Knowledge (XXG)

Intron

Source πŸ“

548:
retroelements, and are no longer responsible for intron gain. Tandem genomic duplication is the only proposed mechanism with supporting in vivo experimental evidence: a short intragenic tandem duplication can insert a novel intron into a protein-coding gene, leaving the corresponding peptide sequence unchanged. This mechanism also has extensive indirect evidence lending support to the idea that tandem genomic duplication is a prevalent mechanism for intron gain. The testing of other proposed mechanisms in vivo, particularly intron gain during DSBR, intron transfer, and intronization, is possible, although these mechanisms must be demonstrated in vivo to solidify them as actual mechanisms of intron gain. Further genomic analyses, especially when executed at the population level, may then quantify the relative contribution of each mechanism, possibly identifying species-specific biases that may shed light on varied rates of intron gain amongst different species.
528:
transcriptase-mediated intron loss (RTMIL) and genomic deletions, have been identified, and are known to occur. The definitive mechanisms of intron gain, however, remain elusive and controversial. At least seven mechanisms of intron gain have been reported thus far: intron transposition, transposon insertion, tandem genomic duplication, intron transfer, intron gain during double-strand break repair (DSBR), insertion of a group II intron, and intronization. In theory it should be easiest to deduce the origin of recently gained introns due to the lack of host-induced mutations, yet even introns gained recently did not arise from any of the aforementioned mechanisms. These findings thus raise the question of whether or not the proposed mechanisms of intron gain fail to describe the mechanistic origin of many novel introns because they are not accurate mechanisms of intron gain, or if there are other, yet to be discovered, processes generating novel introns.
373:, that is, the intron-containing RNA molecule can rearrange its own covalent structure so as to precisely remove the intron and link the exons together in the correct order. In some cases, particular intron-binding proteins are involved in splicing, acting in such a way that they assist the intron in folding into the three-dimensional structure that is necessary for self-splicing activity. Group I and group II introns are distinguished by different sets of internal conserved sequences and folded structures, and by the fact that splicing of RNA molecules containing group II introns generates branched introns (like those of spliceosomal RNAs), while group I introns use a non-encoded guanosine nucleotide (typically GTP) to initiate splicing, adding it on to the 5'-end of the excised intron. 540:
sequence between the original and duplicated AGGT will be spliced, resulting in the creation of an intron without alteration of the coding sequence of the gene. Double-stranded break repair via non-homologous end joining was recently identified as a source of intron gain when researchers identified short direct repeats flanking 43% of gained introns in Daphnia. These numbers must be compared to the number of conserved introns flanked by repeats in other organisms, though, for statistical relevance. For group II intron insertion, the retrohoming of a group II intron into a nuclear gene was proposed to cause recent spliceosomal intron gain.
404:
in a heterozygous state this will result in production of two abundant splice variants; one functional and one non-functional. In the homozygous state the mutant alleles may cause a genetic disease such as the hemophilia found in descendants of Queen Victoria where a mutation in one of the introns in a blood clotting factor gene creates a cryptic 3' splice site resulting in aberrant splicing. A significant fraction of human deaths by disease may be caused by mutations that interfere with normal splicing; mostly by creating cryptic splice sites.
386:
competing cryptic splice site sequences within the introns and those conditions are rarely met in large eukaryotic genes that may cover more than 40 kilobase pairs. Recent studies have shown that the actual error rate can be considerably higher than 10 and may be as high as 2% or 3% errors (error rate of 2 or 3 x 10) per gene. Additional studies suggest that the error rate is no less than 0.1% per intron. This relatively high level of splicing errors explains why most splice variants are rapidly degraded by nonsense-mediated decay.
408:
processing noise due to splicing errors. One of the central issues in the field of alternative splicing is working out the differences between these two possibilities. Many scientists have argued that the null hypothesis should be splicing noise, putting the burden of proof on those who claim biologically relevant alternative splicing. According to those scientists, the claim of function must be accompanied by convincing evidence that multiple functional products are produced from the same gene.
440:(the introns-first hypothesis). There is still considerable debate about the extent to which of these hypotheses is most correct but the popular consensus at the moment is that following the formation of the first eukaryotic cell, group II introns from the bacterial endosymbiont invaded the host genome. In the beginning these self-splicing introns excised themselves from the mRNA precursor but over time some of them lost that ability and their excision had to be aided in 536:
sequence when a transposon inserts into the sequence AGGT or encodes the splice sites within the transposon sequence. Where intron-generating transposons do not create target site duplications, elements include both splice sites GT (5') and AG (3') thereby splicing precisely without affecting the protein-coding sequence. It is not yet understood why these elements are spliced, whether by chance, or by some preferential action by the transposon.
215: 400:
rate of 10 – 10 is high enough that one in every 25,000 transcribed exons will have an incorporation error in one of the splice sites leading to a skipped intron or a skipped exon. Almost all multi-exon genes will produce incorrectly spliced transcripts but the frequency of this background noise will depend on the size of the genes, the number of introns, and the quality of the splice site sequences.
503:. In highly expressed yeast genes, introns inhibit R-loop formation and the occurrence of DNA damage. Genome-wide analysis in both yeast and humans revealed that intron-containing genes have decreased R-loop levels and decreased DNA damage compared to intronless genes of similar expression. Insertion of an intron within an R-loop prone gene can also suppress R-loop formation and 382:
nucleotides apart. All biochemical reactions are associated with known error rates and the more complicated the reaction the higher the error rate. Therefore, it is not surprising that the splicing reaction catalyzed by the spliceosome has a significant error rate even though there are spliceosome accessory factors that suppress the accidental cleavage of cryptic splice sites.
469:), there must have been extensive gain or loss of introns during evolutionary time. This process is thought to be subject to selection, with a tendency towards intron gain in larger species due to their smaller population sizes, and the converse in smaller (particularly unicellular) species. Biological factors also influence which genes in a genome lose or accumulate introns. 531:
In intron transposition, the most commonly purported intron gain mechanism, a spliced intron is thought to reverse splice into either its own mRNA or another mRNA at a previously intron-less position. This intron-containing mRNA is then reverse transcribed and the resulting intron-containing cDNA may
475:
of exons within a gene after intron excision acts to introduce greater variability of protein sequences translated from a single gene, allowing multiple related proteins to be generated from a single gene and a single precursor mRNA transcript. The control of alternative RNA splicing is performed by
431:
After the initial discovery of introns in protein-coding genes of the eukaryotic nucleus, there was significant debate as to whether introns in modern-day organisms were inherited from a common ancient ancestor (termed the introns-early hypothesis), or whether they appeared in genes rather recently
407:
Incorrectly spliced transcripts can easily be detected and their sequences entered into the online databases. They are usually described as "alternatively spliced" transcripts, which can be confusing because the term does not distinguish between real, biologically relevant, alternative splicing and
403:
In some cases, splice variants will be produced by mutations in the gene (DNA). These can be SNP polymorphisms that create a cryptic splice site or mutate a functional site. They can also be somatic cell mutations that affect splicing in a particular tissue or a cell line. When the mutant allele is
543:
Intron transfer has been hypothesized to result in intron gain when a paralog or pseudogene gains an intron and then transfers this intron via recombination to an intron-absent location in its sister paralog. Intronization is the process by which mutations create novel introns from formerly exonic
334:
Transfer RNA introns that depend upon proteins for removal occur at a specific location within the anticodon loop of unspliced tRNA precursors, and are removed by a tRNA splicing endonuclease. The exons are then linked together by a second protein, the tRNA splicing ligase. Note that self-splicing
259:
Splicing of all intron-containing RNA molecules is superficially similar, as described above. However, different types of introns were identified through the examination of intron structure by DNA sequence analysis, together with genetic and biochemical analysis of RNA splicing reactions. At least
399:
While the catalytic reaction may be accurate enough for effective processing most of the time, the overall error rate may be partly limited by the fidelity of transcription because transcription errors will introduce mutations that create cryptic splice sites. In addition, the transcription error
394:
Although mutations which create or disrupt binding sites may be slightly deleterious, the large number of possible such mutations makes it inevitable that some will reach fixation in a population. This is particularly relevant in species, such as humans, with relatively small long-term effective
535:
Transposon insertions have been shown to generate thousands of new introns across diverse eukaryotic species. Transposon insertions sometimes result in the duplication of this sequence on each side of the transposon. Such an insertion could intronize the transposon without disrupting the coding
317:
Nuclear pre-mRNA introns (spliceosomal introns) are characterized by specific intron sequences located at the boundaries between introns and exons. These sequences are recognized by spliceosomal RNA molecules when the splicing reactions are initiated. In addition, they contain a branch point, a
539:
In tandem genomic duplication, due to the similarity between consensus donor and acceptor splice sites, which both closely resemble AGGT, the tandem genomic duplication of an exonic segment harboring an AGGT sequence generates two potential splice sites. When recognized by the spliceosome, the
385:
Under ideal circumstances, the splicing reaction is likely to be 99.999% accurate (error rate of 10) and the correct exons will be joined and the correct intron will be deleted. However, these ideal conditions require very close matches to the best splice site sequences and the absence of any
381:
The spliceosome is a very complex structure containing up to one hundred proteins and five different RNAs. The substrate of the reaction is a long RNA molecule and the transesterification reactions catalyzed by the spliceosome require the bringing together of sites that may be thousands of
547:
The only hypothesized mechanism of recent intron gain lacking any direct evidence is that of group II intron insertion, which when demonstrated in vivo, abolishes gene expression. Group II introns are therefore likely the presumed ancestors of spliceosomal introns, acting as site-specific
527:
genes. Subsequent analyses have identified thousands of examples of intron loss and gain events, and it has been proposed that the emergence of eukaryotes, or the initial stages of eukaryotic evolution, involved an intron invasion. Two definitive mechanisms of intron loss, reverse
679:"The notion of the cistron ... must be replaced by that of a transcription unit containing regions which will be lost from the mature messenger – which I suggest we call introns (for intragenic regions) – alternating with regions which will be expressed – exons." (Gilbert 1978) 152:... must be replaced by that of a transcription unit containing regions which will be lost from the mature messenger – which I suggest we call introns (for intragenic regions) – alternating with regions which will be expressed – exons." (Gilbert 1978) 395:
population sizes. It is plausible, then, that the human genome carries a substantial load of suboptimal sequences which cause the generation of aberrant transcript isoforms. In this study, we present direct evidence that this is indeed the case.
458:
have now shown that the lengths and density (introns/gene) of introns varies considerably between related species. For example, while the human genome contains an average of 8.4 introns/gene (139,418 in the genome), the unicellular fungus
389:
The presence of sloppy binding sites within genes causes splicing errors and it may seem strange that these sites haven't been eliminated by natural selection. The argument for their persistence is similar to the argument for junk DNA.
102:, and were subsequently identified in genes encoding transfer RNA and ribosomal RNA genes. Introns are now known to occur within a wide variety of genes throughout organisms, bacteria, and viruses within all of the biological kingdoms. 479:
Introns contain several short sequences that are important for efficient splicing, such as acceptor and donor sites at either end of the intron as well as a branch point site, which are required for proper splicing by the
199:(e.g. humans, mice, and pufferfish (fugu)), where protein-coding genes almost always contain multiple introns, while introns are rare within the nuclear genes of some eukaryotic microorganisms, for example 302:
are proposed to be a fifth family, but little is known about the biochemical apparatus that mediates their splicing. They appear to be related to group II introns, and possibly to spliceosomal introns.
507:. Bonnet et al. (2017) speculated that the function of introns in maintaining genetic stability may explain their evolutionary maintenance at certain locations, particularly in highly expressed genes. 218:
Simple illustration of an unspliced mRNA precursor, with two introns and three exons (top). After the introns have been removed via splicing, the mature mRNA sequence is ready for translation (bottom).
451:
Early studies of genomic DNA sequences from a wide range of organisms show that the intron-exon structure of homologous genes in different organisms can vary widely. More recent studies of entire
416:
While introns do not encode protein products, they are integral to gene expression regulation. Some introns themselves encode functional RNAs through further processing after splicing to generate
365:
in a very wide range of living organisms. Following transcription into RNA, group I and group II introns also make extensive internal interactions that allow them to fold into a specific, complex
195:
The frequency of introns within different genomes is observed to vary widely across the spectrum of biological organisms. For example, introns are extremely common within the nuclear genome of
4014: 326:
intron. Apart from these three short conserved elements, nuclear pre-mRNA intron sequences are highly variable. Nuclear pre-mRNA introns are often much longer than their surrounding exons.
90:). There are four main types of introns: tRNA introns, group I introns, group II introns, and spliceosomal introns (see below). Introns are rare in Bacteria and Archaea (prokaryotes). 922:, Pedersen-Lane J, West D, Ehrenman K, Maley G, Chu F, Maley F (June 1985). "Processing of the intron-containing thymidylate synthase (td) gene of phage T4 is at the RNA level". 424:
is widely used to generate multiple proteins from a single gene. Furthermore, some introns play essential roles in a wide range of gene expression regulatory functions such as
318:
particular nucleotide sequence near the 3' end of the intron that becomes covalently linked to the 5' end of the intron during the splicing process, generating a branched
4058: 4007: 515:
The physical presence of introns promotes cellular resistance to starvation via intron enhanced repression of ribosomal protein genes of nutrient-sensing pathways.
175:, the term "intervening sequence" can refer to any of several families of internal nucleic acid sequences that are not present in the final gene product, including 86:
Introns are found in the genes of most eukaryotes and many eukaryotic viruses and they can be located in both protein-coding genes and genes that function as RNA (
1299:"Mega-introns in the dynein gene DhDhc7(Y) on the heterochromatic Y chromosome give rise to the giant threads loops in primary spermatocytes of Drosophila hydei" 544:
sequence. Thus, unlike other proposed mechanisms of intron gain, this mechanism does not require the insertion or generation of DNA to create a novel intron.
4000: 3462:
Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon V, Abou Elela S (January 2019). "Introns are mediators of cell response to starvation".
1444:
Copertino DW, Hallick RB (December 1993). "Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns".
3963: 817:
Chow LT, Gelinas RE, Broker TR, Roberts RJ (September 1977). "An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA".
118: 572: 741:
Kinniburgh AJ, Mertz JE, Ross J (July 1978). "The precursor of mouse beta-globin messenger RNA contains two intervening RNA sequences".
448:
of the spliceosome. The efficiency of splicing was improved by association with stabilizing proteins to form the primitive spliceosome.
4068: 4023: 793: 500: 444:
by other group II introns. Eventually a number of specific trans-acting introns evolved and these became the precursors to the
366: 233:(Mb) intron, which takes roughly three days to transcribe. On the other extreme, a 2015 study suggests that the shortest known 3949: 1549:
Greer CL, Peebles CL, Gegenheimer P, Abelson J (February 1983). "Mechanism of action of a yeast RNA ligase in tRNA splicing".
1013: 1348:"Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank" 2806:"Genome analysis reveals interplay between 5'UTR introns and nuclear mRNA export for secretory and mitochondrial genes" 4063: 2179:"Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay" 485: 980: 476:
a complex network of signaling molecules that respond to a wide range of intracellular and extracellular signals.
211:
of vertebrates are entirely devoid of introns, while those of eukaryotic microorganisms may contain many introns.
122: 2228:
Bitton DA, Atkinson SR, Rallis C, Smith GC, Ellis DA, Chen YY, Malecki M, Codlin S, Lemay JF, Cotobal C (2015).
484:. Some introns are known to enhance the expression of the gene that they are contained in by a process known as 4324: 2441:"Expression changes confirm genomic variants predicted to result in allele-specific, alternative mRNA splicing" 1213:
Taanman JW (February 1999). "The mitochondrial genome: structure, transcription, translation and replication".
461: 344: 282: 76: 965: 465:
contains only 0.0075 introns/gene (15 introns in the genome). Since eukaryotes arose from a common ancestor (
4344: 4269: 4090: 425: 3833:"Retrotransposition of a yeast group II intron occurs by reverse splicing directly into ectopic DNA sites" 1592:
Reinhold-Hurek B, Shub DA (May 1992). "Self-splicing introns in tRNA genes of widely divergent bacteria".
1479:
Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp PA (1986). "Splicing of messenger RNA precursors".
3154:
Roy SW, Gilbert W (March 2006). "The evolution of spliceosomal introns: patterns, puzzles and progress".
1799:
Sales-Lee J, Perry DS, Bowser BA, Diedrich JK, Rao B, Beusch I, Yates III JR, Roy SW, Madhani HD (2021).
125:
for the researchers and collaborators in their labs that did the experiments resulting in the discovery,
4339: 2855:
Penny D, Hoeppner MP, Poole AM, Jeffares DC (November 2009). "An overview of the introns-first theory".
504: 50: 79:. The non-intron sequences that become joined by this RNA processing to form the mature RNA are called 3788:
Cech TR (January 1986). "The generality of self-splicing RNA: relationship to nuclear mRNA splicing".
4334: 4153: 3903: 3844: 3581: 3471: 3253: 2864: 2560: 2503: 1974: 1601: 1116: 1057: 873: 697: 658: 589: 472: 421: 3982: 2804:
Cenik C, Chua HN, Zhang H, Tarnawsky SP, Akef A, Derti A, et al. (April 2011). Snyder M (ed.).
4146: 1103:
Tilghman SM, Tiemeier DC, Seidman JG, Peterlin BM, Sullivan M, Maizel JV, Leder P (February 1978).
1018: 180: 110: 1713:
Wan R, Bai R, Zhan X, Shi Y (2020). "How is precursor messenger RNA spliced by the spliceosome?".
3813: 3605: 3495: 3398: 3222: 3179: 3136: 3076:
RodrΓ­guez-Trelles F, TarrΓ­o R, Ayala FJ (2006). "Origins and evolution of spliceosomal introns".
3009: 2966: 2888: 2786: 2529: 2421: 1895: 1838: 1781: 1738: 1625: 1574: 1238: 985: 947: 842: 766: 723: 114: 1395:
Slabodnick MM, Ruby JG, Reiff SB, Swart EC, Gosai S, Prabakaran S, et al. (February 2017).
3421:
Bonnet A, Grosso AR, Elkaoutari A, Coleno E, Presle A, Sridhara SC, et al. (August 2017).
532:
then cause intron gain via complete or partial recombination with its original genomic locus.
4141: 3959: 3929: 3872: 3805: 3770: 3717: 3663: 3597: 3550: 3487: 3444: 3390: 3351: 3316: 3281: 3214: 3171: 3128: 3093: 3058: 3001: 2958: 2923: 2880: 2837: 2778: 2737: 2688: 2637: 2588: 2521: 2472: 2413: 2359: 2310: 2259: 2210: 2159: 2107: 2051: 2002: 1940: 1887: 1830: 1773: 1730: 1695: 1660: 1617: 1566: 1531: 1496: 1461: 1426: 1377: 1328: 1279: 1230: 1195: 1144: 1105:"Intervening sequence of DNA identified in the structural portion of a mouse beta-globin gene" 1085: 939: 901: 834: 799: 789: 758: 715: 599: 523:
Introns may be lost or gained over evolutionary time, as shown by many comparative studies of
247: 208: 4221: 4216: 3977: 3954:
Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter
432:
in the evolutionary process (termed the introns-late hypothesis). Another theory is that the
4226: 4201: 3967: 3919: 3911: 3862: 3852: 3797: 3760: 3752: 3707: 3697: 3653: 3643: 3589: 3540: 3530: 3479: 3434: 3382: 3343: 3334:
Jeffares DC, Penkett CJ, BΓ€hler J (August 2008). "Rapidly regulated genes are intron poor".
3308: 3271: 3261: 3206: 3163: 3120: 3085: 3048: 3040: 2993: 2950: 2915: 2872: 2827: 2817: 2768: 2727: 2719: 2678: 2668: 2627: 2619: 2578: 2568: 2511: 2462: 2452: 2403: 2393: 2349: 2341: 2300: 2290: 2249: 2241: 2230:"Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast" 2200: 2190: 2149: 2141: 2097: 2087: 2041: 2033: 1992: 1982: 1930: 1922: 1877: 1869: 1820: 1812: 1765: 1722: 1687: 1652: 1609: 1558: 1523: 1488: 1453: 1416: 1408: 1367: 1359: 1318: 1310: 1269: 1222: 1185: 1175: 1134: 1124: 1075: 1065: 931: 891: 881: 826: 750: 705: 299: 200: 196: 106: 3089: 2279:"The fitness cost of mis-splicing is the main determinant of alternative splicing patterns" 2277:
Saudemont B, Popa A, Parmley JL, Rocher V, Blugeon C, Necsulea A, Meyer E, Duret L (2017).
1046:"Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain" 4299: 4100: 4083: 4078: 4053: 3736: 1769: 1726: 919: 348: 292: 39: 35: 3741:"Nuclear expression of a group II intron is consistent with spliceosomal intron ancestry" 2657:"Systematic evaluation of isoform function in literature reports of alternative splicing" 3907: 3848: 3585: 3475: 3257: 2868: 2564: 2507: 1978: 1691: 1656: 1605: 1527: 1492: 1120: 1061: 877: 701: 75:
refers to both the DNA sequence within a gene and the corresponding RNA sequence in RNA
4264: 4163: 4048: 4043: 3924: 3891: 3765: 3740: 3712: 3685: 3658: 3631: 3545: 3518: 3299:
Jeffares DC, Mourier T, Penny D (January 2006). "The biology of intron gain and loss".
3053: 3028: 2832: 2805: 2732: 2707: 2683: 2656: 2632: 2607: 2583: 2548: 2467: 2440: 2408: 2381: 2354: 2329: 2305: 2278: 2254: 2229: 2205: 2178: 2154: 2129: 2102: 2075: 2046: 2021: 1997: 1962: 1935: 1914: 1882: 1857: 1825: 1800: 1421: 1396: 1372: 1347: 1323: 1298: 1190: 1163: 1030: 681: 628: 577: 466: 141: 87: 3423:"Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability" 3276: 3241: 1274: 1257: 1226: 1139: 1104: 1080: 1045: 935: 896: 861: 4318: 3867: 3832: 3801: 2984:
Sharp PA (1991). ""Five easy pieces."(role of RNA catalysis in cellular processes)".
2954: 2919: 2533: 2425: 1842: 1785: 1742: 1562: 1457: 1346:
Piovesan A, Caracausi M, Ricci M, Strippoli P, Vitale L, Pelleri MC (December 2015).
830: 754: 643: 638: 417: 362: 354: 3992: 3817: 3499: 3197:
de Souza SJ (July 2003). "The emergence of a synthetic theory of intron evolution".
3183: 2970: 2892: 1899: 1578: 1242: 951: 770: 4329: 4110: 4031: 3609: 3514: 3402: 3226: 3140: 2790: 2655:
Bhuiyan SA, Ly S, Phan M, Huntington B, Hogan E, Liu CC, Liu J, Pavlidis P (2018).
2398: 1858:"Spliceosomes walk the line: splicing errors and their impact on cellular function" 1629: 1397:"The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell" 846: 727: 358: 312: 275: 264: 214: 126: 3831:
Dickson L, Huang HR, Liu L, Matsuura M, Lambowitz AM, Perlman PS (November 2001).
3684:
Gozashti L, Roy S, Thornlow B, Kramer A, Ares M, Corbett-Detig R (November 2022).
3369:
Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (August 2002).
3013: 2706:
Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A (March 2011).
3439: 3422: 2822: 2092: 1314: 4289: 4136: 4095: 3044: 2382:"Pan-cancer repository of validated natural and cryptic mRNA splicing mutations" 648: 524: 481: 433: 268: 242: 184: 130: 3837:
Proceedings of the National Academy of Sciences of the United States of America
3246:
Proceedings of the National Academy of Sciences of the United States of America
1109:
Proceedings of the National Academy of Sciences of the United States of America
1050:
Proceedings of the National Academy of Sciences of the United States of America
866:
Proceedings of the National Academy of Sciences of the United States of America
3483: 3347: 3312: 3210: 2876: 2673: 2295: 1816: 1756:
Wilkinson ME, Charenton C, Nagai K (2020). "RNA splicing by the spliceosome".
1412: 1180: 1164:"Comparative genomic analysis of fungal genomes reveals intron-rich ancestors" 224: 138: 99: 17: 3976:
5th edition, 2002, W H Freeman. Available online through the NCBI Bookshelf:
2457: 3702: 3124: 2997: 2573: 2516: 2491: 2022:"Widespread alternative and aberrant splicing revealed by lariat sequencing" 1987: 1363: 803: 452: 437: 369:. These complex architectures allow some group I and group II introns to be 3933: 3876: 3857: 3774: 3721: 3667: 3648: 3554: 3535: 3491: 3448: 3394: 3355: 3320: 3285: 3266: 3218: 3175: 3132: 3097: 3062: 2962: 2884: 2841: 2782: 2773: 2756: 2741: 2692: 2641: 2592: 2525: 2476: 2417: 2363: 2314: 2263: 2214: 2195: 2163: 2145: 2111: 2055: 2006: 1944: 1891: 1834: 1777: 1734: 1678:
Michel F, Ferat JL (1995). "Structure and activities of group II introns".
1430: 1381: 1332: 1283: 1234: 1199: 1070: 886: 3809: 3601: 3005: 2927: 2723: 2490:
Rogaev EI, Grigorenko AP, Faskhutdinova G, Kittler EL, Moliaka YK (2009).
2245: 1699: 1664: 1621: 1570: 1535: 1500: 1465: 1129: 943: 2623: 2037: 1926: 1873: 1148: 1089: 905: 838: 762: 719: 653: 616: 286: 234: 230: 31: 3756: 4256: 4236: 4231: 3915: 2345: 594: 176: 165: 149: 30:
For the interferon-based drug used in viral and cancer treatments, see
57:
that is not expressed or operative in the final RNA product. The word
4211: 4206: 4186: 4073: 3593: 2134:
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
1613: 710: 685: 633: 604: 496: 455: 3569: 3370: 3167: 2130:"Estimation of the minimum mRNA splicing error rate in vertebrates" 1044:
Tonegawa S, Maxam AM, Tizard R, Bernard O, Gilbert W (March 1978).
353:
Group I and group II introns are found in genes encoding proteins (
4279: 4274: 4196: 4191: 4181: 4176: 4171: 4131: 3386: 2755:
Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ (December 2012).
2020:
Stepankiw N, Raghavan M, Fogarty EA, Grimson A, Pleiss JA (2015).
445: 213: 3966:. Fourth edition is available online through the NCBI Bookshelf: 4294: 4284: 4126: 3987: 3632:"Identifying the mechanisms of intron gain: progress and trends" 567: 562: 80: 54: 3996: 3892:"A segmental genomic duplication generates a functional intron" 3686:"Transposable elements drive intron gain in diverse eukaryotes" 2906:
Cavalier-Smith T (1991). "Intron phylogeny: a new hypothesis".
2492:"Genotype analysis identifies the cause of the "royal disease"" 2177:
Zhang Z, Xin D, Wang P, Zhou L, Hu L, Kong X, Hurst LD (2009).
1963:"Splice-site pairing is an intrinsically high fidelity process" 1297:
Reugels AM, Kurek R, Lammermann U, BΓΌnemann H (February 2000).
862:"Spliced segments at the 5' terminus of adenovirus 2 late mRNA" 2549:"Rate, molecular spectrum, and consequences of human mutation" 492: 3111:
Mourier T, Jeffares DC (May 2003). "Eukaryotic intron loss".
2076:"Noisy splicing drives mRNA isoform diversity in human cells" 237:
intron length is 30 base pairs (bp) belonging to the human
3950:
A search engine for exon/intron sequences defined by NCBI
3890:
Hellsten U, Aspden JL, Rio DC, Rokhsar DS (August 2011).
3029:"Origin of spliceosomal introns and alternative splicing" 436:
and the intron-exon structure of genes is a relic of the
251:, in which most (> 95%) introns are 15 or 16 bp long. 98:
Introns were first discovered in protein-coding genes of
1801:"Coupling of spliceosome complexity to intron diversity" 788:(3rd ed.). New York: Wiley. pp. 159–179, 386. 164:, i.e., an additional piece of DNA that arises within a 3371:"Selection for short introns in highly expressed genes" 2608:"The state of play in higher eukaryote gene annotation" 260:
four distinct classes of introns have been identified:
1514:
Guthrie C, Patterson B (1988). "Spliceosomal snRNAs".
1643:
Cech TR (1990). "Self-splicing of group I introns".
335:
introns are also sometimes found within tRNA genes.
4255: 4162: 4109: 4030: 3972:Jeremy M Berg, John L Tymoczko, and Lubert Stryer, 3679: 3677: 3570:"A role for reverse transcripts in gene conversion" 2757:"Introns in UTRs: why we should stop ignoring them" 2074:Pickrell JK, Pai AA, Gilad Y, Pritchard JK (2010). 1215:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
109:by introns was discovered independently in 1977 by 3242:"Intron evolution as a population-genetic process" 278:genes that are removed by proteins (tRNA introns) 1014:"Nobel Prize in medicine brews resentment, envy" 966:"The Nobel Prize in Physiology or Medicine 1993" 3983:Intron finding tool for plant genomic sequences 3625: 3623: 3621: 3619: 3416: 3414: 3412: 2941:Doolittle WF (1991). "The origins of introns". 2553:Proceedings of the National Academy of Sciences 1967:Proceedings of the National Academy of Sciences 241:gene. The shortest known introns belong to the 3519:"Origin and evolution of spliceosomal introns" 4008: 675: 673: 8: 2708:"Critical association of ncRNA with introns" 2123: 2121: 860:Berget SM, Moore C, Sharp PA (August 1977). 2069: 2067: 2065: 979:Abir-Am, Pnina Geraldine (September 2020). 4115: 4036: 4015: 4001: 3993: 3033:Cold Spring Harbor Perspectives in Biology 2375: 2373: 27:Specific base pair sequences within a gene 3923: 3866: 3856: 3764: 3711: 3701: 3657: 3647: 3544: 3534: 3438: 3275: 3265: 3052: 2831: 2821: 2772: 2731: 2682: 2672: 2631: 2582: 2572: 2515: 2466: 2456: 2407: 2397: 2353: 2304: 2294: 2253: 2204: 2194: 2153: 2101: 2091: 2045: 1996: 1986: 1934: 1881: 1824: 1420: 1371: 1322: 1273: 1256:Tollervey D, Caceres JF (November 2000). 1189: 1179: 1138: 1128: 1079: 1069: 895: 885: 709: 71:, i.e., a region inside a gene. The term 2439:Mucaki EJ, Shirley BC, Rogan PK (2020). 1915:"Stochastic noise in splicing machinery" 1162:Stajich JE, Dietrich FS, Roy SW (2007). 981:"The Women Who Discovered RNA Splicing" 669: 265:Introns in nuclear protein-coding genes 3568:Derr LK, Strathern JN (January 1993). 3090:10.1146/annurev.genet.40.110405.090625 1956: 1954: 171:Although introns are sometimes called 3630:Yenerall P, Zhou L (September 2012). 2380:Shirley B, Mucaki E, Rogan P (2019). 1770:10.1146/annurev-biochem-091719-064225 1727:10.1146/annurev-biochem-013118-111024 119:Nobel Prize in Physiology or Medicine 7: 3517:, Csuros M, Koonin EV (April 2012). 573:Eukaryotic chromosome fine structure 1692:10.1146/annurev.bi.64.070195.002251 1657:10.1146/annurev.bi.59.070190.002551 1528:10.1146/annurev.ge.22.120188.002131 1493:10.1146/annurev.bi.55.070186.005351 222:A particularly extreme case is the 1012:Flint, Anthony (8 November 1993). 412:Biological functions and evolution 183:(UTR), and nucleotides removed by 25: 4024:Post-transcriptional modification 295:that are removed by RNA catalysis 1961:Fox-Walsh KL, Hertel KJ (2009). 491:Actively transcribed regions of 313:RNA splicing Β§ Spliceosomal 274:Introns in nuclear and archaeal 2857:Journal of Molecular Evolution 2399:10.12688/f1000research.17204.3 2328:Scotti MM, Swanson MS (2016). 1446:Trends in Biochemical Sciences 367:three-dimensional architecture 1: 3956:Molecular Biology of the Cell 3027:Irimia M, and Roy SW (2014). 2330:"RNA mis-splicing in disease" 1758:Annual Review of Biochemistry 1715:Annual Review of Biochemistry 1680:Annual Review of Biochemistry 1645:Annual Review of Biochemistry 1481:Annual Review of Biochemistry 1275:10.1016/S0092-8674(00)00174-4 1227:10.1016/s0005-2728(98)00161-3 936:10.1016/s0092-8674(85)80010-6 3802:10.1016/0092-8674(86)90751-8 3735:Chalamcharla VR, Curcio MJ, 3440:10.1016/j.molcel.2017.07.002 2955:10.1016/0960-9822(91)90214-h 2920:10.1016/0168-9525(91)90377-3 2823:10.1371/journal.pgen.1001366 2093:10.1371/journal.pgen.1001236 1563:10.1016/0092-8674(83)90473-7 1458:10.1016/0968-0004(93)90008-b 831:10.1016/0092-8674(77)90180-5 755:10.1016/0092-8674(78)90251-9 339:Group I and group II introns 117:, for which they shared the 3045:10.1101/cshperspect.a016071 2606:Mudge JM, Harrow J (2016). 1913:Melamud E, Moult J (2009). 1258:"RNA processing marches on" 486:intron-mediated enhancement 377:On the accuracy of splicing 137:was introduced by American 121:in 1993, though credit was 4361: 1921:. gkp471 (14): 4873–4886. 1856:Hsu SN, Hertel KJ (2009). 1315:10.1093/genetics/154.2.759 519:As mobile genetic elements 342: 310: 187:, in addition to introns. 29: 4118: 4039: 3988:Exon-intron graphic maker 3484:10.1038/s41586-018-0859-7 3348:10.1016/j.tig.2008.05.006 3313:10.1016/j.tig.2005.10.006 3078:Annual Review of Genetics 2877:10.1007/s00239-009-9279-5 2674:10.1186/s12864-018-5013-2 2296:10.1186/s13059-017-1344-6 1817:10.1016/j.cub.2021.09.004 1516:Annual Review of Genetics 1413:10.1016/j.cub.2016.12.057 1181:10.1186/gb-2007-8-10-r223 105:The fact that genes were 61:is derived from the term 3156:Nature Reviews. Genetics 2458:10.3389/fgene.2020.00109 462:Encephalitozoon cuniculi 345:Group I catalytic intron 205:Saccharomyces cerevisiae 4091:Poly(A)-binding protein 3745:Genes & Development 3703:10.1073/pnas.2209766119 3211:10.1023/A:1024193323397 3125:10.1126/science.1080559 2998:10.1126/science.1948046 2612:Nature Reviews Genetics 2574:10.1073/pnas.0912629107 2517:10.1126/science.1180660 2334:Nature Reviews Genetics 1988:10.1073/pnas.0813128106 1811:(22): 4898–4910 e4894. 499:that are vulnerable to 426:nonsense-mediated decay 229:gene containing a β‰₯3.6 94:Discovery and etymology 3858:10.1073/pnas.231494498 3649:10.1186/1745-6150-7-29 3536:10.1186/1745-6150-7-11 3267:10.1073/pnas.092595699 3240:Lynch M (April 2002). 2774:10.1002/bies.201200073 2712:Nucleic Acids Research 2196:10.1186/1741-7007-7-23 2146:10.1098/rstb.2015.0474 2026:Nucleic Acids Research 1919:Nucleic Acids Research 1071:10.1073/pnas.75.3.1485 887:10.1073/pnas.74.8.3171 686:"Why genes in pieces?" 397: 271:(spliceosomal introns) 219: 201:baker's/brewer's yeast 154: 3896:Nature Communications 2445:Frontiers in Genetics 2246:10.1101/gr.185371.114 1364:10.1093/dnares/dsv028 1130:10.1073/pnas.75.2.725 511:Starvation adaptation 392: 217: 209:mitochondrial genomes 173:intervening sequences 146: 4154:Alternative splicing 2624:10.1038/nrg.2016.119 2128:Skandalis A (2016). 1874:10.4161/rna.6.5.9860 659:Exon-intron database 590:Alternative splicing 473:Alternative splicing 422:Alternative splicing 307:Spliceosomal introns 285:that are removed by 267:that are removed by 207:). In contrast, the 181:untranslated regions 107:split or interrupted 3908:2011NatCo...2..454H 3849:2001PNAS...9813207D 3843:(23): 13207–13212. 3757:10.1101/gad.1905010 3586:1993Natur.361..170D 3476:2019Natur.565..612P 3258:2002PNAS...99.6118L 2869:2009JMolE..69..527P 2724:10.1093/nar/gkq1080 2565:2010PNAS..107..961L 2508:2009Sci...326..817R 1979:2009PNAS..106.1766F 1606:1992Natur.357..173R 1121:1978PNAS...75..725T 1062:1978PNAS...75.1485T 1019:The Idaho Statesman 878:1977PNAS...74.3171B 702:1978Natur.271..501G 148:"The notion of the 111:Phillip Allen Sharp 51:nucleotide sequence 34:. For the album by 4265:5β€² cap methylation 3916:10.1038/ncomms1461 3336:Trends in Genetics 3301:Trends in Genetics 2908:Trends in Genetics 2346:10.1038/nrg.2015.3 2038:10.1093/nar/gkv763 1927:10.1093/nar/gkp471 986:American Scientist 245:ciliates, such as 220: 115:Richard J. Roberts 4310: 4309: 4251: 4250: 4247: 4246: 4164:pre-mRNA factors 3964:978-0-8153-4105-5 3580:(6408): 170–173. 3470:(7741): 612–617. 3433:(4): 608–621.e6. 2992:(5032): 663–664. 2767:(12): 1025–1034. 2032:(17): 8488–8501. 1600:(6374): 173–176. 684:(February 1978). 600:Minor spliceosome 428:and mRNA export. 300:Group III introns 248:Stentor coeruleus 197:jawed vertebrates 16:(Redirected from 4352: 4116: 4049:5β€² cap formation 4037: 4017: 4010: 4003: 3994: 3938: 3937: 3927: 3887: 3881: 3880: 3870: 3860: 3828: 3822: 3821: 3785: 3779: 3778: 3768: 3732: 3726: 3725: 3715: 3705: 3681: 3672: 3671: 3661: 3651: 3627: 3614: 3613: 3594:10.1038/361170a0 3565: 3559: 3558: 3548: 3538: 3510: 3504: 3503: 3459: 3453: 3452: 3442: 3418: 3407: 3406: 3366: 3360: 3359: 3331: 3325: 3324: 3296: 3290: 3289: 3279: 3269: 3252:(9): 6118–6123. 3237: 3231: 3230: 3205:(2–3): 117–121. 3194: 3188: 3187: 3151: 3145: 3144: 3108: 3102: 3101: 3073: 3067: 3066: 3056: 3024: 3018: 3017: 2981: 2975: 2974: 2938: 2932: 2931: 2903: 2897: 2896: 2852: 2846: 2845: 2835: 2825: 2801: 2795: 2794: 2776: 2752: 2746: 2745: 2735: 2718:(6): 2357–2366. 2703: 2697: 2696: 2686: 2676: 2652: 2646: 2645: 2635: 2603: 2597: 2596: 2586: 2576: 2547:Lynch M (2010). 2544: 2538: 2537: 2519: 2487: 2481: 2480: 2470: 2460: 2436: 2430: 2429: 2411: 2401: 2377: 2368: 2367: 2357: 2325: 2319: 2318: 2308: 2298: 2274: 2268: 2267: 2257: 2225: 2219: 2218: 2208: 2198: 2174: 2168: 2167: 2157: 2125: 2116: 2115: 2105: 2095: 2086:(12): e1001236. 2071: 2060: 2059: 2049: 2017: 2011: 2010: 2000: 1990: 1973:(6): 1766–1771. 1958: 1949: 1948: 1938: 1910: 1904: 1903: 1885: 1853: 1847: 1846: 1828: 1796: 1790: 1789: 1753: 1747: 1746: 1710: 1704: 1703: 1675: 1669: 1668: 1640: 1634: 1633: 1614:10.1038/357173a0 1589: 1583: 1582: 1546: 1540: 1539: 1511: 1505: 1504: 1476: 1470: 1469: 1441: 1435: 1434: 1424: 1392: 1386: 1385: 1375: 1343: 1337: 1336: 1326: 1294: 1288: 1287: 1277: 1253: 1247: 1246: 1210: 1204: 1203: 1193: 1183: 1159: 1153: 1152: 1142: 1132: 1100: 1094: 1093: 1083: 1073: 1056:(3): 1485–1489. 1041: 1035: 1034: 1028: 1026: 1009: 1003: 1002: 1000: 998: 976: 970: 969: 962: 956: 955: 916: 910: 909: 899: 889: 872:(8): 3171–3175. 857: 851: 850: 814: 808: 807: 784:Lewin B (1987). 781: 775: 774: 738: 732: 731: 713: 711:10.1038/271501a0 677: 495:frequently form 325: 293:group II introns 21: 4360: 4359: 4355: 4354: 4353: 4351: 4350: 4349: 4325:Gene expression 4315: 4314: 4311: 4306: 4243: 4158: 4105: 4101:Polyuridylation 4054:Polyadenylation 4026: 4021: 3946: 3941: 3889: 3888: 3884: 3830: 3829: 3825: 3787: 3786: 3782: 3734: 3733: 3729: 3683: 3682: 3675: 3629: 3628: 3617: 3567: 3566: 3562: 3512: 3511: 3507: 3461: 3460: 3456: 3420: 3419: 3410: 3375:Nature Genetics 3368: 3367: 3363: 3333: 3332: 3328: 3298: 3297: 3293: 3239: 3238: 3234: 3196: 3195: 3191: 3168:10.1038/nrg1807 3153: 3152: 3148: 3110: 3109: 3105: 3075: 3074: 3070: 3026: 3025: 3021: 2983: 2982: 2978: 2943:Current Biology 2940: 2939: 2935: 2905: 2904: 2900: 2854: 2853: 2849: 2816:(4): e1001366. 2803: 2802: 2798: 2754: 2753: 2749: 2705: 2704: 2700: 2654: 2653: 2649: 2618:(12): 758–772. 2605: 2604: 2600: 2546: 2545: 2541: 2489: 2488: 2484: 2438: 2437: 2433: 2379: 2378: 2371: 2327: 2326: 2322: 2276: 2275: 2271: 2234:Genome Research 2227: 2226: 2222: 2176: 2175: 2171: 2140:(1713): 34–38. 2127: 2126: 2119: 2073: 2072: 2063: 2019: 2018: 2014: 1960: 1959: 1952: 1912: 1911: 1907: 1855: 1854: 1850: 1805:Current Biology 1798: 1797: 1793: 1755: 1754: 1750: 1712: 1711: 1707: 1677: 1676: 1672: 1642: 1641: 1637: 1591: 1590: 1586: 1548: 1547: 1543: 1513: 1512: 1508: 1478: 1477: 1473: 1452:(12): 467–471. 1443: 1442: 1438: 1401:Current Biology 1394: 1393: 1389: 1345: 1344: 1340: 1296: 1295: 1291: 1255: 1254: 1250: 1212: 1211: 1207: 1161: 1160: 1156: 1102: 1101: 1097: 1043: 1042: 1038: 1024: 1022: 1011: 1010: 1006: 996: 994: 978: 977: 973: 964: 963: 959: 918: 917: 913: 859: 858: 854: 816: 815: 811: 796: 783: 782: 778: 740: 739: 735: 680: 678: 671: 667: 554: 521: 513: 414: 379: 351: 349:Group II intron 341: 332: 319: 315: 309: 283:group I introns 257: 193: 160:also refers to 96: 88:noncoding genes 43: 40:Introns (album) 36:LCD Soundsystem 28: 23: 22: 15: 12: 11: 5: 4358: 4356: 4348: 4347: 4345:Non-coding DNA 4342: 4337: 4332: 4327: 4317: 4316: 4308: 4307: 4305: 4304: 4303: 4302: 4297: 4292: 4287: 4282: 4277: 4270:mRNA decapping 4267: 4261: 4259: 4253: 4252: 4249: 4248: 4245: 4244: 4242: 4241: 4240: 4239: 4234: 4229: 4224: 4219: 4214: 4209: 4204: 4199: 4194: 4189: 4184: 4179: 4168: 4166: 4160: 4159: 4157: 4156: 4151: 4150: 4149: 4144: 4134: 4129: 4119: 4113: 4107: 4106: 4104: 4103: 4098: 4093: 4088: 4087: 4086: 4081: 4076: 4071: 4066: 4061: 4051: 4046: 4044:Precursor mRNA 4040: 4034: 4028: 4027: 4022: 4020: 4019: 4012: 4005: 3997: 3991: 3990: 3985: 3980: 3970: 3952: 3945: 3944:External links 3942: 3940: 3939: 3882: 3823: 3796:(2): 207–210. 3780: 3751:(8): 827–836. 3739:(April 2010). 3727: 3673: 3636:Biology Direct 3615: 3560: 3523:Biology Direct 3505: 3454: 3427:Molecular Cell 3408: 3381:(4): 415–418. 3361: 3342:(8): 375–378. 3326: 3291: 3232: 3189: 3162:(3): 211–221. 3146: 3119:(5624): 1393. 3103: 3068: 3039:(6): a016071. 3019: 2976: 2949:(3): 145–146. 2933: 2914:(5): 145–148. 2898: 2863:(5): 527–540. 2847: 2796: 2747: 2698: 2647: 2598: 2559:(3): 961–968. 2539: 2482: 2431: 2369: 2320: 2283:Genome Biology 2269: 2240:(6): 884–896. 2220: 2169: 2117: 2061: 2012: 1950: 1905: 1868:(5): 526–530. 1848: 1791: 1748: 1705: 1670: 1635: 1584: 1557:(2): 537–546. 1541: 1506: 1471: 1436: 1407:(4): 569–575. 1387: 1358:(6): 495–503. 1338: 1309:(2): 759–769. 1289: 1268:(5): 703–709. 1248: 1221:(2): 103–123. 1205: 1168:Genome Biology 1154: 1115:(2): 725–729. 1095: 1036: 1031:Newspapers.com 1004: 971: 957: 930:(2): 375–382. 911: 852: 809: 794: 776: 749:(3): 681–693. 733: 668: 666: 663: 662: 661: 656: 651: 646: 641: 636: 631: 629:Exon shuffling 620: 619: 608: 607: 602: 597: 592: 581: 580: 578:Small t intron 575: 570: 565: 553: 550: 520: 517: 512: 509: 467:common descent 413: 410: 378: 375: 340: 337: 331: 328: 308: 305: 297: 296: 291:Self-splicing 289: 281:Self-splicing 279: 272: 256: 255:Classification 253: 192: 189: 142:Walter Gilbert 95: 92: 26: 24: 18:Non-gene locus 14: 13: 10: 9: 6: 4: 3: 2: 4357: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4322: 4320: 4313: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4272: 4271: 4268: 4266: 4263: 4262: 4260: 4258: 4254: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4174: 4173: 4170: 4169: 4167: 4165: 4161: 4155: 4152: 4148: 4145: 4143: 4140: 4139: 4138: 4135: 4133: 4130: 4128: 4124: 4121: 4120: 4117: 4114: 4112: 4108: 4102: 4099: 4097: 4094: 4092: 4089: 4085: 4082: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4056: 4055: 4052: 4050: 4047: 4045: 4042: 4041: 4038: 4035: 4033: 4029: 4025: 4018: 4013: 4011: 4006: 4004: 3999: 3998: 3995: 3989: 3986: 3984: 3981: 3979: 3975: 3971: 3969: 3965: 3961: 3957: 3953: 3951: 3948: 3947: 3943: 3935: 3931: 3926: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3893: 3886: 3883: 3878: 3874: 3869: 3864: 3859: 3854: 3850: 3846: 3842: 3838: 3834: 3827: 3824: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3791: 3784: 3781: 3776: 3772: 3767: 3762: 3758: 3754: 3750: 3746: 3742: 3738: 3731: 3728: 3723: 3719: 3714: 3709: 3704: 3699: 3695: 3691: 3687: 3680: 3678: 3674: 3669: 3665: 3660: 3655: 3650: 3645: 3641: 3637: 3633: 3626: 3624: 3622: 3620: 3616: 3611: 3607: 3603: 3599: 3595: 3591: 3587: 3583: 3579: 3575: 3571: 3564: 3561: 3556: 3552: 3547: 3542: 3537: 3532: 3528: 3524: 3520: 3516: 3509: 3506: 3501: 3497: 3493: 3489: 3485: 3481: 3477: 3473: 3469: 3465: 3458: 3455: 3450: 3446: 3441: 3436: 3432: 3428: 3424: 3417: 3415: 3413: 3409: 3404: 3400: 3396: 3392: 3388: 3387:10.1038/ng940 3384: 3380: 3376: 3372: 3365: 3362: 3357: 3353: 3349: 3345: 3341: 3337: 3330: 3327: 3322: 3318: 3314: 3310: 3306: 3302: 3295: 3292: 3287: 3283: 3278: 3273: 3268: 3263: 3259: 3255: 3251: 3247: 3243: 3236: 3233: 3228: 3224: 3220: 3216: 3212: 3208: 3204: 3200: 3193: 3190: 3185: 3181: 3177: 3173: 3169: 3165: 3161: 3157: 3150: 3147: 3142: 3138: 3134: 3130: 3126: 3122: 3118: 3114: 3107: 3104: 3099: 3095: 3091: 3087: 3083: 3079: 3072: 3069: 3064: 3060: 3055: 3050: 3046: 3042: 3038: 3034: 3030: 3023: 3020: 3015: 3011: 3007: 3003: 2999: 2995: 2991: 2987: 2980: 2977: 2972: 2968: 2964: 2960: 2956: 2952: 2948: 2944: 2937: 2934: 2929: 2925: 2921: 2917: 2913: 2909: 2902: 2899: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2858: 2851: 2848: 2843: 2839: 2834: 2829: 2824: 2819: 2815: 2811: 2810:PLOS Genetics 2807: 2800: 2797: 2792: 2788: 2784: 2780: 2775: 2770: 2766: 2762: 2758: 2751: 2748: 2743: 2739: 2734: 2729: 2725: 2721: 2717: 2713: 2709: 2702: 2699: 2694: 2690: 2685: 2680: 2675: 2670: 2666: 2662: 2658: 2651: 2648: 2643: 2639: 2634: 2629: 2625: 2621: 2617: 2613: 2609: 2602: 2599: 2594: 2590: 2585: 2580: 2575: 2570: 2566: 2562: 2558: 2554: 2550: 2543: 2540: 2535: 2531: 2527: 2523: 2518: 2513: 2509: 2505: 2502:(5954): 817. 2501: 2497: 2493: 2486: 2483: 2478: 2474: 2469: 2464: 2459: 2454: 2450: 2446: 2442: 2435: 2432: 2427: 2423: 2419: 2415: 2410: 2405: 2400: 2395: 2391: 2387: 2386:F1000Research 2383: 2376: 2374: 2370: 2365: 2361: 2356: 2351: 2347: 2343: 2339: 2335: 2331: 2324: 2321: 2316: 2312: 2307: 2302: 2297: 2292: 2288: 2284: 2280: 2273: 2270: 2265: 2261: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2224: 2221: 2216: 2212: 2207: 2202: 2197: 2192: 2188: 2184: 2180: 2173: 2170: 2165: 2161: 2156: 2151: 2147: 2143: 2139: 2135: 2131: 2124: 2122: 2118: 2113: 2109: 2104: 2099: 2094: 2089: 2085: 2081: 2077: 2070: 2068: 2066: 2062: 2057: 2053: 2048: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2013: 2008: 2004: 1999: 1994: 1989: 1984: 1980: 1976: 1972: 1968: 1964: 1957: 1955: 1951: 1946: 1942: 1937: 1932: 1928: 1924: 1920: 1916: 1909: 1906: 1901: 1897: 1893: 1889: 1884: 1879: 1875: 1871: 1867: 1863: 1859: 1852: 1849: 1844: 1840: 1836: 1832: 1827: 1822: 1818: 1814: 1810: 1806: 1802: 1795: 1792: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1752: 1749: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1716: 1709: 1706: 1701: 1697: 1693: 1689: 1685: 1681: 1674: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1639: 1636: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1588: 1585: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1545: 1542: 1537: 1533: 1529: 1525: 1521: 1517: 1510: 1507: 1502: 1498: 1494: 1490: 1487:: 1119–1150. 1486: 1482: 1475: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1440: 1437: 1432: 1428: 1423: 1418: 1414: 1410: 1406: 1402: 1398: 1391: 1388: 1383: 1379: 1374: 1369: 1365: 1361: 1357: 1353: 1349: 1342: 1339: 1334: 1330: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1290: 1285: 1281: 1276: 1271: 1267: 1263: 1259: 1252: 1249: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1206: 1201: 1197: 1192: 1187: 1182: 1177: 1173: 1169: 1165: 1158: 1155: 1150: 1146: 1141: 1136: 1131: 1126: 1122: 1118: 1114: 1110: 1106: 1099: 1096: 1091: 1087: 1082: 1077: 1072: 1067: 1063: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1021: 1020: 1015: 1008: 1005: 992: 988: 987: 982: 975: 972: 967: 961: 958: 953: 949: 945: 941: 937: 933: 929: 925: 921: 915: 912: 907: 903: 898: 893: 888: 883: 879: 875: 871: 867: 863: 856: 853: 848: 844: 840: 836: 832: 828: 824: 820: 813: 810: 805: 801: 797: 795:0-471-83278-2 791: 787: 780: 777: 772: 768: 764: 760: 756: 752: 748: 744: 737: 734: 729: 725: 721: 717: 712: 707: 703: 699: 696:(5645): 501. 695: 691: 687: 683: 676: 674: 670: 664: 660: 657: 655: 652: 650: 647: 645: 644:Noncoding RNA 642: 640: 639:Noncoding DNA 637: 635: 632: 630: 627: 626: 625: 624: 618: 615: 614: 613: 612: 606: 603: 601: 598: 596: 593: 591: 588: 587: 586: 585: 579: 576: 574: 571: 569: 566: 564: 561: 560: 559: 558: 551: 549: 545: 541: 537: 533: 529: 526: 518: 516: 510: 508: 506: 505:recombination 502: 498: 494: 489: 487: 483: 477: 474: 470: 468: 464: 463: 457: 454: 449: 447: 443: 439: 435: 429: 427: 423: 419: 418:noncoding RNA 411: 409: 405: 401: 396: 391: 387: 383: 376: 374: 372: 371:self-splicing 368: 364: 363:ribosomal RNA 360: 356: 355:messenger RNA 350: 346: 338: 336: 329: 327: 323: 314: 306: 304: 301: 294: 290: 288: 287:RNA catalysis 284: 280: 277: 273: 270: 266: 263: 262: 261: 254: 252: 250: 249: 244: 240: 236: 232: 228: 226: 216: 212: 210: 206: 202: 198: 190: 188: 186: 182: 178: 174: 169: 167: 163: 159: 153: 151: 145: 143: 140: 136: 132: 128: 124: 120: 116: 112: 108: 103: 101: 93: 91: 89: 84: 82: 78: 74: 70: 69: 65: 60: 56: 52: 48: 41: 37: 33: 19: 4340:RNA splicing 4312: 4125: / 4122: 4111:RNA splicing 3974:Biochemistry 3973: 3955: 3899: 3895: 3885: 3840: 3836: 3826: 3793: 3789: 3783: 3748: 3744: 3730: 3693: 3689: 3639: 3635: 3577: 3573: 3563: 3526: 3522: 3513:Rogozin IB, 3508: 3467: 3463: 3457: 3430: 3426: 3378: 3374: 3364: 3339: 3335: 3329: 3307:(1): 16–22. 3304: 3300: 3294: 3249: 3245: 3235: 3202: 3198: 3192: 3159: 3155: 3149: 3116: 3112: 3106: 3081: 3077: 3071: 3036: 3032: 3022: 2989: 2985: 2979: 2946: 2942: 2936: 2911: 2907: 2901: 2860: 2856: 2850: 2813: 2809: 2799: 2764: 2760: 2750: 2715: 2711: 2701: 2664: 2661:BMC Genomics 2660: 2650: 2615: 2611: 2601: 2556: 2552: 2542: 2499: 2495: 2485: 2448: 2444: 2434: 2389: 2385: 2340:(1): 19–32. 2337: 2333: 2323: 2286: 2282: 2272: 2237: 2233: 2223: 2186: 2182: 2172: 2137: 2133: 2083: 2079: 2029: 2025: 2015: 1970: 1966: 1918: 1908: 1865: 1861: 1851: 1808: 1804: 1794: 1761: 1757: 1751: 1718: 1714: 1708: 1683: 1679: 1673: 1648: 1644: 1638: 1597: 1593: 1587: 1554: 1550: 1544: 1519: 1515: 1509: 1484: 1480: 1474: 1449: 1445: 1439: 1404: 1400: 1390: 1355: 1352:DNA Research 1351: 1341: 1306: 1302: 1292: 1265: 1261: 1251: 1218: 1214: 1208: 1174:(10): R223. 1171: 1167: 1157: 1112: 1108: 1098: 1053: 1049: 1039: 1029:– via 1023:. Retrieved 1017: 1007: 995:. Retrieved 993:(5): 298–305 990: 984: 974: 960: 927: 923: 914: 869: 865: 855: 822: 818: 812: 785: 779: 746: 742: 736: 693: 689: 622: 621: 610: 609: 583: 582: 556: 555: 546: 542: 538: 534: 530: 522: 514: 490: 478: 471: 460: 450: 441: 430: 415: 406: 402: 398: 393: 388: 384: 380: 370: 359:transfer RNA 352: 333: 330:tRNA introns 321: 316: 298: 276:transfer RNA 269:spliceosomes 258: 246: 238: 223: 221: 204: 194: 191:Distribution 172: 170: 162:intracistron 161: 157: 155: 147: 134: 127:Susan Berget 104: 97: 85: 72: 67: 63: 62: 58: 46: 44: 4335:Spliceosome 4137:Spliceosome 4096:RNA editing 2183:BMC Biology 1862:RNA Biology 1764:: 359–388. 1721:: 333–358. 1686:: 435–461. 1651:: 543–568. 1522:: 387–419. 649:Selfish DNA 525:orthologous 482:spliceosome 434:spliceosome 420:molecules. 243:heterotrich 185:RNA editing 133:. The term 131:Louise Chow 77:transcripts 66:agenic regi 4319:Categories 3696:(48): 48. 2667:(1): 637. 2289:(1): 208. 2080:PLOS Genet 1025:12 January 997:12 January 825:(1): 1–8. 665:References 557:Structure: 501:DNA damage 453:eukaryotic 343:See also: 311:See also: 225:Drosophila 139:biochemist 100:adenovirus 4257:Cytosolic 3737:Belfort M 3084:: 47–76. 2761:BioEssays 2534:206522975 2426:202702147 1843:237603074 1786:208626110 1743:209167227 920:Belfort M 682:Gilbert W 584:Splicing: 438:RNA world 156:The term 53:within a 3958:, 2007, 3934:21878908 3877:11687644 3818:11652546 3775:20351053 3722:36417430 3668:22963364 3555:22507701 3515:Carmel L 3500:58014466 3492:30651641 3449:28757210 3395:12134150 3356:18586348 3321:16290250 3286:11983904 3219:12868602 3199:Genetica 3184:33672491 3176:16485020 3133:12775832 3098:17094737 3063:24890509 2971:35790897 2963:15336149 2893:22386774 2885:19777149 2842:21533221 2783:23108796 2742:21071396 2693:30153812 2642:27773922 2593:20080596 2526:19815722 2477:32211018 2418:31275557 2392:: 1908. 2364:26593421 2315:29084568 2264:25883323 2215:19442261 2164:27994117 2112:21151575 2056:26261211 2007:19179398 1945:19546110 1900:22592978 1892:19829058 1835:34555349 1778:31794245 1735:31815536 1579:44978152 1431:28190732 1382:26581719 1333:10655227 1303:Genetics 1284:11114327 1243:19229072 1235:10076021 1200:17949488 952:27127017 804:14069165 771:21897383 654:Twintron 617:MicroRNA 611:Function 552:See also 235:metazoan 231:megabase 123:excluded 32:Intron A 4237:PRPF40B 4232:PRPF40A 4222:PRPF38B 4217:PRPF38A 4032:Nuclear 3925:3265369 3904:Bibcode 3902:: 454. 3845:Bibcode 3810:2417724 3766:2854396 3713:9860276 3659:3443670 3610:4364102 3602:8380627 3582:Bibcode 3546:3488318 3472:Bibcode 3403:9057609 3254:Bibcode 3227:7539892 3141:7235937 3113:Science 3054:4031966 3006:1948046 2986:Science 2928:2068786 2865:Bibcode 2833:3077370 2791:5808466 2733:3064772 2684:6114036 2633:5876476 2584:2824313 2561:Bibcode 2504:Bibcode 2496:Science 2468:7066660 2451:: 109. 2409:6544075 2355:5993438 2306:5663052 2255:4448684 2206:2697156 2155:5182408 2103:3000347 2047:4787815 1998:2644112 1975:Bibcode 1936:2724286 1883:3912188 1826:8967684 1700:7574489 1665:2197983 1630:4370160 1622:1579169 1602:Bibcode 1571:6297798 1536:2977088 1501:2943217 1466:8108859 1422:5659724 1373:4675715 1324:1460963 1191:2246297 1117:Bibcode 1058:Bibcode 944:3986907 874:Bibcode 847:2099968 728:4216649 698:Bibcode 623:Others: 595:Exitron 497:R-loops 488:(IME). 456:genomes 177:inteins 166:cistron 150:cistron 49:is any 4227:PRPF39 4212:PRPF31 4207:PRPF19 4202:PRPF18 4187:PRPF4B 4123:Intron 3962:  3932:  3922:  3875:  3865:  3816:  3808:  3773:  3763:  3720:  3710:  3666:  3656:  3642:: 29. 3608:  3600:  3574:Nature 3553:  3543:  3529:: 11. 3498:  3490:  3464:Nature 3447:  3401:  3393:  3354:  3319:  3284:  3277:122912 3274:  3225:  3217:  3182:  3174:  3139:  3131:  3096:  3061:  3051:  3014:508870 3012:  3004:  2969:  2961:  2926:  2891:  2883:  2840:  2830:  2789:  2781:  2740:  2730:  2691:  2681:  2640:  2630:  2591:  2581:  2532:  2524:  2475:  2465:  2424:  2416:  2406:  2362:  2352:  2313:  2303:  2262:  2252:  2213:  2203:  2189:: 23. 2162:  2152:  2110:  2100:  2054:  2044:  2005:  1995:  1943:  1933:  1898:  1890:  1880:  1841:  1833:  1823:  1784:  1776:  1741:  1733:  1698:  1663:  1628:  1620:  1594:Nature 1577:  1569:  1534:  1499:  1464:  1429:  1419:  1380:  1370:  1331:  1321:  1282:  1241:  1233:  1198:  1188:  1149:273235 1147:  1140:411329 1137:  1090:418414 1088:  1081:411497 1078:  950:  942:  906:269380 904:  897:431482 894:  845:  839:902310 837:  802:  792:  769:  763:688388 761:  726:  720:622185 718:  690:Nature 634:Intein 605:Outron 446:snRNAs 322:lariat 158:intron 135:intron 73:intron 59:intron 47:intron 38:, see 4280:DCP1B 4275:DCP1A 4197:PRPF8 4192:PRPF6 4182:PRPF4 4177:PRPF3 4172:PLRG1 4142:minor 4132:snRNP 3868:60849 3814:S2CID 3606:S2CID 3496:S2CID 3399:S2CID 3223:S2CID 3180:S2CID 3137:S2CID 3010:S2CID 2967:S2CID 2889:S2CID 2787:S2CID 2530:S2CID 2422:S2CID 1896:S2CID 1839:S2CID 1782:S2CID 1739:S2CID 1626:S2CID 1575:S2CID 1239:S2CID 948:S2CID 843:S2CID 786:Genes 767:S2CID 724:S2CID 442:trans 239:MST1L 81:exons 4300:EDC4 4295:EDC3 4290:DCPS 4285:DCP2 4127:Exon 4084:CFII 4074:PAB2 4064:CstF 4059:CPSF 3978:link 3968:link 3960:ISBN 3930:PMID 3873:PMID 3806:PMID 3790:Cell 3771:PMID 3718:PMID 3690:PNAS 3664:PMID 3598:PMID 3551:PMID 3488:PMID 3445:PMID 3391:PMID 3352:PMID 3317:PMID 3282:PMID 3215:PMID 3172:PMID 3129:PMID 3094:PMID 3059:PMID 3002:PMID 2959:PMID 2924:PMID 2881:PMID 2838:PMID 2779:PMID 2738:PMID 2689:PMID 2638:PMID 2589:PMID 2522:PMID 2473:PMID 2414:PMID 2360:PMID 2311:PMID 2260:PMID 2211:PMID 2160:PMID 2108:PMID 2052:PMID 2003:PMID 1941:PMID 1888:PMID 1831:PMID 1774:PMID 1731:PMID 1696:PMID 1661:PMID 1618:PMID 1567:PMID 1551:Cell 1532:PMID 1497:PMID 1462:PMID 1427:PMID 1378:PMID 1329:PMID 1280:PMID 1262:Cell 1231:PMID 1219:1410 1196:PMID 1145:PMID 1086:PMID 1027:2024 999:2024 940:PMID 924:Cell 902:PMID 835:PMID 819:Cell 800:OCLC 790:ISBN 759:PMID 743:Cell 716:PMID 568:mRNA 563:Exon 361:and 347:and 227:dhc7 129:and 113:and 64:intr 55:gene 4330:DNA 4079:CFI 4069:PAP 3920:PMC 3912:doi 3863:PMC 3853:doi 3798:doi 3761:PMC 3753:doi 3708:PMC 3698:doi 3694:119 3654:PMC 3644:doi 3590:doi 3578:361 3541:PMC 3531:doi 3480:doi 3468:565 3435:doi 3383:doi 3344:doi 3309:doi 3272:PMC 3262:doi 3207:doi 3203:118 3164:doi 3121:doi 3117:300 3086:doi 3049:PMC 3041:doi 2994:doi 2990:254 2951:doi 2916:doi 2873:doi 2828:PMC 2818:doi 2769:doi 2728:PMC 2720:doi 2679:PMC 2669:doi 2628:PMC 2620:doi 2579:PMC 2569:doi 2557:107 2512:doi 2500:326 2463:PMC 2453:doi 2404:PMC 2394:doi 2350:PMC 2342:doi 2301:PMC 2291:doi 2250:PMC 2242:doi 2201:PMC 2191:doi 2150:PMC 2142:doi 2138:784 2098:PMC 2088:doi 2042:PMC 2034:doi 1993:PMC 1983:doi 1971:106 1931:PMC 1923:doi 1878:PMC 1870:doi 1821:PMC 1813:doi 1766:doi 1723:doi 1688:doi 1653:doi 1610:doi 1598:357 1559:doi 1524:doi 1489:doi 1454:doi 1417:PMC 1409:doi 1368:PMC 1360:doi 1319:PMC 1311:doi 1307:154 1270:doi 1266:103 1223:doi 1186:PMC 1176:doi 1135:PMC 1125:doi 1076:PMC 1066:doi 991:108 932:doi 892:PMC 882:doi 827:doi 751:doi 706:doi 694:271 493:DNA 357:), 45:An 4321:: 4147:U1 3928:. 3918:. 3910:. 3898:. 3894:. 3871:. 3861:. 3851:. 3841:98 3839:. 3835:. 3812:. 3804:. 3794:44 3792:. 3769:. 3759:. 3749:24 3747:. 3743:. 3716:. 3706:. 3692:. 3688:. 3676:^ 3662:. 3652:. 3638:. 3634:. 3618:^ 3604:. 3596:. 3588:. 3576:. 3572:. 3549:. 3539:. 3525:. 3521:. 3494:. 3486:. 3478:. 3466:. 3443:. 3431:67 3429:. 3425:. 3411:^ 3397:. 3389:. 3379:31 3377:. 3373:. 3350:. 3340:24 3338:. 3315:. 3305:22 3303:. 3280:. 3270:. 3260:. 3250:99 3248:. 3244:. 3221:. 3213:. 3201:. 3178:. 3170:. 3158:. 3135:. 3127:. 3115:. 3092:. 3082:40 3080:. 3057:. 3047:. 3035:. 3031:. 3008:. 3000:. 2988:. 2965:. 2957:. 2945:. 2922:. 2910:. 2887:. 2879:. 2871:. 2861:69 2859:. 2836:. 2826:. 2812:. 2808:. 2785:. 2777:. 2765:34 2763:. 2759:. 2736:. 2726:. 2716:39 2714:. 2710:. 2687:. 2677:. 2665:19 2663:. 2659:. 2636:. 2626:. 2616:17 2614:. 2610:. 2587:. 2577:. 2567:. 2555:. 2551:. 2528:. 2520:. 2510:. 2498:. 2494:. 2471:. 2461:. 2449:11 2447:. 2443:. 2420:. 2412:. 2402:. 2388:. 2384:. 2372:^ 2358:. 2348:. 2338:17 2336:. 2332:. 2309:. 2299:. 2287:18 2285:. 2281:. 2258:. 2248:. 2238:25 2236:. 2232:. 2209:. 2199:. 2185:. 2181:. 2158:. 2148:. 2136:. 2132:. 2120:^ 2106:. 2096:. 2082:. 2078:. 2064:^ 2050:. 2040:. 2030:43 2028:. 2024:. 2001:. 1991:. 1981:. 1969:. 1965:. 1953:^ 1939:. 1929:. 1917:. 1894:. 1886:. 1876:. 1864:. 1860:. 1837:. 1829:. 1819:. 1809:31 1807:. 1803:. 1780:. 1772:. 1762:89 1760:. 1737:. 1729:. 1719:89 1717:. 1694:. 1684:64 1682:. 1659:. 1649:59 1647:. 1624:. 1616:. 1608:. 1596:. 1573:. 1565:. 1555:32 1553:. 1530:. 1520:22 1518:. 1495:. 1485:55 1483:. 1460:. 1450:18 1448:. 1425:. 1415:. 1405:27 1403:. 1399:. 1376:. 1366:. 1356:22 1354:. 1350:. 1327:. 1317:. 1305:. 1301:. 1278:. 1264:. 1260:. 1237:. 1229:. 1217:. 1194:. 1184:. 1170:. 1166:. 1143:. 1133:. 1123:. 1113:75 1111:. 1107:. 1084:. 1074:. 1064:. 1054:75 1052:. 1048:. 1016:. 989:. 983:. 946:. 938:. 928:41 926:. 900:. 890:. 880:. 870:74 868:. 864:. 841:. 833:. 823:12 821:. 798:. 765:. 757:. 747:14 745:. 722:. 714:. 704:. 692:. 688:. 672:^ 179:, 168:. 144:: 83:. 68:on 4016:e 4009:t 4002:v 3936:. 3914:: 3906:: 3900:2 3879:. 3855:: 3847:: 3820:. 3800:: 3777:. 3755:: 3724:. 3700:: 3670:. 3646:: 3640:7 3612:. 3592:: 3584:: 3557:. 3533:: 3527:7 3502:. 3482:: 3474:: 3451:. 3437:: 3405:. 3385:: 3358:. 3346:: 3323:. 3311:: 3288:. 3264:: 3256:: 3229:. 3209:: 3186:. 3166:: 3160:7 3143:. 3123:: 3100:. 3088:: 3065:. 3043:: 3037:6 3016:. 2996:: 2973:. 2953:: 2947:1 2930:. 2918:: 2912:7 2895:. 2875:: 2867:: 2844:. 2820:: 2814:7 2793:. 2771:: 2744:. 2722:: 2695:. 2671:: 2644:. 2622:: 2595:. 2571:: 2563:: 2536:. 2514:: 2506:: 2479:. 2455:: 2428:. 2396:: 2390:7 2366:. 2344:: 2317:. 2293:: 2266:. 2244:: 2217:. 2193:: 2187:7 2166:. 2144:: 2114:. 2090:: 2084:6 2058:. 2036:: 2009:. 1985:: 1977:: 1947:. 1925:: 1902:. 1872:: 1866:6 1845:. 1815:: 1788:. 1768:: 1745:. 1725:: 1702:. 1690:: 1667:. 1655:: 1632:. 1612:: 1604:: 1581:. 1561:: 1538:. 1526:: 1503:. 1491:: 1468:. 1456:: 1433:. 1411:: 1384:. 1362:: 1335:. 1313:: 1286:. 1272:: 1245:. 1225:: 1202:. 1178:: 1172:8 1151:. 1127:: 1119:: 1092:. 1068:: 1060:: 1033:. 1001:. 968:. 954:. 934:: 908:. 884:: 876:: 849:. 829:: 806:. 773:. 753:: 730:. 708:: 700:: 324:) 320:( 203:( 42:. 20:)

Index

Non-gene locus
Intron A
LCD Soundsystem
Introns (album)
nucleotide sequence
gene
transcripts
exons
noncoding genes
adenovirus
split or interrupted
Phillip Allen Sharp
Richard J. Roberts
Nobel Prize in Physiology or Medicine
excluded
Susan Berget
Louise Chow
biochemist
Walter Gilbert
cistron
cistron
inteins
untranslated regions
RNA editing
jawed vertebrates
baker's/brewer's yeast
mitochondrial genomes

Drosophila
megabase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑