Knowledge (XXG)

Non-return-to-zero

Source 📝

350:
previous bit, while "zero" transitions to or remains at no bias on the trailing clock edge of the previous bit. Among the disadvantages of unipolar NRZ is that it allows for long series without change, which makes synchronization difficult, although this is not unique to the unipolar case. One solution is to not send bytes without transitions. More critically, and unique to unipolar NRZ, are issues related to the presence of a transmitted DC level – the power spectrum of the transmitted signal does not approach zero at zero frequency. This leads to two significant problems: first, the transmitted DC power leads to higher power losses than other encodings, and second, the presence of a DC signal component requires that the transmission line be DC-coupled.
1004: 25: 382: 404:. HDLC transmitters insert a 0 bit after 5 contiguous 1 bits (except when transmitting the frame delimiter "01111110"). USB transmitters insert a 0 bit after 6 consecutive 1 bits. The receiver at the far end uses every transition — both from 0 bits in the data and these extra non-data 0 bits — to maintain clock synchronization. The receiver otherwise ignores these non-data 0 bits. 429: 508:
decoder’s bit clock is either 1 bit earlier than the encoder resulting in a duplicated bit being inserted in the decoded data stream, or the decoder’s bit clock is 1 bit later than the encoder resulting in a duplicated bit being removed from the decoded data stream. Both are referred to as “bit slip” denoting that the phase of the bit clock has slipped a bit period.
901: 725: 511:
Forcing transitions at intervals shorter than the bit clock difference period allows an asynchronous receiver to be used for NRZI bit streams. Additional transitions necessarily consume some of the data channel’s rate capacity. Consuming no more of the channel capacity than necessary to maintain bit
507:
An asynchronous receiver uses an independent bit clock that is phase synchronized by detecting bit transitions. When an asynchronous receiver decodes a block of bits without a transition longer than the period of the difference between the frequency of the transmitting and receiving bit clocks, the
349:
on the transmission line (conventionally positive), while "zero" is represented by the absence of bias – the line at 0 volts or grounded. For this reason it is also known as "on-off keying". In clock language, a "one" transitions to or remains at a biased level on the trailing clock edge of the
358:"One" is represented by one physical level (usually a positive voltage), while "zero" is represented by another level (usually a negative voltage). In clock language, in bipolar NRZ-level the voltage "swings" from positive to negative on the trailing edge of the previous bit clock cycle. 522:: inserting an additional 0 bit before NRZ-S encoding to force a transition in the encoded data sequence after 5 (HLDC) or 6 (USB) consecutive 1 bits. Bit stuffing consumes channel capacity only when necessary but results in a variable information data rate. 861: 389:"One" is represented by no change in physical level, while "zero" is represented by a change in physical level. In clock language, the level transitions on the trailing clock edge of the previous bit to represent a "zero". 905: 518:(RLL) encodings have been used for magnetic disk and tape storage devices using fixed-rate RLL codes that increase the channel data rate by a known fraction of the information data rate. HDLC and USB use 574:. This means that a separate clock does not need to be sent alongside the signal, but suffers from using twice the bandwidth to achieve the same data-rate as compared to non-return-to-zero format. 478:
by the presence or absence of a transition at a clock boundary. The NRZI encoded signal can be decoded unambiguously after passing through a data path that doesn’t preserve polarity.
875: 183:
scheme, the absence of a neutral state requires other mechanisms for bit synchronization when a separate clock signal is not available. Since NRZ is not inherently a
153:, usually a positive voltage, while zeros are represented by some other significant condition, usually a negative voltage, with no other neutral or rest condition. 323:, where polar refers to a mapping to voltages of +V and −V, and non-polar refers to a voltage mapping of +V and 0, for the corresponding binary values of 0 and 1. 625: 504:
convention: a logical 0 is a transition, and a logical 1 is no transition. Neither NRZI encoding guarantees that the encoded bitstream has transitions.
954: 848: 547:) are modified forms of NRZI. In SNRZI-M each 8-bit group is extended to 9 bits by a 1 in order to insert a transition for synchronisation. 654: 204: 42: 413: 1148: 838: 791: 758: 701: 471: 125:
The binary signal is encoded using rectangular pulse-amplitude modulation with polar NRZ(L), or polar non-return-to-zero-level code.
108: 242:
Appears as raw binary bits without any coding. Typically binary 1 maps to logic-level high, and binary 0 maps to logic-level low.
1046: 89: 122: 916: 61: 910: 338: 1153: 421: 374: 46: 165: 68: 1122: 393: 810: 75: 1204: 947: 893:
CodSim 2.0: Open source simulator for Digital Data Communications Model at the University of Malaga written in HTML
582: 180: 35: 567: 400:. They both avoid long periods of no transitions (even when the data contains long sequences of 1 bits) by using 612:
Although return-to-zero contains a provision for synchronization, it still may have a DC component resulting in
512:
clock synchronization without increasing costs related to complexity is a problem with many possible solutions.
750: 745:
Patel, Arvind Motibhai (1988). "5. Signal and Error-Control Coding". In Mee, C. Denis; Daniel, Eric D. (eds.).
57: 1194: 598: 1210: 940: 783: 606: 539: 464: 150: 1003: 717: 1216: 1189: 1092: 571: 497: 492:
convention: a logical 1 is encoded as a transition, and a logical 0 is encoded as no transition. The
184: 858:
Comparative study on modulation dynamic characteristics of laser diodes using RZ and NRZ bit formats
720:, Phelps, Bryon E., "Magnetic recording method", published 1956-12-18, assigned to 1242: 1221: 1102: 1062: 157: 684:
Palmer, Dean (2005). "Section 1: Recording Systems, 1: A brief history of magnetic recording". In
590: 563: 515: 401: 192: 130: 82: 645: 570:. This takes place even if a number of consecutive 0s or 1s occur in the signal. The signal is 1087: 978: 932: 869: 844: 834: 787: 754: 697: 460: 332: 176:(RZ) code, which also has an additional rest state beside the conditions for ones and zeros. 1117: 1082: 983: 880: 485: 1112: 1041: 243: 169: 484:
bit value corresponds to a transition varies in practice, NRZI applies equally to both.
1184: 1127: 1107: 1097: 1021: 993: 555: 173: 1236: 988: 862:
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
586: 146: 920: 519: 172:(the passband bandwidth is the same). The pulses in NRZ have more energy than a 963: 926: 830: 616:
during long strings of 0 or 1 bits, just like the line code non-return-to-zero.
365:, where "one" is −12 V to −5 V and "zero" is +5 V to +12 V. 24: 609:
representing a 1 bit and the other significant condition representing a 0 bit.
1199: 685: 581:
between each bit is a neutral or rest condition, such as a zero amplitude in
474:
over some transmission medium. The two-level NRZI signal distinguishes data
1013: 802: 693: 594: 559: 381: 142: 892: 428: 412: 1179: 1169: 188: 161: 346: 187:, some additional synchronization technique must be used for avoiding 1132: 467: 362: 121: 427: 419: 411: 380: 372: 337: 336: 120: 730: 1174: 1077: 1072: 1067: 493: 420: 373: 936: 721: 475: 456: 397: 18: 690:
Coding and Signal Processing for Magnetic Recording Systems
881:
https://onlinelibrary.wiley.com/doi/full/10.1002/jnm.1905
566:
in which the signal drops (returns) to zero between each
749:. Vol. II: Computer Data Storage (1st ed.). 341:
Unipolar NRZ(L), or unipolar non-return-to-zero level
1141: 1055: 1011: 971: 49:. Unsourced material may be challenged and removed. 195:constraint and a parallel synchronization signal. 679: 677: 675: 416:An example of the NRZI encoding, transition on 1 1031: 825:Watkinson, John (1990). "3.7. Randomized NRZ". 740: 738: 1036: 1026: 948: 294:Serializer mapping {0: toggle, 1: constant}. 278:Serializer mapping {0: constant, 1: toggle}. 8: 874:: CS1 maint: multiple names: authors list ( 626:Universal asynchronous receiver-transmitter 605:condition is typically halfway between the 262:Refers to either an NRZ(M) or NRZ(S) code. 955: 941: 933: 149:code in which ones are represented by one 647:IBM 729 II, IV, V, VI Magnetic Tape Units 315:The NRZ code also can be classified as a 109:Learn how and when to remove this message 424:The opposite convention, transition on 0 209: 637: 246:mapping is also a type of NRZ(L) code. 1047:Differential Manchester/biphase (Bi-φ) 867: 653:(223-6988 ed.). 1962. p. 7. 203:NRZ can refer to any of the following 164:, the NRZ code requires only half the 1027:Non-return-to-zero, level (NRZ/NRZ-L) 7: 1032:Non-return-to-zero, inverted (NRZ-I) 191:; examples of such techniques are a 47:adding citations to reliable sources 16:Telecommunications coding technique 856:Mahmoud, A. A., Ahmed, M. (2014), 455:) was devised by Bryon E. Phelps ( 179:When used to represent data in an 14: 1149:Carrier-suppressed return-to-zero 1037:Non-return-to-zero, space (NRZ-S) 803:"Digital Magnetic Tape Recording" 392:This "change-on-zero" is used by 327:Unipolar non-return-to-zero level 1002: 904: This article incorporates 899: 432:Encoder for NRZ-M, toggle on one 385:Encoder for NRZS, toggle on zero 354:Bipolar non-return-to-zero level 23: 966:(digital baseband transmission) 917:General Services Administration 813:from the original on 2018-07-02 660:from the original on 2022-10-09 526:Synchronized non-return-to-zero 502:NRZ-S, non-return-to-zero space 34:needs additional citations for 1154:Alternate-phase return-to-zero 551:Comparison with return-to-zero 490:NRZ-M, non-return-to-zero mark 1: 459:) in 1956. It is a method of 1123:Eight-to-fourteen modulation 827:Coding for Digital Recording 801:Savard, John J. G. (2018) . 688:; Kurtas, Erozan M. (eds.). 437:Non-return-to-zero, inverted 394:High-Level Data Link Control 259:Non-return-to-zero inverted 500:protocols use the opposite 408:Non-return-to-zero inverted 1259: 1205:Pulse-amplitude modulation 583:pulse-amplitude modulation 345:"One" is represented by a 330: 307:Non-return-to-zero change 181:asynchronous communication 1162: 1000: 780:The Intel Microprocessors 470:to a physical signal for 291:Non-return-to-zero space 239:Non-return-to-zero level 1200:Pulse modulation methods 1083:Alternate mark inversion 751:McGraw-Hill Book Company 377:Non-return-to-zero space 369:Non-return-to-zero space 275:Non-return-to-zero mark 1195:Ethernet physical layer 912:Federal Standard 1037C 906:public domain material 696:. pp. I-6, I-15. 599:frequency-shift keying 445:non-return to zero IBM 433: 425: 417: 386: 378: 361:An example of this is 342: 126: 1211:Pulse-code modulation 1128:Delay/Miller encoding 925: (in support of 829:. Stoneham, MA, USA: 784:Pearson Prentice Hall 732:(See also: DE950858C) 607:significant condition 540:group-coded recording 431: 423: 415: 384: 376: 340: 151:significant condition 124: 1217:Serial communication 1190:Digital transmission 1093:Coded mark inversion 778:Brey, Barry (2006). 498:Universal Serial Bus 185:self-clocking signal 58:"Non-return-to-zero" 43:improve this article 1222:Category:Line codes 1103:Hybrid ternary code 1063:Conditioned diphase 1056:Extended line codes 1022:Return to zero (RZ) 864:, pp. 138-152. 488:generally uses the 158:data signaling rate 1142:Optical line codes 833:. pp. 64–65. 747:Magnetic Recording 591:phase-shift keying 564:telecommunications 516:Run-length limited 434: 426: 418: 402:zero-bit insertion 387: 379: 343: 193:run-length-limited 166:baseband bandwidth 135:non-return-to-zero 131:telecommunications 127: 1230: 1229: 1088:Modified AMI code 979:Unipolar encoding 849:978-0-240-51293-8 531:Synchronized NRZI 333:Unipolar encoding 313: 312: 119: 118: 111: 93: 1250: 1118:64b/66b encoding 1006: 984:Bipolar encoding 957: 950: 943: 934: 930: 924: 919:. Archived from 903: 902: 879: 873: 865: 852: 821: 819: 818: 797: 765: 764: 742: 733: 729: 728: 724: 714: 708: 707: 692:(1st ed.). 681: 670: 669: 667: 665: 659: 652: 642: 486:Magnetic storage 443:, also known as 210: 168:required by the 114: 107: 103: 100: 94: 92: 51: 27: 19: 1258: 1257: 1253: 1252: 1251: 1249: 1248: 1247: 1233: 1232: 1231: 1226: 1158: 1137: 1113:8b/10b encoding 1051: 1007: 998: 967: 961: 909: 900: 898: 889: 866: 855: 841: 824: 816: 814: 800: 794: 777: 774: 772:Further reading 769: 768: 761: 744: 743: 736: 726: 716: 715: 711: 704: 683: 682: 673: 663: 661: 657: 650: 644: 643: 639: 634: 622: 614:baseline wander 553: 528: 410: 371: 356: 335: 329: 219: 214: 201: 170:Manchester code 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1256: 1254: 1246: 1245: 1235: 1234: 1228: 1227: 1225: 1224: 1219: 1214: 1208: 1202: 1197: 1192: 1187: 1185:Digital signal 1182: 1177: 1172: 1163: 1160: 1159: 1157: 1156: 1151: 1145: 1143: 1139: 1138: 1136: 1135: 1130: 1125: 1120: 1115: 1110: 1108:6b/8b encoding 1105: 1100: 1098:MLT-3 encoding 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1059: 1057: 1053: 1052: 1050: 1049: 1044: 1039: 1034: 1029: 1024: 1018: 1016: 1009: 1008: 1001: 999: 997: 996: 994:Mark and space 991: 986: 981: 975: 973: 969: 968: 962: 960: 959: 952: 945: 937: 923:on 2022-01-22. 896: 895: 888: 887:External links 885: 884: 883: 853: 839: 822: 798: 792: 773: 770: 767: 766: 759: 734: 709: 702: 671: 636: 635: 633: 630: 629: 628: 621: 618: 593:(PSK), or mid- 556:Return-to-zero 552: 549: 527: 524: 409: 406: 370: 367: 355: 352: 331:Main article: 328: 325: 311: 310: 308: 305: 302: 296: 295: 292: 289: 286: 280: 279: 276: 273: 270: 264: 263: 260: 257: 254: 248: 247: 240: 237: 234: 228: 227: 224: 223:Complete name 221: 216: 200: 197: 174:return-to-zero 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1255: 1244: 1241: 1240: 1238: 1223: 1220: 1218: 1215: 1212: 1209: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1165: 1164: 1161: 1155: 1152: 1150: 1147: 1146: 1144: 1140: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1058: 1054: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1019: 1017: 1015: 1010: 1005: 995: 992: 990: 989:On-off keying 987: 985: 982: 980: 977: 976: 974: 972:Main articles 970: 965: 958: 953: 951: 946: 944: 939: 938: 935: 931: 928: 922: 918: 914: 913: 907: 894: 891: 890: 886: 882: 877: 871: 863: 859: 854: 850: 846: 842: 840:0-240-51293-6 836: 832: 828: 823: 812: 808: 804: 799: 795: 793:0-13-119506-9 789: 785: 781: 776: 775: 771: 762: 760:0-07-041272-3 756: 752: 748: 741: 739: 735: 731: 723: 719: 713: 710: 705: 703:0-8493-1524-7 699: 695: 691: 687: 680: 678: 676: 672: 656: 649: 648: 641: 638: 631: 627: 624: 623: 619: 617: 615: 610: 608: 604: 600: 596: 592: 588: 584: 580: 575: 573: 572:self-clocking 569: 565: 561: 557: 550: 548: 546: 542: 541: 536: 532: 525: 523: 521: 517: 513: 509: 505: 503: 499: 495: 491: 487: 483: 479: 477: 473: 469: 466: 462: 458: 454: 450: 446: 442: 438: 430: 422: 414: 407: 405: 403: 399: 395: 390: 383: 375: 368: 366: 364: 359: 353: 351: 348: 339: 334: 326: 324: 322: 318: 309: 306: 303: 301: 298: 297: 293: 290: 287: 285: 282: 281: 277: 274: 271: 269: 266: 265: 261: 258: 255: 253: 250: 249: 245: 244:Inverse logic 241: 238: 235: 233: 230: 229: 225: 222: 217: 212: 211: 208: 206: 198: 196: 194: 190: 186: 182: 177: 175: 171: 167: 163: 159: 154: 152: 148: 144: 140: 136: 132: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1166: 921:the original 911: 897: 857: 826: 815:. Retrieved 806: 782:. Columbus: 779: 746: 712: 689: 662:. Retrieved 646: 640: 613: 611: 602: 601:(FSK). That 585:(PAM), zero 578: 576: 558:describes a 554: 544: 538: 534: 530: 529: 520:bit stuffing 514: 510: 506: 501: 489: 481: 480: 472:transmission 452: 449:inhibit code 448: 444: 440: 436: 435: 391: 388: 360: 357: 344: 320: 316: 314: 299: 283: 267: 251: 231: 226:Description 207:line codes: 202: 178: 156:For a given 155: 138: 134: 128: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 964:Line coding 927:MIL-STD-188 831:Focal Press 686:Vasic, Bane 664:12 February 587:phase shift 1243:Line codes 1042:Manchester 1014:line codes 817:2018-07-16 718:US 2774646 632:References 218:Alternate 205:serializer 69:newspapers 1167:See also: 807:quadibloc 694:CRC Press 595:frequency 560:line code 321:non-polar 189:bit slips 143:line code 99:June 2023 1237:Category 1180:Bit rate 1170:Baseband 870:citation 811:Archived 655:Archived 620:See also 562:used in 453:IBM code 199:Variants 162:bit rate 160:, i.e., 461:mapping 347:DC bias 83:scholar 1133:TC-PAM 1012:Basic 847:  837:  790:  757:  727:  700:  537:) and 468:signal 465:binary 363:RS-232 300:NRZ(C) 284:NRZ(S) 268:NRZ(M) 252:NRZ(I) 232:NRZ(L) 147:binary 85:  78:  71:  64:  56:  1213:(PCM) 1207:(PAM) 908:from 658:(PDF) 651:(PDF) 568:pulse 535:SNRZI 482:Which 451:, or 317:polar 304:NRZC 288:NRZS 272:NRZM 256:NRZI 236:NRZL 220:name 215:name 213:Code 145:is a 90:JSTOR 76:books 1175:Baud 1078:2B1Q 1073:4B5B 1068:4B3T 876:link 845:ISBN 835:ISBN 788:ISBN 755:ISBN 698:ISBN 666:2018 603:zero 579:zero 577:The 496:and 494:HDLC 476:bits 441:NRZI 396:and 133:, a 62:news 722:IBM 597:in 589:in 545:GCR 457:IBM 398:USB 319:or 139:NRZ 129:In 45:by 1239:: 929:). 915:. 872:}} 868:{{ 860:, 843:. 809:. 805:. 786:. 753:. 737:^ 674:^ 463:a 447:, 141:) 956:e 949:t 942:v 878:) 851:. 820:. 796:. 763:. 706:. 668:. 543:( 533:( 439:( 137:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Non-return-to-zero"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

telecommunications
line code
binary
significant condition
data signaling rate
bit rate
baseband bandwidth
Manchester code
return-to-zero
asynchronous communication
self-clocking signal
bit slips
run-length-limited
serializer
Inverse logic
Unipolar encoding

DC bias

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.