra 26:asserts that every 4059:10.1007/BF01208503 3993:finitely presented 3981: 3961: 3893: 3869: 3845: 3764: 3742: 3711: 3640: 3606: 3533: 3505: 3482: 3431: 3407: 3381: 3338: 3293: 3272: 3249: 3228: 3217: 3179: 3159: 3122: 3071: 3008: 2948: 2911: 2867: 2841: 2770: 2725: 2692: 2671: 2633: 2613: 2583: 2539: 2519: 2472: 2431: 2387: 2300: 2262: 2216: 2190: 2150: 2120: 2100: 2076: 2056: 2025: 2012:, whose degree is 2002: 1978: 1947: 1865: 1845: 1793: 1769: 1749: 1725: 1701: 1654: 1627: 1567: 1523: 1486: 1456: 1378: 1334: 1290: 1242: 1219: 1148: 1029: 1009: 963: 943: 919: 892: 861: 781: 727: 675: 644: 588: 533: 497: 452:as follows: every 450:algebraic geometry 422: 367: 339: 310: 283: 254: 234: 210: 190: 166: 133: 90:algebraic geometry 4186:978-0-387-72828-5 3984:{\displaystyle A} 3767:{\displaystyle R} 3745:{\displaystyle A} 3725:of finitely many 3609:{\displaystyle R} 3536:{\displaystyle R} 3508:{\displaystyle X} 3329: 3208: 3182:{\displaystyle a} 2870:{\displaystyle h} 2761: 2662: 2636:{\displaystyle a} 2542:{\displaystyle a} 2327: 2079:{\displaystyle R} 2035:. As before, the 1868:{\displaystyle d} 1772:{\displaystyle R} 1363: 1275: 1245:{\displaystyle N} 1032:{\displaystyle R} 966:{\displaystyle R} 536:{\displaystyle R} 500:{\displaystyle R} 467:: it proceeds by 425:{\displaystyle R} 370:{\displaystyle R} 342:{\displaystyle R} 313:{\displaystyle R} 286:{\displaystyle R} 257:{\displaystyle R} 237:{\displaystyle R} 213:{\displaystyle R} 193:{\displaystyle X} 169:{\displaystyle R} 136:{\displaystyle R} 4230: 4208:Invariant theory 4189: 4163: 4140:Reid, Constance. 4119: 4113: 4107: 4097: 4091: 4085: 4079: 4078: 4037: 3990: 3988: 3987: 3982: 3970: 3968: 3967: 3962: 3957: 3956: 3932: 3931: 3916: 3915: 3902: 3900: 3899: 3894: 3892: 3891: 3878: 3876: 3875: 3870: 3868: 3867: 3854: 3852: 3851: 3846: 3844: 3843: 3837: 3829: 3828: 3804: 3803: 3773: 3771: 3770: 3765: 3751: 3749: 3748: 3743: 3720: 3718: 3717: 3712: 3707: 3706: 3682: 3681: 3663: 3662: 3649: 3647: 3646: 3641: 3639: 3638: 3615: 3613: 3612: 3607: 3602: 3601: 3577: 3576: 3545:commutative ring 3543:be a Noetherian 3542: 3540: 3539: 3534: 3514: 3512: 3511: 3506: 3491: 3489: 3488: 3483: 3481: 3480: 3475: 3474: 3464: 3463: 3440: 3438: 3437: 3432: 3426: 3415: 3406: 3405: 3400: 3389: 3348: 3347: 3337: 3325: 3324: 3302: 3300: 3299: 3294: 3291: 3280: 3258: 3256: 3255: 3250: 3247: 3236: 3227: 3226: 3216: 3188: 3186: 3185: 3180: 3168: 3166: 3165: 3160: 3158: 3157: 3152: 3151: 3131: 3129: 3128: 3123: 3080: 3078: 3077: 3072: 3049: 3048: 3017: 3015: 3014: 3009: 3007: 3006: 3001: 3000: 2990: 2989: 2980: 2979: 2957: 2955: 2954: 2949: 2947: 2946: 2941: 2940: 2920: 2918: 2917: 2912: 2910: 2909: 2904: 2903: 2893: 2892: 2876: 2874: 2873: 2868: 2850: 2848: 2847: 2842: 2837: 2836: 2827: 2826: 2822: 2821: 2780: 2779: 2769: 2757: 2756: 2734: 2732: 2731: 2726: 2724: 2723: 2701: 2699: 2698: 2693: 2691: 2690: 2681: 2680: 2670: 2642: 2640: 2639: 2634: 2622: 2620: 2619: 2614: 2612: 2611: 2592: 2590: 2589: 2584: 2548: 2546: 2545: 2540: 2528: 2526: 2525: 2520: 2518: 2517: 2512: 2511: 2501: 2500: 2481: 2479: 2478: 2473: 2471: 2470: 2465: 2464: 2454: 2453: 2440: 2438: 2437: 2432: 2430: 2429: 2420: 2419: 2414: 2413: 2396: 2394: 2393: 2388: 2380: 2376: 2362: 2361: 2325: 2319: 2308: 2296: 2295: 2271: 2269: 2268: 2263: 2246: 2245: 2240: 2239: 2225: 2223: 2222: 2217: 2199: 2197: 2196: 2191: 2188: 2177: 2170: 2169: 2139: 2128: 2109: 2107: 2106: 2101: 2099: 2098: 2085: 2083: 2082: 2077: 2065: 2063: 2062: 2057: 2055: 2054: 2049: 2048: 2034: 2032: 2031: 2026: 2011: 2009: 2008: 2003: 2001: 2000: 1987: 1985: 1984: 1979: 1977: 1976: 1971: 1970: 1956: 1954: 1953: 1948: 1940: 1939: 1903: 1902: 1874: 1872: 1871: 1866: 1854: 1852: 1851: 1846: 1844: 1843: 1819: 1818: 1802: 1800: 1799: 1794: 1792: 1791: 1778: 1776: 1775: 1770: 1758: 1756: 1755: 1750: 1748: 1747: 1734: 1732: 1731: 1726: 1724: 1723: 1710: 1708: 1707: 1702: 1685: 1684: 1663: 1661: 1660: 1655: 1653: 1652: 1636: 1634: 1633: 1628: 1626: 1625: 1620: 1619: 1609: 1608: 1593: 1592: 1576: 1574: 1573: 1568: 1566: 1565: 1560: 1559: 1549: 1548: 1532: 1530: 1529: 1524: 1522: 1521: 1516: 1515: 1495: 1493: 1492: 1487: 1485: 1484: 1465: 1463: 1462: 1457: 1452: 1451: 1442: 1441: 1437: 1436: 1412: 1411: 1388: 1387: 1377: 1343: 1341: 1340: 1335: 1324: 1323: 1310: 1309: 1300: 1299: 1289: 1271: 1270: 1251: 1249: 1248: 1243: 1228: 1226: 1225: 1220: 1215: 1214: 1190: 1189: 1174: 1173: 1157: 1155: 1154: 1149: 1138: 1137: 1125: 1124: 1112: 1111: 1093: 1092: 1080: 1079: 1061: 1060: 1038: 1036: 1035: 1030: 1018: 1016: 1015: 1010: 1002: 1001: 989: 988: 972: 970: 969: 964: 952: 950: 949: 944: 942: 941: 928: 926: 925: 920: 918: 917: 901: 899: 898: 893: 891: 890: 870: 868: 867: 862: 848: 847: 823: 822: 790: 788: 787: 782: 780: 779: 774: 773: 763: 762: 753: 752: 736: 734: 733: 728: 726: 725: 701: 700: 684: 682: 681: 676: 674: 673: 668: 667: 653: 651: 650: 645: 634: 633: 621: 620: 597: 595: 594: 589: 572: 571: 542: 540: 539: 534: 506: 504: 503: 498: 465:non-constructive 431: 429: 428: 423: 418: 417: 399: 398: 376: 374: 373: 368: 348: 346: 345: 340: 319: 317: 316: 311: 292: 290: 289: 284: 263: 261: 260: 255: 243: 241: 240: 235: 219: 217: 216: 211: 199: 197: 196: 191: 175: 173: 172: 167: 142: 140: 139: 134: 78:invariant theory 59:Noetherian rings 4238: 4237: 4233: 4232: 4231: 4229: 4228: 4227: 4193: 4192: 4187: 4167: 4160: 4138: 4128: 4126:Further reading 4123: 4122: 4114: 4110: 4098: 4094: 4086: 4082: 4039: 4038: 4031: 4026: 4002: 3973: 3972: 3942: 3923: 3905: 3904: 3881: 3880: 3857: 3856: 3814: 3795: 3778: 3777: 3756: 3755: 3734: 3733: 3692: 3673: 3652: 3651: 3630: 3625: 3624: 3587: 3568: 3557: 3556: 3525: 3524: 3521: 3497: 3496: 3468: 3453: 3452: 3349: 3339: 3316: 3311: 3310: 3267: 3266: 3218: 3197: 3196: 3171: 3170: 3145: 3134: 3133: 3090: 3089: 3040: 3020: 3019: 2994: 2971: 2960: 2959: 2934: 2923: 2922: 2897: 2884: 2879: 2878: 2859: 2858: 2828: 2813: 2781: 2771: 2748: 2743: 2742: 2715: 2710: 2709: 2682: 2672: 2651: 2650: 2625: 2624: 2595: 2594: 2557: 2556: 2531: 2530: 2505: 2484: 2483: 2458: 2443: 2442: 2441:and claim also 2407: 2402: 2401: 2347: 2287: 2286: 2282: 2277: 2276: 2233: 2228: 2227: 2205: 2204: 2155: 2115: 2114: 2088: 2087: 2068: 2067: 2042: 2037: 2036: 2014: 2013: 1990: 1989: 1964: 1959: 1958: 1925: 1894: 1877: 1876: 1857: 1856: 1829: 1810: 1805: 1804: 1781: 1780: 1761: 1760: 1737: 1736: 1713: 1712: 1674: 1673: 1670: 1644: 1639: 1638: 1613: 1584: 1579: 1578: 1553: 1540: 1535: 1534: 1509: 1498: 1497: 1476: 1471: 1470: 1443: 1428: 1403: 1389: 1379: 1352: 1351: 1315: 1301: 1291: 1262: 1257: 1256: 1234: 1233: 1200: 1181: 1163: 1162: 1129: 1116: 1103: 1084: 1071: 1052: 1044: 1043: 1021: 1020: 993: 980: 975: 974: 955: 954: 931: 930: 909: 904: 903: 882: 877: 876: 873:natural numbers 839: 814: 797: 796: 767: 744: 739: 738: 711: 692: 687: 686: 661: 656: 655: 625: 612: 604: 603: 561: 560: 557: 516: 515: 513:polynomial ring 509:Noetherian ring 489: 488: 482: 409: 390: 379: 378: 359: 358: 322: 321: 302: 301: 266: 265: 246: 245: 226: 225: 224:proved that if 202: 201: 182: 181: 149: 148: 125: 124: 121: 82:Nullstellensatz 32:polynomial ring 17: 12: 11: 5: 4236: 4234: 4226: 4225: 4220: 4215: 4210: 4205: 4195: 4194: 4191: 4190: 4185: 4169:Roman, Stephen 4165: 4158: 4136: 4127: 4124: 4121: 4120: 4108: 4092: 4080: 4053:(4): 473–534. 4041:Hilbert, David 4028: 4027: 4025: 4022: 4001: 3998: 3997: 3996: 3980: 3960: 3955: 3952: 3949: 3945: 3941: 3938: 3935: 3930: 3926: 3922: 3919: 3914: 3890: 3866: 3842: 3836: 3832: 3827: 3824: 3821: 3817: 3813: 3810: 3807: 3802: 3798: 3794: 3791: 3788: 3785: 3763: 3741: 3730: 3710: 3705: 3702: 3699: 3695: 3691: 3688: 3685: 3680: 3676: 3672: 3669: 3666: 3661: 3637: 3633: 3621:affine variety 3617: 3605: 3600: 3597: 3594: 3590: 3586: 3583: 3580: 3575: 3571: 3567: 3564: 3532: 3520: 3517: 3504: 3479: 3473: 3467: 3462: 3449: 3448: 3444: 3443: 3442: 3441: 3430: 3425: 3422: 3419: 3414: 3410: 3404: 3399: 3396: 3393: 3388: 3384: 3380: 3377: 3374: 3371: 3368: 3365: 3362: 3359: 3356: 3352: 3346: 3342: 3336: 3332: 3328: 3323: 3319: 3305: 3304: 3290: 3287: 3284: 3279: 3275: 3262: 3261: 3260: 3259: 3246: 3243: 3240: 3235: 3231: 3225: 3221: 3215: 3211: 3207: 3204: 3191: 3190: 3178: 3156: 3150: 3144: 3141: 3121: 3118: 3115: 3112: 3109: 3106: 3103: 3100: 3097: 3083: 3082: 3070: 3067: 3064: 3061: 3058: 3055: 3052: 3047: 3043: 3039: 3036: 3033: 3030: 3027: 3005: 2999: 2993: 2988: 2983: 2978: 2974: 2970: 2967: 2945: 2939: 2933: 2930: 2908: 2902: 2896: 2891: 2887: 2866: 2854: 2853: 2852: 2851: 2840: 2835: 2831: 2825: 2820: 2816: 2812: 2809: 2806: 2803: 2800: 2797: 2794: 2791: 2788: 2784: 2778: 2774: 2768: 2764: 2760: 2755: 2751: 2737: 2736: 2722: 2718: 2705: 2704: 2703: 2702: 2689: 2685: 2679: 2675: 2669: 2665: 2661: 2658: 2645: 2644: 2632: 2610: 2605: 2602: 2582: 2579: 2576: 2573: 2570: 2567: 2564: 2538: 2516: 2510: 2504: 2499: 2494: 2491: 2469: 2463: 2457: 2452: 2428: 2423: 2418: 2412: 2398: 2397: 2386: 2379: 2375: 2372: 2369: 2365: 2360: 2357: 2354: 2350: 2346: 2343: 2339: 2336: 2333: 2330: 2324: 2318: 2315: 2312: 2307: 2303: 2299: 2294: 2290: 2285: 2261: 2258: 2255: 2252: 2249: 2244: 2238: 2215: 2212: 2201: 2200: 2187: 2184: 2181: 2176: 2173: 2168: 2165: 2162: 2158: 2153: 2149: 2146: 2143: 2138: 2135: 2132: 2127: 2123: 2097: 2075: 2053: 2047: 2024: 2021: 1999: 1975: 1969: 1946: 1943: 1938: 1935: 1932: 1928: 1924: 1921: 1918: 1915: 1912: 1909: 1906: 1901: 1897: 1893: 1890: 1887: 1884: 1864: 1842: 1839: 1836: 1832: 1828: 1825: 1822: 1817: 1813: 1790: 1768: 1746: 1722: 1700: 1697: 1694: 1691: 1688: 1683: 1669: 1666: 1651: 1647: 1624: 1618: 1612: 1607: 1602: 1599: 1596: 1591: 1587: 1564: 1558: 1552: 1547: 1543: 1520: 1514: 1508: 1505: 1483: 1479: 1467: 1466: 1455: 1450: 1446: 1440: 1435: 1431: 1427: 1424: 1421: 1418: 1415: 1410: 1406: 1402: 1399: 1396: 1392: 1386: 1382: 1376: 1373: 1370: 1366: 1362: 1359: 1345: 1344: 1333: 1330: 1327: 1322: 1318: 1313: 1308: 1304: 1298: 1294: 1288: 1285: 1282: 1278: 1274: 1269: 1265: 1241: 1218: 1213: 1210: 1207: 1203: 1199: 1196: 1193: 1188: 1184: 1180: 1177: 1172: 1159: 1158: 1147: 1144: 1141: 1136: 1132: 1128: 1123: 1119: 1115: 1110: 1106: 1102: 1099: 1096: 1091: 1087: 1083: 1078: 1074: 1070: 1067: 1064: 1059: 1055: 1051: 1028: 1008: 1005: 1000: 996: 992: 987: 983: 962: 940: 916: 912: 889: 885: 860: 857: 854: 851: 846: 842: 838: 835: 832: 829: 826: 821: 817: 813: 810: 807: 804: 791:is of minimal 778: 772: 766: 761: 756: 751: 747: 724: 721: 718: 714: 710: 707: 704: 699: 695: 672: 666: 643: 640: 637: 632: 628: 624: 619: 615: 611: 587: 584: 581: 578: 575: 570: 556: 553: 552: 551: 532: 529: 526: 523: 496: 481: 478: 421: 416: 412: 408: 405: 402: 397: 393: 389: 386: 366: 338: 335: 332: 329: 309: 282: 279: 276: 273: 253: 233: 209: 189: 165: 162: 159: 156: 132: 120: 117: 86:syzygy theorem 40:generating set 15: 13: 10: 9: 6: 4: 3: 2: 4235: 4224: 4221: 4219: 4218:David Hilbert 4216: 4214: 4211: 4209: 4206: 4204: 4201: 4200: 4198: 4188: 4182: 4178: 4174: 4170: 4166: 4161: 4159:0-387-94674-8 4155: 4151: 4147: 4146: 4141: 4137: 4134: 4130: 4129: 4125: 4117: 4112: 4109: 4105: 4101: 4096: 4093: 4090:, p. 34. 4089: 4084: 4081: 4076: 4072: 4068: 4064: 4060: 4056: 4052: 4048: 4047: 4042: 4036: 4034: 4030: 4023: 4021: 4019: 4015: 4011: 4010:HILBASIS file 4007: 4006:Mizar project 4000:Formal proofs 3999: 3994: 3978: 3953: 3950: 3947: 3943: 3939: 3936: 3933: 3928: 3924: 3917: 3834: 3825: 3822: 3819: 3815: 3811: 3808: 3805: 3800: 3796: 3789: 3786: 3783: 3775: 3761: 3739: 3731: 3728: 3727:hypersurfaces 3724: 3703: 3700: 3697: 3693: 3689: 3686: 3683: 3678: 3674: 3667: 3664: 3635: 3631: 3622: 3618: 3598: 3595: 3592: 3588: 3584: 3581: 3578: 3573: 3569: 3562: 3554: 3553: 3552: 3550: 3546: 3530: 3518: 3516: 3502: 3493: 3477: 3465: 3446: 3445: 3428: 3420: 3412: 3408: 3394: 3386: 3382: 3375: 3372: 3369: 3363: 3357: 3354: 3350: 3344: 3340: 3334: 3330: 3326: 3321: 3317: 3309: 3308: 3307: 3306: 3303:. Considering 3285: 3277: 3273: 3264: 3263: 3241: 3233: 3229: 3223: 3219: 3213: 3209: 3205: 3202: 3195: 3194: 3193: 3192: 3176: 3154: 3142: 3139: 3119: 3116: 3113: 3110: 3104: 3098: 3095: 3088: 3085: 3084: 3065: 3059: 3056: 3053: 3045: 3041: 3037: 3034: 3028: 3025: 3003: 2981: 2976: 2972: 2968: 2965: 2943: 2931: 2928: 2906: 2894: 2889: 2885: 2864: 2856: 2855: 2838: 2833: 2829: 2818: 2814: 2807: 2804: 2801: 2795: 2789: 2786: 2782: 2776: 2772: 2766: 2762: 2758: 2753: 2749: 2741: 2740: 2739: 2738: 2720: 2716: 2707: 2706: 2687: 2683: 2677: 2673: 2667: 2663: 2659: 2656: 2649: 2648: 2647: 2646: 2630: 2603: 2600: 2580: 2577: 2571: 2565: 2562: 2555: 2552: 2551: 2550: 2536: 2514: 2492: 2489: 2467: 2455: 2421: 2416: 2384: 2377: 2373: 2370: 2367: 2363: 2355: 2348: 2344: 2341: 2337: 2334: 2331: 2328: 2322: 2313: 2305: 2301: 2297: 2292: 2288: 2283: 2275: 2274: 2273: 2256: 2250: 2247: 2242: 2213: 2210: 2203:with degrees 2182: 2174: 2171: 2163: 2156: 2151: 2147: 2144: 2141: 2133: 2125: 2121: 2113: 2112: 2111: 2073: 2051: 2022: 2019: 1973: 1936: 1933: 1930: 1926: 1919: 1916: 1913: 1910: 1907: 1899: 1895: 1888: 1885: 1862: 1840: 1837: 1834: 1830: 1826: 1823: 1820: 1815: 1811: 1766: 1695: 1689: 1686: 1667: 1665: 1649: 1645: 1622: 1600: 1597: 1594: 1589: 1585: 1562: 1550: 1545: 1541: 1518: 1506: 1503: 1481: 1477: 1453: 1448: 1444: 1433: 1429: 1422: 1419: 1416: 1408: 1404: 1397: 1394: 1390: 1384: 1380: 1374: 1371: 1368: 1364: 1360: 1357: 1350: 1349: 1348: 1347:Now consider 1331: 1328: 1325: 1320: 1316: 1311: 1306: 1302: 1296: 1292: 1286: 1283: 1280: 1276: 1272: 1267: 1263: 1255: 1254: 1253: 1239: 1232: 1211: 1208: 1205: 1201: 1197: 1194: 1191: 1186: 1182: 1175: 1145: 1142: 1134: 1130: 1126: 1121: 1117: 1113: 1108: 1104: 1097: 1089: 1085: 1081: 1076: 1072: 1065: 1057: 1053: 1042: 1041: 1040: 1026: 1006: 1003: 998: 994: 990: 985: 981: 973:generated by 960: 914: 910: 887: 883: 874: 855: 852: 844: 840: 833: 830: 827: 819: 815: 808: 805: 794: 776: 754: 749: 745: 722: 719: 716: 712: 708: 705: 702: 697: 693: 670: 654:such that if 638: 635: 630: 626: 622: 617: 613: 601: 582: 576: 573: 554: 549: 546: 545: 544: 527: 521: 514: 510: 494: 486: 479: 477: 474: 473:Gröbner bases 470: 466: 461: 459: 455: 454:algebraic set 451: 447: 443: 439: 433: 414: 410: 406: 403: 400: 395: 391: 384: 364: 356: 350: 333: 327: 307: 299: 294: 277: 271: 251: 231: 223: 207: 187: 179: 160: 154: 146: 130: 118: 116: 114: 110: 105: 103: 102:hypersurfaces 99: 98:algebraic set 95: 91: 87: 83: 79: 75: 74:David Hilbert 70: 68: 64: 60: 56: 52: 47: 45: 41: 38:has a finite 37: 33: 29: 25: 22: 4172: 4148:. New York: 4144: 4132: 4111: 4095: 4083: 4050: 4044: 4003: 3723:intersection 3522: 3519:Applications 3494: 3450: 3086: 2958:. Therefore 2553: 2399: 2202: 1671: 1668:Second proof 1496:; moreover, 1468: 1346: 1160: 558: 547: 484: 483: 462: 435: 354: 353: 297: 296: 293:. Formally, 122: 106: 92:in terms of 71: 66: 48: 43: 23: 18: 3549:corollaries 2877:; moreover 1533:. However, 555:First proof 511:, then the 178:polynomials 113:Paul Gordan 21:mathematics 4197:Categories 4116:Roman 2008 4102:, p.  4024:References 3619:Since any 2735:. Consider 2226:. Now let 1957:, and let 355:Corollary. 49:In modern 42:(a finite 4100:Reid 1996 4088:Reid 1996 4075:179177713 4067:0025-5831 3951:− 3937:… 3823:− 3809:… 3787:≃ 3701:− 3687:… 3665:⊂ 3596:− 3582:… 3478:∗ 3376:⁡ 3370:− 3358:⁡ 3331:∑ 3210:∑ 3143:∈ 3099:⁡ 3060:⁡ 3038:− 3029:⁡ 3004:∗ 2992:∖ 2982:∈ 2969:− 2944:∗ 2932:∉ 2907:∗ 2895:∈ 2808:⁡ 2802:− 2790:⁡ 2763:∑ 2664:∑ 2604:∈ 2578:≥ 2566:⁡ 2515:∗ 2503:∖ 2493:∈ 2468:∗ 2456:⊆ 2422:⊆ 2417:∗ 2248:⊆ 2243:∗ 2211:≤ 2172:− 2145:… 2020:≤ 1934:− 1920:⁡ 1911:… 1889:⁡ 1838:− 1824:… 1687:⊆ 1611:∖ 1601:∈ 1595:− 1551:∉ 1507:∈ 1423:⁡ 1417:− 1398:⁡ 1365:∑ 1326:∈ 1277:∑ 1229:for some 1209:− 1195:… 1146:⋯ 1143:⊂ 1098:⊂ 1066:⊂ 1007:… 856:… 834:⁡ 809:⁡ 765:∖ 755:∈ 720:− 706:… 639:… 574:⊆ 469:induction 404:… 119:Statement 4171:(2008), 4150:Springer 4142:(1996). 3855:, where 3774:-algebra 2400:We have 1019:. Since 929:and let 559:Suppose 485:Theorem. 63:integers 4145:Hilbert 3971:, i.e. 3132:. Then 3087:Case 2: 2554:Case 1: 1231:integer 548:Remark. 440:over a 222:Hilbert 51:algebra 34:over a 4183:  4156:  4073:  4065:  4012:) and 2921:while 2326:  2110:, say 1855:. Let 1803:; say 875:. Let 793:degree 147:, let 4071:S2CID 4016:(see 4008:(see 3752:is a 3623:over 2623:, so 737:then 480:Proof 458:zeros 442:field 200:over 143:is a 55:rings 44:basis 36:field 30:of a 28:ideal 4181:ISBN 4154:ISBN 4063:ISSN 4014:Lean 3523:Let 3117:< 3054:< 3018:and 2371:< 2345:< 2332:< 1672:Let 1372:< 1284:< 145:ring 4055:doi 4020:). 3991:is 3732:If 3373:deg 3355:deg 3169:so 3096:deg 3057:deg 3026:deg 2805:deg 2787:deg 2563:deg 1917:deg 1886:deg 1420:deg 1395:deg 831:deg 806:deg 487:If 357:If 300:If 123:If 19:In 4199:: 4175:, 4152:. 4104:37 4069:. 4061:. 4051:36 4049:. 4032:^ 3551:. 2549:. 220:. 104:. 69:. 53:, 4162:. 4106:. 4077:. 4057:: 3995:. 3979:A 3959:) 3954:1 3948:N 3944:p 3940:, 3934:, 3929:0 3925:p 3921:( 3918:= 3913:a 3889:a 3865:a 3841:a 3835:/ 3831:] 3826:1 3820:n 3816:X 3812:, 3806:, 3801:0 3797:X 3793:[ 3790:R 3784:A 3762:R 3740:A 3729:. 3709:] 3704:1 3698:n 3694:X 3690:, 3684:, 3679:0 3675:X 3671:[ 3668:R 3660:a 3636:n 3632:R 3604:] 3599:1 3593:n 3589:X 3585:, 3579:, 3574:0 3570:X 3566:[ 3563:R 3531:R 3503:X 3472:a 3466:= 3461:a 3429:, 3424:) 3421:k 3418:( 3413:j 3409:f 3403:) 3398:) 3395:k 3392:( 3387:j 3383:f 3379:( 3367:) 3364:h 3361:( 3351:X 3345:j 3341:u 3335:j 3327:= 3322:0 3318:h 3289:) 3286:k 3283:( 3278:j 3274:f 3245:) 3242:k 3239:( 3234:j 3230:a 3224:j 3220:u 3214:j 3206:= 3203:a 3177:a 3155:k 3149:b 3140:a 3120:d 3114:k 3111:= 3108:) 3105:h 3102:( 3069:) 3066:h 3063:( 3051:) 3046:0 3042:h 3035:h 3032:( 2998:a 2987:a 2977:0 2973:h 2966:h 2938:a 2929:h 2901:a 2890:0 2886:h 2865:h 2839:, 2834:j 2830:f 2824:) 2819:j 2815:f 2811:( 2799:) 2796:h 2793:( 2783:X 2777:j 2773:u 2767:j 2759:= 2754:0 2750:h 2721:j 2717:f 2688:j 2684:a 2678:j 2674:u 2668:j 2660:= 2657:a 2631:a 2609:b 2601:a 2581:d 2575:) 2572:h 2569:( 2537:a 2509:a 2498:a 2490:h 2462:a 2451:a 2427:a 2411:a 2385:. 2378:} 2374:d 2368:k 2364:, 2359:) 2356:k 2353:( 2349:N 2342:j 2338:, 2335:N 2329:i 2323:: 2317:) 2314:k 2311:( 2306:j 2302:f 2298:, 2293:i 2289:f 2284:{ 2260:] 2257:X 2254:[ 2251:R 2237:a 2214:k 2186:) 2183:k 2180:( 2175:1 2167:) 2164:k 2161:( 2157:N 2152:f 2148:, 2142:, 2137:) 2134:k 2131:( 2126:0 2122:f 2096:a 2074:R 2052:k 2046:b 2023:k 1998:a 1974:k 1968:b 1945:} 1942:) 1937:1 1931:N 1927:f 1923:( 1914:, 1908:, 1905:) 1900:0 1896:f 1892:( 1883:{ 1863:d 1841:1 1835:N 1831:f 1827:, 1821:, 1816:0 1812:f 1789:a 1767:R 1745:a 1721:b 1699:] 1696:X 1693:[ 1690:R 1682:a 1650:N 1646:f 1623:N 1617:b 1606:a 1598:g 1590:N 1586:f 1563:N 1557:b 1546:N 1542:f 1519:N 1513:b 1504:g 1482:N 1478:f 1454:, 1449:i 1445:f 1439:) 1434:i 1430:f 1426:( 1414:) 1409:N 1405:f 1401:( 1391:X 1385:i 1381:u 1375:N 1369:i 1361:= 1358:g 1332:. 1329:R 1321:i 1317:u 1312:, 1307:i 1303:a 1297:i 1293:u 1287:N 1281:i 1273:= 1268:N 1264:a 1240:N 1217:) 1212:1 1206:N 1202:a 1198:, 1192:, 1187:0 1183:a 1179:( 1176:= 1171:b 1140:) 1135:2 1131:a 1127:, 1122:1 1118:a 1114:, 1109:0 1105:a 1101:( 1095:) 1090:1 1086:a 1082:, 1077:0 1073:a 1069:( 1063:) 1058:0 1054:a 1050:( 1027:R 1004:, 999:1 995:a 991:, 986:0 982:a 961:R 939:b 915:n 911:f 888:n 884:a 859:} 853:, 850:) 845:1 841:f 837:( 828:, 825:) 820:0 816:f 812:( 803:{ 777:n 771:b 760:a 750:n 746:f 723:1 717:n 713:f 709:, 703:, 698:0 694:f 671:n 665:b 642:} 636:, 631:1 627:f 623:, 618:0 614:f 610:{ 586:] 583:X 580:[ 577:R 569:a 531:] 528:X 525:[ 522:R 495:R 420:] 415:n 411:X 407:, 401:, 396:1 392:X 388:[ 385:R 365:R 337:] 334:X 331:[ 328:R 308:R 281:] 278:X 275:[ 272:R 252:R 232:R 208:R 188:X 164:] 161:X 158:[ 155:R 131:R

Index

mathematics
ideal
polynomial ring
field
generating set
algebra
rings
Noetherian rings
integers
David Hilbert
invariant theory
Nullstellensatz
syzygy theorem
algebraic geometry
commutative algebra
algebraic set
hypersurfaces
non-constructive methods
Paul Gordan
ring
polynomials
Hilbert
multivariate polynomials
field
rings of invariants
algebraic geometry
algebraic set
zeros
non-constructive
induction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.