Knowledge (XXG)

Convex polytope

Source đź“ť

1082: 665: 1077:{\displaystyle {\begin{alignedat}{7}a_{11}x_{1}&&\;+\;&&a_{12}x_{2}&&\;+\cdots +\;&&a_{1n}x_{n}&&\;\leq \;&&&b_{1}\\a_{21}x_{1}&&\;+\;&&a_{22}x_{2}&&\;+\cdots +\;&&a_{2n}x_{n}&&\;\leq \;&&&b_{2}\\\vdots \;\;\;&&&&\vdots \;\;\;&&&&\vdots \;\;\;&&&&&\;\vdots \\a_{m1}x_{1}&&\;+\;&&a_{m2}x_{2}&&\;+\cdots +\;&&a_{mn}x_{n}&&\;\leq \;&&&b_{m}\\\end{alignedat}}} 2290: 2343:, where the partial ordering is by set containment of faces. The definition of a face given above allows both the polytope itself and the empty set to be considered as faces, ensuring that every pair of faces has a join and a meet in the face lattice. The whole polytope is the unique maximum element of the lattice, and the empty set, considered to be a (−1)-dimensional face (a 31: 2096:
The two representations together provide an efficient way to decide whether a given vector is included in a given convex polytope: to show that it is in the polytope, it is sufficient to present it as a convex combination of the polytope vertices (the V-description is used); to show that it is not in
1530:
and the polytope can be studied as an object in this subspace. In this case, there exist linear equations which are satisfied by all points of the polytope. Adding one of these equations to any of the defining inequalities does not change the polytope. Therefore, in general there is no unique minimal
103:
convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts
1542:
By requiring that the intersection of half-spaces results in a bounded set, the definition becomes equivalent to the vertex-representation. An outline of the proof, that the bounded intersection of half-spaces results in a polytope in vertex-representation, follows:
2527:, and the intersection of any two simplices is either empty or a lower-dimensional simplex. This simplicial decomposition is the basis of many methods for computing the volume of a convex polytope, since the volume of a simplex is easily given by a formula. 122:, convex polytopes are often simply called "polytopes". GrĂĽnbaum points out that this is solely to avoid the endless repetition of the word "convex", and that the discussion should throughout be understood as applying only to the convex variety (p. 51). 2282:, and vice versa. Each point on a given facet will satisfy the linear equality of the corresponding row in the matrix. (It may or may not also satisfy equality in other rows). Similarly, each point on a ridge will satisfy equality in two of the rows of 2397:. Because these polytopes' face lattices are determined by their graphs, the problem of deciding whether two three-dimensional or simple convex polytopes are combinatorially isomorphic can be formulated equivalently as a special case of the 2560:
Different representations of a convex polytope have different utility, therefore the construction of one representation given another one is an important problem. The problem of the construction of a V-representation is known as the
250:
A convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. GrĂĽnbaum's definition is in terms of a convex set of points in space. Other important definitions are: as the
670: 2569:. While the vertex set of a bounded convex polytope uniquely defines it, in various applications it is important to know more about the combinatorial structure of the polytope, i.e., about its face lattice. Various 626: 2100:
A subtle point in the representation by vectors is that the number of vectors may be exponential in the dimension, so the proof that a vector is in the polytope might be exponentially long. Fortunately,
2580:, both facet and vertex enumeration problems amount to the ordering vertices (resp. edges) around the convex hull. It is a trivial task when the convex polygon is specified in a traditional way for 1534:
In general the intersection of arbitrary half-spaces need not be bounded. However if one wishes to have a definition equivalent to that as a convex hull, then bounding must be explicitly required.
515:). There exist infinitely many H-descriptions of a convex polytope. However, for a full-dimensional convex polytope, the minimal H-description is in fact unique and is given by the set of the 2199:
such that none of the interior points of the polytope lie on the boundary of the halfspace. Equivalently, a face is the set of points giving equality in some valid inequality of the polytope.
1681: 1836: 1627: 2628: 1966: 1581: 1528: 341: 176: 97: 1908: 1336: 1236: 1190: 2264: 1495: 1141: 1708: 1390: 1363: 1290: 1263: 2930: 2175:, every finite-dimensional vector space being not only an image of, but in fact isomorphic to, Euclidean space of some dimension (or analog over other fields). 2086: 2066: 2046: 2026: 2006: 1986: 1932: 1876: 1856: 1792: 1768: 1748: 1728: 1440: 1420: 1310: 1210: 1164: 1105: 649: 465: 445: 425: 405: 385: 365: 312: 147: 68: 2401:. However, it is also possible to translate these problems in the opposite direction, showing that polytope isomorphism testing is graph-isomorphism complete. 1587:
form the set of vertices. It remains to show that the set of extreme points (of the bounded intersection of a finite set of half-spaces) is also finite:
2102: 1446:
of the polytope, a hyperplane bounding a half-space that contains the polytope. If a supporting hyperplane also intersects the polytope, it is called a
1457:
minimal set of defining inequalities (up to multiplication by a positive number). Inequalities belonging to this unique minimal system are called
1442:
correspond with the coefficients of the linear inequality defining the respective half-space. Hence, each row in the matrix corresponds with a
3186: 2857: 2784: 2121:
For an unbounded polytope (sometimes called: polyhedron), the H-description is still valid, but the V-description should be extended.
475:
of a finite set of points, where the finite set must contain the set of extreme points of the polytope. Such a definition is called a
3228: 3148: 2892: 2832: 2776: 2325:
of the face. Geometrically speaking, this means that the face is the set of points on the polytope that lie in the intersection of
536: 2167:
of the (finitely many) vertices. However, polytopes are not in general isomorphic to simplices. This is in contrast to the case of
3045: 1710:. We consider the intersection of all the corresponding hyperplanes (which divide the space into the half-spaces) that contain 1583:
is clearly compact and convex. A compact and convex set with a finite number of extreme points must be a polytope, where those
3083: 656: 2675: 3218: 2562: 2544: 503:
A convex polytope may be defined as an intersection of a finite number of half-spaces. Such definition is called a
2398: 252: 2523:. It is possible to form a collection of subsets such that the union of the corresponding simplices is equal to 1632: 3426: 3088: 2997: 1797: 2377:) is the set of vertices and edges of the polytope only, ignoring higher-dimensional faces. For instance, a 2088:. Every extreme point lies in one of these sets, which means that the amount of extreme points is finite. 1593: 2671: 2651: 2394: 2667: 2570: 2438: 1399:
is defined in the same way, with strict inequalities used in the formulas instead of the non-strict ones.
2876: 487:). For a compact convex polytope, the minimal V-description is unique and it is given by the set of the 2587: 2196: 1937: 256: 222: 2717: 118:
In the influential textbooks of GrĂĽnbaum and Ziegler on the subject, as well as in many other texts in
1557: 1504: 1450:(since it is a supporting hyperplane, it can only intersect the polytope at the polytope's boundary). 317: 152: 73: 3324: 3206: 2800: 2768: 2513: 2442: 2271: 1108: 2760: 2207: 226: 3312: 2385:
the face lattice of a three-dimensional polytope is determined by its graph. The same is true for
1461:. The set of points of a polytope which satisfy an essential inequality with equality is called a 3421: 3276: 3249: 3115: 3097: 3022: 2974: 2924: 2880: 2536: 2490: 2418: 2172: 2164: 1453:
The foregoing definition assumes that the polytope is full-dimensional. In this case, there is a
112: 2750: 1881: 1315: 1215: 1169: 3384: 3365: 3342: 3224: 3182: 3144: 2888: 2853: 2828: 2780: 2772: 2691: 2446: 2240: 2215: 2184: 1551: 1471: 1117: 527: 523: 492: 488: 119: 3405: 2836: 3332: 3291: 3258: 3202: 3174: 3107: 3054: 3006: 2964: 2956: 2755: 2707: 2478: 2378: 2223: 2144: 2122: 516: 273: 230: 3272: 3068: 3018: 2902: 1686: 1368: 1341: 1268: 1241: 3268: 3064: 3014: 2944: 2898: 2808: 2687: 2683: 2635: 2631: 2386: 2382: 2336: 2219: 2190: 1498: 234: 218: 203: 2097:
the polytope, it is sufficient to present a single defining inequality that it violates.
1107:
is the number of half-spaces defining the polytope. This can be concisely written as the
3328: 3214: 2992: 2712: 2679: 2577: 2540: 2474: 2333: 2294: 2071: 2051: 2031: 2011: 1991: 1971: 1917: 1861: 1841: 1777: 1753: 1733: 1713: 1425: 1405: 1295: 1195: 1149: 1090: 634: 450: 430: 410: 390: 370: 350: 297: 286: 211: 207: 132: 53: 3387: 3337: 202:
shape (the intersection of two non-parallel half-planes), a shape defined by a convex
3415: 3059: 3026: 2414: 2298: 2168: 1584: 279: 3280: 2289: 651:
is the dimension of the space containing the polytope under consideration. Hence, a
3401: 3368: 3288:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing (STOC '83)
3162: 2466: 2390: 3123: 3119: 2686:, one obstacle is that, when given a representation of the convex polytope as an 3178: 3136: 2764: 2647: 2425:
denote the dimension of the polytope. If the polytope is full-dimensional, then
2389:
of arbitrary dimension (Blind & Mani-Levitska 1987, proving a conjecture of
2355: 2140: 2130: 472: 260: 108: 100: 3244: 3210: 3111: 2969: 2852:. Graduate texts in mathematics. Cham, Switzerland: Springer. pp. 30–35. 2695: 2136: 282: 195: 188: 47: 3346: 3392: 3373: 3040: 2125:(1936) proved that any unbounded polytope can be represented as a sum of a 2105:
guarantees that every vector in the polytope can be represented by at most
3296: 3263: 2565:
and the problem of the construction of a H-representation is known as the
2450: 1911: 43: 17: 3286:
Ben-Or, Michael (1983), "Lower Bounds for Algebraic Computation Trees",
3010: 2978: 2581: 2517: 2494: 2160: 187:
Many examples of bounded convex polytopes can be found in the article "
2449:
is trivial. The boundary of the convex polytope is homeomorphic to an
2381:
is the polytope graph of a three-dimensional polytope. By a result of
241:) defined by three or more half-spaces passing through a common point. 221:
between two parallel hyperplanes, a wedge defined by two non-parallel
3102: 2663: 3166: 2995:; Mani-Levitska, Peter (1987), "Puzzles and polytope isomorphisms", 2960: 2917:
Beitrage zur Theorie der linearen Ungleichungen (Ph.D. dissertation)
2573:
deal both with the facet enumeration and face lattice construction.
107:
Convex polytopes play an important role both in various branches of
2347:) of every polytope, is the unique minimum element of the lattice. 2807:, Graduate Texts in Mathematics, vol. 152, Berlin, New York: 199: 30: 29: 3043:(1988), "A simple way to tell a simple polytope from its graph", 2008:
would be the inner point of (at least) a line, which contradicts
2195:
of a convex polytope is any intersection of the polytope with a
2147:
of its infinite edges (its "defining rays"). This is called the
2068:
closed half-spaces, there are only finitely many different sets
471:
This is equivalent to defining a bounded convex polytope as the
238: 2887:, Annals of Discrete Mathematics, vol. 29, North-Holland, 2630:. When the input list of vertices (or edges) is unordered, the 1468:
If the polytope is not full-dimensional, then the solutions of
194:
In the 2-dimensional case the full-dimensional examples are a
621:{\displaystyle a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}\leq b} 3223:(2nd ed.). MIT Press and McGraw-Hill. pp. 947–957. 2543:) can be dissected into some even number of instances of its 2135:. In other words, every vector in an unbounded polytope is a 1750:. For each half-space where the hyperplane does not contain 3167:"Exact Volume Computation for Polytopes: A Practical Study" 2947:(1932). "Congruent graphs and the connectivity of graphs". 2048:
chooses either the interior or the boundary of one of the
27:
Convex hull of a finite set of points in a Euclidean space
1338:
column vector whose coordinates are the right-hand sides
2301:; each face in the lattice is labeled by its vertex set. 2666:
of a convex polytope has been studied in the field of
2590: 2409:
A convex polytope, like any compact convex subset of
2243: 2074: 2054: 2034: 2014: 1994: 1974: 1940: 1920: 1884: 1864: 1844: 1800: 1780: 1756: 1736: 1716: 1689: 1635: 1596: 1560: 1507: 1474: 1428: 1408: 1371: 1344: 1318: 1298: 1271: 1244: 1218: 1198: 1172: 1152: 1120: 1093: 668: 637: 539: 453: 433: 413: 393: 373: 353: 320: 300: 155: 135: 76: 56: 3084:"On the Complexity of Polytope Isomorphism Problems" 2539:
to an orthoscheme. Every regular convex polyhedron (
2457:. The boundary's Euler characteristic is 0 for even 2028:
being an extreme point. Since every construction of
217:
Special cases of an unbounded convex polytope are a
46:, having the additional property that it is also a 2622: 2258: 2159:Every (bounded) convex polytope is the image of a 2080: 2060: 2040: 2020: 2000: 1980: 1960: 1926: 1902: 1870: 1850: 1830: 1786: 1762: 1742: 1722: 1702: 1675: 1621: 1575: 1522: 1489: 1434: 1414: 1384: 1357: 1330: 1304: 1284: 1257: 1238:column vector whose coordinates are the variables 1230: 1204: 1184: 1158: 1135: 1099: 1076: 643: 620: 459: 439: 419: 399: 379: 359: 335: 306: 170: 141: 91: 62: 3247:(1981), "A lower bound to finding convex hulls", 1683:, the bounded intersection of closed half-spaces 495:if all of its vertices have integer coordinates. 2698:which is not polynomial in this representation. 2584:, i.e., by the ordered sequence of its vertices 2139:of its vertices (its "defining points"), plus a 491:of the polytope. A convex polytope is called an 2393:). Kalai (1988) gives a simple proof based on 655:may be regarded as the set of solutions to the 2678:technique, when having access to a membership 2270:corresponds with a bounding hyperplane and is 1774:of those half-spaces. This yields an open set 104:identify a convex polytope with its boundary. 2214: − 1)-dimensional faces, its 8: 3082:Kaibel, Volker; Schwartz, Alexander (2003). 2332:The faces of a convex polytope thus form an 263:of a set of points (vertex representation). 2489:A convex polytope can be decomposed into a 1531:set of inequalities defining the polytope. 99:. Most texts use the term "polytope" for a 2929:: CS1 maint: location missing publisher ( 2551:Algorithmic problems for a convex polytope 1676:{\displaystyle P:=\bigcap _{i=1}^{k}H_{i}} 1055: 1051: 1021: 1011: 981: 977: 943: 934: 933: 932: 923: 922: 921: 912: 911: 910: 888: 884: 854: 844: 817: 813: 771: 767: 737: 727: 700: 696: 277:, GrĂĽnbaum defines a convex polytope as a 3336: 3295: 3262: 3217:(2001) . "33.3 Finding the convex hull". 3171:Polytopes — Combinatorics and Computation 3101: 3058: 2968: 2614: 2595: 2589: 2465:. The boundary may also be regarded as a 2313:)-dimensional face satisfies equality in 2242: 2230: − 2)-dimensional faces. 2073: 2053: 2033: 2013: 1993: 1973: 1939: 1919: 1883: 1863: 1843: 1831:{\displaystyle x\in (U\cap O)\subseteq P} 1799: 1779: 1755: 1735: 1715: 1694: 1688: 1667: 1657: 1646: 1634: 1604: 1603: 1595: 1567: 1563: 1562: 1559: 1514: 1510: 1509: 1506: 1473: 1427: 1407: 1376: 1370: 1349: 1343: 1317: 1297: 1276: 1270: 1249: 1243: 1217: 1197: 1171: 1151: 1119: 1092: 1064: 1042: 1029: 1002: 989: 968: 955: 897: 875: 862: 835: 825: 804: 794: 780: 758: 745: 718: 708: 687: 677: 669: 667: 636: 606: 596: 577: 567: 554: 544: 538: 452: 432: 412: 392: 372: 352: 327: 323: 322: 319: 299: 198:, a strip between two parallel lines, an 162: 158: 157: 154: 134: 83: 79: 78: 75: 55: 2694:, the volume of the polytope may have a 2508:, a subset of its vertices containing ( 2329:of the polytope's bounding hyperplanes. 2288: 1538:Equivalence to the vertex representation 2820: 2818: 2730: 1622:{\displaystyle x\in {\textrm {ext}}(P)} 259:(half-space representation) and as the 2922: 2795: 2793: 2746: 2744: 2742: 2740: 2738: 2736: 2734: 2433:. The convex polytope therefore is an 2274:of the other rows, then each facet of 1770:, we consider the intersection of the 111:and in applied areas, most notably in 2222:are its 1-dimensional faces, and its 2117:Representation of unbounded polytopes 347:if, for each pair of distinct points 7: 2871: 2869: 2848:Hug, Daniel; Weil, Wolfgang (2020). 2278:corresponds with exactly one row of 407:, the closed segment with endpoints 2092:Using the different representations 267:Vertex representation (convex hull) 2623:{\displaystyle v_{1},\dots ,v_{m}} 2473: − 1)-dimensional 1961:{\displaystyle D=\left\{x\right\}} 25: 3338:10.1090/S0025-5718-1991-1079024-2 2497:, satisfying certain properties. 2237:defined by the matrix inequality 2218:are its 0-dimensional faces, its 1730:. This yields an affine subspace 2576:In the planar case, i.e., for a 1576:{\displaystyle \mathbb {R} ^{n}} 1523:{\displaystyle \mathbb {R} ^{n}} 1402:The coefficients of each row of 336:{\displaystyle \mathbb {R} ^{n}} 171:{\displaystyle \mathbb {R} ^{n}} 92:{\displaystyle \mathbb {R} ^{n}} 3046:Journal of Combinatorial Theory 2556:Construction of representations 2113:is the dimension of the space. 34:A 3-dimensional convex polytope 1819: 1807: 1616: 1610: 1: 3313:"Polytope volume computation" 2670:. The volume can be computed 657:system of linear inequalities 210:attached to its ends, and a 70:-dimensional Euclidean space 3060:10.1016/0097-3165(88)90064-7 2827:, by Melvyn W. Jeter (1986) 2455: − 1)-sphere 1392:of the scalar inequalities. 3179:10.1007/978-3-0348-8438-9_6 2850:Lectures on convex geometry 2759:, 2nd edition, prepared by 2676:convex volume approximation 2535:Every convex polyhedron is 2354:if their face lattices are 2109:+1 defining vectors, where 499:Intersection of half-spaces 3443: 3406:Polyhedral computation FAQ 3317:Mathematics of Computation 3220:Introduction to Algorithms 2915:Motzkin, Theodore (1936). 2674:, for instance, using the 2662:The task of computing the 2563:vertex enumeration problem 2545:characteristic orthoscheme 2352:combinatorially isomorphic 2182: 1934:must be 0-dimensional and 1903:{\displaystyle D:=U\cap O} 3112:10.1007/s00373-002-0503-y 2567:facet enumeration problem 2399:graph isomorphism problem 2350:Two polytopes are called 1331:{\displaystyle m\times 1} 1231:{\displaystyle n\times 1} 1185:{\displaystyle m\times n} 505:half-space representation 3089:Graphs and Combinatorics 2998:Aequationes Mathematicae 2825:Mathematical Programming 2634:of the problems becomes 2485:Simplicial decomposition 2395:unique sink orientations 2259:{\displaystyle Ax\leq b} 2233:Given a convex polytope 1490:{\displaystyle Ax\leq b} 1136:{\displaystyle Ax\leq b} 285:with a finite number of 2652:algebraic decision tree 1988:was not 0-dimensional, 1858:is an extreme point of 1629:be an extreme point of 149:-dimensional object in 42:is a special case of a 3311:Lawrence, Jim (1991). 3161:BĂĽeler, B.; Enge, A.; 2668:computational geometry 2654:model of computation. 2624: 2571:convex hull algorithms 2504:-dimensional polytope 2405:Topological properties 2302: 2293:The face lattice of a 2260: 2163:, as every point is a 2132:convex polyhedral cone 2103:CarathĂ©odory's theorem 2082: 2062: 2042: 2022: 2002: 1982: 1962: 1928: 1904: 1872: 1852: 1832: 1788: 1764: 1744: 1724: 1704: 1677: 1662: 1623: 1577: 1524: 1491: 1436: 1416: 1386: 1359: 1332: 1306: 1286: 1259: 1232: 1206: 1186: 1160: 1137: 1101: 1078: 653:closed convex polytope 645: 622: 519:-defining halfspaces. 461: 441: 421: 401: 381: 361: 337: 308: 172: 143: 93: 64: 35: 3297:10.1145/800061.808735 3264:10.1145/322276.322289 3207:Leiserson, Charles E. 3141:Topology and Geometry 2805:Lectures on Polytopes 2625: 2371:graph of the polytope 2292: 2261: 2083: 2063: 2043: 2023: 2003: 1983: 1963: 1929: 1905: 1873: 1853: 1833: 1789: 1765: 1745: 1725: 1705: 1703:{\displaystyle H_{i}} 1678: 1642: 1624: 1578: 1525: 1492: 1444:supporting hyperplane 1437: 1417: 1387: 1385:{\displaystyle b_{m}} 1360: 1358:{\displaystyle b_{1}} 1333: 1307: 1287: 1285:{\displaystyle x_{n}} 1260: 1258:{\displaystyle x_{1}} 1233: 1207: 1187: 1161: 1138: 1102: 1079: 646: 623: 477:vertex representation 462: 442: 422: 402: 382: 362: 338: 309: 173: 144: 125:A polytope is called 94: 65: 33: 3245:Yao, Andrew Chi Chih 3173:. pp. 131–154. 2720:for convex polyhedra 2588: 2514:affinely independent 2443:Euler characteristic 2321:. These rows form a 2272:linearly independent 2241: 2149:finite basis theorem 2072: 2052: 2032: 2012: 1992: 1972: 1938: 1918: 1882: 1862: 1842: 1798: 1778: 1754: 1734: 1714: 1687: 1633: 1594: 1558: 1505: 1472: 1426: 1406: 1397:open convex polytope 1369: 1342: 1316: 1296: 1269: 1242: 1216: 1196: 1170: 1150: 1118: 1091: 666: 635: 537: 526:can be written as a 451: 447:is contained within 431: 411: 391: 371: 351: 318: 298: 153: 133: 74: 54: 3388:"Convex polyhedron" 3329:1991MaCom..57..259L 2692:linear inequalities 2531:Scissors-congruency 2441:with boundary, its 2309: −  2173:linear combinations 1448:bounding hyperplane 227:polyhedral cylinder 3385:Weisstein, Eric W. 3366:Weisstein, Eric W. 3290:, pp. 80–86, 3250:Journal of the ACM 3011:10.1007/BF01830678 2970:10338.dmlcz/101067 2801:Ziegler, GĂĽnter M. 2718:Steinitz's theorem 2658:Volume computation 2620: 2537:scissors-congruent 2516:points defines an 2491:simplicial complex 2477:— i.e. as a 2303: 2256: 2206:-dimensional, its 2165:convex combination 2078: 2058: 2038: 2018: 1998: 1978: 1958: 1924: 1914:, it follows that 1900: 1868: 1848: 1828: 1784: 1760: 1740: 1720: 1700: 1673: 1619: 1573: 1552:closed half-spaces 1520: 1487: 1432: 1412: 1382: 1355: 1328: 1302: 1282: 1255: 1228: 1202: 1182: 1156: 1133: 1097: 1074: 1072: 641: 618: 457: 437: 417: 397: 377: 357: 333: 304: 168: 139: 113:linear programming 89: 60: 36: 3211:Rivest, Ronald L. 3203:Cormen, Thomas H. 3188:978-3-7643-6351-2 2859:978-3-030-50180-8 2785:978-0-387-40409-7 2769:GĂĽnter M. Ziegler 2684:exact computation 2447:fundamental group 2317:specific rows of 2266:, if each row in 2202:If a polytope is 2185:abstract polytope 2145:Euclidean vectors 2081:{\displaystyle D} 2061:{\displaystyle k} 2041:{\displaystyle D} 2021:{\displaystyle x} 2001:{\displaystyle x} 1981:{\displaystyle D} 1927:{\displaystyle D} 1871:{\displaystyle P} 1851:{\displaystyle x} 1787:{\displaystyle O} 1763:{\displaystyle x} 1743:{\displaystyle U} 1723:{\displaystyle x} 1607: 1435:{\displaystyle b} 1415:{\displaystyle A} 1305:{\displaystyle b} 1205:{\displaystyle x} 1159:{\displaystyle A} 1100:{\displaystyle m} 644:{\displaystyle n} 528:linear inequality 524:closed half-space 493:integral polytope 460:{\displaystyle K} 440:{\displaystyle b} 420:{\displaystyle a} 400:{\displaystyle K} 380:{\displaystyle b} 360:{\displaystyle a} 307:{\displaystyle K} 142:{\displaystyle n} 120:discrete geometry 63:{\displaystyle n} 50:contained in the 16:(Redirected from 3434: 3398: 3397: 3379: 3378: 3369:"Convex polygon" 3351: 3350: 3340: 3323:(195): 259–271. 3308: 3302: 3300: 3299: 3283: 3266: 3241: 3235: 3234: 3199: 3193: 3192: 3158: 3152: 3134: 3128: 3127: 3122:. Archived from 3105: 3079: 3073: 3071: 3062: 3037: 3031: 3029: 3005:(2–3): 287–297, 2989: 2983: 2982: 2972: 2945:Whitney, Hassler 2941: 2935: 2934: 2928: 2920: 2912: 2906: 2905: 2873: 2864: 2863: 2845: 2839: 2822: 2813: 2811: 2797: 2788: 2756:Convex Polytopes 2748: 2708:Oriented matroid 2650:is known in the 2629: 2627: 2626: 2621: 2619: 2618: 2600: 2599: 2479:spherical tiling 2387:simple polytopes 2379:polyhedral graph 2305:In general, an ( 2265: 2263: 2262: 2257: 2179:The face lattice 2127:bounded polytope 2123:Theodore Motzkin 2087: 2085: 2084: 2079: 2067: 2065: 2064: 2059: 2047: 2045: 2044: 2039: 2027: 2025: 2024: 2019: 2007: 2005: 2004: 1999: 1987: 1985: 1984: 1979: 1967: 1965: 1964: 1959: 1957: 1933: 1931: 1930: 1925: 1909: 1907: 1906: 1901: 1877: 1875: 1874: 1869: 1857: 1855: 1854: 1849: 1837: 1835: 1834: 1829: 1793: 1791: 1790: 1785: 1769: 1767: 1766: 1761: 1749: 1747: 1746: 1741: 1729: 1727: 1726: 1721: 1709: 1707: 1706: 1701: 1699: 1698: 1682: 1680: 1679: 1674: 1672: 1671: 1661: 1656: 1628: 1626: 1625: 1620: 1609: 1608: 1605: 1582: 1580: 1579: 1574: 1572: 1571: 1566: 1550:intersection of 1529: 1527: 1526: 1521: 1519: 1518: 1513: 1497:lie in a proper 1496: 1494: 1493: 1488: 1441: 1439: 1438: 1433: 1421: 1419: 1418: 1413: 1391: 1389: 1388: 1383: 1381: 1380: 1364: 1362: 1361: 1356: 1354: 1353: 1337: 1335: 1334: 1329: 1311: 1309: 1308: 1303: 1291: 1289: 1288: 1283: 1281: 1280: 1264: 1262: 1261: 1256: 1254: 1253: 1237: 1235: 1234: 1229: 1211: 1209: 1208: 1203: 1191: 1189: 1188: 1183: 1165: 1163: 1162: 1157: 1142: 1140: 1139: 1134: 1106: 1104: 1103: 1098: 1083: 1081: 1080: 1075: 1073: 1069: 1068: 1058: 1057: 1049: 1047: 1046: 1037: 1036: 1023: 1009: 1007: 1006: 997: 996: 983: 975: 973: 972: 963: 962: 939: 938: 937: 936: 927: 926: 925: 916: 915: 914: 902: 901: 891: 890: 882: 880: 879: 870: 869: 856: 842: 840: 839: 830: 829: 819: 811: 809: 808: 799: 798: 785: 784: 774: 773: 765: 763: 762: 753: 752: 739: 725: 723: 722: 713: 712: 702: 694: 692: 691: 682: 681: 650: 648: 647: 642: 627: 625: 624: 619: 611: 610: 601: 600: 582: 581: 572: 571: 559: 558: 549: 548: 509:H-representation 481:V-representation 466: 464: 463: 458: 446: 444: 443: 438: 426: 424: 423: 418: 406: 404: 403: 398: 386: 384: 383: 378: 366: 364: 363: 358: 342: 340: 339: 334: 332: 331: 326: 313: 311: 310: 305: 274:Convex Polytopes 177: 175: 174: 169: 167: 166: 161: 148: 146: 145: 140: 127:full-dimensional 98: 96: 95: 90: 88: 87: 82: 69: 67: 66: 61: 21: 3442: 3441: 3437: 3436: 3435: 3433: 3432: 3431: 3427:Convex geometry 3412: 3411: 3383: 3382: 3364: 3363: 3360: 3355: 3354: 3310: 3309: 3305: 3285: 3243: 3242: 3238: 3231: 3215:Stein, Clifford 3201: 3200: 3196: 3189: 3160: 3159: 3155: 3135: 3131: 3081: 3080: 3076: 3039: 3038: 3034: 2993:Blind, Roswitha 2991: 2990: 2986: 2961:10.2307/2371086 2943: 2942: 2938: 2921: 2914: 2913: 2909: 2895: 2885:Matching Theory 2875: 2874: 2867: 2860: 2847: 2846: 2842: 2823: 2816: 2809:Springer-Verlag 2799: 2798: 2791: 2751:Branko GrĂĽnbaum 2749: 2732: 2727: 2704: 2688:equation system 2660: 2642: log  2632:time complexity 2610: 2591: 2586: 2585: 2558: 2553: 2533: 2500:Given a convex 2487: 2475:spherical space 2407: 2367:polytopal graph 2239: 2238: 2187: 2181: 2157: 2119: 2094: 2070: 2069: 2050: 2049: 2030: 2029: 2010: 2009: 1990: 1989: 1970: 1969: 1947: 1936: 1935: 1916: 1915: 1912:relatively open 1880: 1879: 1860: 1859: 1840: 1839: 1796: 1795: 1776: 1775: 1752: 1751: 1732: 1731: 1712: 1711: 1690: 1685: 1684: 1663: 1631: 1630: 1592: 1591: 1561: 1556: 1555: 1540: 1508: 1503: 1502: 1499:affine subspace 1470: 1469: 1424: 1423: 1404: 1403: 1372: 1367: 1366: 1345: 1340: 1339: 1314: 1313: 1294: 1293: 1272: 1267: 1266: 1245: 1240: 1239: 1214: 1213: 1194: 1193: 1168: 1167: 1148: 1147: 1116: 1115: 1089: 1088: 1071: 1070: 1060: 1056: 1048: 1038: 1025: 1022: 1008: 998: 985: 982: 974: 964: 951: 948: 947: 935: 924: 913: 904: 903: 893: 889: 881: 871: 858: 855: 841: 831: 821: 818: 810: 800: 790: 787: 786: 776: 772: 764: 754: 741: 738: 724: 714: 704: 701: 693: 683: 673: 664: 663: 633: 632: 602: 592: 573: 563: 550: 540: 535: 534: 501: 449: 448: 429: 428: 409: 408: 389: 388: 369: 368: 349: 348: 321: 316: 315: 296: 295: 269: 248: 235:polyhedral cone 204:polygonal chain 184: 156: 151: 150: 131: 130: 77: 72: 71: 52: 51: 40:convex polytope 28: 23: 22: 15: 12: 11: 5: 3440: 3438: 3430: 3429: 3424: 3414: 3413: 3410: 3409: 3399: 3380: 3359: 3358:External links 3356: 3353: 3352: 3303: 3257:(4): 780–787, 3236: 3229: 3194: 3187: 3153: 3137:Glen E. Bredon 3129: 3126:on 2015-07-21. 3096:(2): 215–230. 3074: 3053:(2): 381–383, 3032: 2984: 2955:(1): 150–168. 2936: 2907: 2893: 2881:Plummer, M. D. 2877:Lovász, LászlĂł 2865: 2858: 2840: 2814: 2789: 2729: 2728: 2726: 2723: 2722: 2721: 2715: 2713:Nef polyhedron 2710: 2703: 2700: 2659: 2656: 2646:). A matching 2617: 2613: 2609: 2606: 2603: 2598: 2594: 2578:convex polygon 2557: 2554: 2552: 2549: 2541:Platonic solid 2532: 2529: 2493:, or union of 2486: 2483: 2461:and 2 for odd 2445:is 1, and its 2406: 2403: 2363:polytope graph 2295:square pyramid 2255: 2252: 2249: 2246: 2183:Main article: 2180: 2177: 2156: 2153: 2118: 2115: 2093: 2090: 2077: 2057: 2037: 2017: 1997: 1977: 1956: 1953: 1950: 1946: 1943: 1923: 1899: 1896: 1893: 1890: 1887: 1867: 1847: 1827: 1824: 1821: 1818: 1815: 1812: 1809: 1806: 1803: 1783: 1759: 1739: 1719: 1697: 1693: 1670: 1666: 1660: 1655: 1652: 1649: 1645: 1641: 1638: 1618: 1615: 1612: 1602: 1599: 1585:extreme points 1570: 1565: 1539: 1536: 1517: 1512: 1486: 1483: 1480: 1477: 1431: 1411: 1379: 1375: 1352: 1348: 1327: 1324: 1321: 1301: 1279: 1275: 1252: 1248: 1227: 1224: 1221: 1201: 1181: 1178: 1175: 1155: 1144: 1143: 1132: 1129: 1126: 1123: 1096: 1085: 1084: 1067: 1063: 1059: 1054: 1050: 1045: 1041: 1035: 1032: 1028: 1024: 1020: 1017: 1014: 1010: 1005: 1001: 995: 992: 988: 984: 980: 976: 971: 967: 961: 958: 954: 950: 949: 946: 942: 940: 931: 928: 920: 917: 909: 906: 905: 900: 896: 892: 887: 883: 878: 874: 868: 865: 861: 857: 853: 850: 847: 843: 838: 834: 828: 824: 820: 816: 812: 807: 803: 797: 793: 789: 788: 783: 779: 775: 770: 766: 761: 757: 751: 748: 744: 740: 736: 733: 730: 726: 721: 717: 711: 707: 703: 699: 695: 690: 686: 680: 676: 672: 671: 640: 629: 628: 617: 614: 609: 605: 599: 595: 591: 588: 585: 580: 576: 570: 566: 562: 557: 553: 547: 543: 500: 497: 469: 468: 456: 436: 416: 396: 376: 356: 330: 325: 303: 287:extreme points 268: 265: 247: 244: 243: 242: 215: 212:convex polygon 192: 183: 180: 165: 160: 138: 86: 81: 59: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3439: 3428: 3425: 3423: 3420: 3419: 3417: 3407: 3403: 3400: 3395: 3394: 3389: 3386: 3381: 3376: 3375: 3370: 3367: 3362: 3361: 3357: 3348: 3344: 3339: 3334: 3330: 3326: 3322: 3318: 3314: 3307: 3304: 3298: 3293: 3289: 3282: 3278: 3274: 3270: 3265: 3260: 3256: 3252: 3251: 3246: 3240: 3237: 3232: 3230:0-262-03293-7 3226: 3222: 3221: 3216: 3212: 3208: 3204: 3198: 3195: 3190: 3184: 3180: 3176: 3172: 3168: 3164: 3157: 3154: 3150: 3149:0-387-97926-3 3146: 3142: 3138: 3133: 3130: 3125: 3121: 3117: 3113: 3109: 3104: 3099: 3095: 3091: 3090: 3085: 3078: 3075: 3070: 3066: 3061: 3056: 3052: 3048: 3047: 3042: 3036: 3033: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2999: 2994: 2988: 2985: 2980: 2976: 2971: 2966: 2962: 2958: 2954: 2950: 2949:Amer. J. Math 2946: 2940: 2937: 2932: 2926: 2918: 2911: 2908: 2904: 2900: 2896: 2894:0-444-87916-1 2890: 2886: 2882: 2878: 2872: 2870: 2866: 2861: 2855: 2851: 2844: 2841: 2838: 2834: 2833:0-8247-7478-7 2830: 2826: 2821: 2819: 2815: 2810: 2806: 2802: 2796: 2794: 2790: 2786: 2782: 2778: 2777:0-387-40409-0 2774: 2770: 2766: 2762: 2761:Volker Kaibel 2758: 2757: 2752: 2747: 2745: 2743: 2741: 2739: 2737: 2735: 2731: 2724: 2719: 2716: 2714: 2711: 2709: 2706: 2705: 2701: 2699: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2672:approximately 2669: 2665: 2657: 2655: 2653: 2649: 2645: 2641: 2637: 2633: 2615: 2611: 2607: 2604: 2601: 2596: 2592: 2583: 2579: 2574: 2572: 2568: 2564: 2555: 2550: 2548: 2546: 2542: 2538: 2530: 2528: 2526: 2522: 2520: 2515: 2511: 2507: 2503: 2498: 2496: 2492: 2484: 2482: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2454: 2448: 2444: 2440: 2437:-dimensional 2436: 2432: 2428: 2424: 2420: 2416: 2412: 2404: 2402: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2359: 2357: 2353: 2348: 2346: 2345:null polytope 2342: 2338: 2335: 2330: 2328: 2324: 2320: 2316: 2312: 2308: 2300: 2299:Hasse diagram 2297:, drawn as a 2296: 2291: 2287: 2285: 2281: 2277: 2273: 2269: 2253: 2250: 2247: 2244: 2236: 2231: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2200: 2198: 2194: 2193: 2186: 2178: 2176: 2174: 2170: 2169:vector spaces 2166: 2162: 2154: 2152: 2150: 2146: 2142: 2138: 2134: 2133: 2128: 2124: 2116: 2114: 2112: 2108: 2104: 2098: 2091: 2089: 2075: 2055: 2035: 2015: 1995: 1975: 1954: 1951: 1948: 1944: 1941: 1921: 1913: 1897: 1894: 1891: 1888: 1885: 1865: 1845: 1825: 1822: 1816: 1813: 1810: 1804: 1801: 1781: 1773: 1757: 1737: 1717: 1695: 1691: 1668: 1664: 1658: 1653: 1650: 1647: 1643: 1639: 1636: 1613: 1600: 1597: 1588: 1586: 1568: 1553: 1549: 1544: 1537: 1535: 1532: 1515: 1500: 1484: 1481: 1478: 1475: 1466: 1464: 1460: 1456: 1451: 1449: 1445: 1429: 1409: 1400: 1398: 1393: 1377: 1373: 1350: 1346: 1325: 1322: 1319: 1299: 1277: 1273: 1250: 1246: 1225: 1222: 1219: 1199: 1179: 1176: 1173: 1153: 1130: 1127: 1124: 1121: 1114: 1113: 1112: 1110: 1094: 1065: 1061: 1052: 1043: 1039: 1033: 1030: 1026: 1018: 1015: 1012: 1003: 999: 993: 990: 986: 978: 969: 965: 959: 956: 952: 944: 941: 929: 918: 907: 898: 894: 885: 876: 872: 866: 863: 859: 851: 848: 845: 836: 832: 826: 822: 814: 805: 801: 795: 791: 781: 777: 768: 759: 755: 749: 746: 742: 734: 731: 728: 719: 715: 709: 705: 697: 688: 684: 678: 674: 662: 661: 660: 658: 654: 638: 615: 612: 607: 603: 597: 593: 589: 586: 583: 578: 574: 568: 564: 560: 555: 551: 545: 541: 533: 532: 531: 529: 525: 520: 518: 514: 513:H-description 510: 506: 498: 496: 494: 490: 486: 485:V-description 482: 478: 474: 454: 434: 414: 394: 374: 354: 346: 328: 301: 293: 292: 291: 289: 288: 284: 281: 276: 275: 266: 264: 262: 258: 254: 245: 240: 236: 232: 228: 224: 220: 216: 213: 209: 205: 201: 197: 193: 190: 186: 185: 181: 179: 163: 136: 128: 123: 121: 116: 114: 110: 105: 102: 84: 57: 49: 45: 41: 32: 19: 3402:Komei Fukuda 3391: 3372: 3320: 3316: 3306: 3287: 3254: 3248: 3239: 3219: 3197: 3170: 3156: 3140: 3132: 3124:the original 3103:math/0106093 3093: 3087: 3077: 3050: 3044: 3035: 3002: 2996: 2987: 2952: 2948: 2939: 2919:. Jerusalem. 2916: 2910: 2884: 2849: 2843: 2824: 2804: 2754: 2661: 2643: 2639: 2575: 2566: 2559: 2534: 2524: 2518: 2509: 2505: 2501: 2499: 2488: 2470: 2467:tessellation 2462: 2458: 2452: 2434: 2430: 2426: 2422: 2417:to a closed 2415:homeomorphic 2410: 2408: 2391:Micha Perles 2374: 2370: 2366: 2362: 2360: 2351: 2349: 2344: 2341:face lattice 2340: 2331: 2326: 2322: 2318: 2314: 2310: 2306: 2304: 2283: 2279: 2275: 2267: 2234: 2232: 2227: 2211: 2203: 2201: 2191: 2188: 2158: 2148: 2131: 2126: 2120: 2110: 2106: 2099: 2095: 1771: 1589: 1547: 1545: 1541: 1533: 1467: 1462: 1458: 1454: 1452: 1447: 1443: 1401: 1396: 1394: 1145: 1111:inequality: 1086: 652: 630: 521: 512: 508: 504: 502: 484: 480: 476: 470: 344: 278: 272: 271:In his book 270: 253:intersection 249: 129:if it is an 126: 124: 117: 106: 39: 37: 2765:Victor Klee 2648:lower bound 2339:called its 2141:conical sum 1794:. Clearly, 473:convex hull 261:convex hull 257:half-spaces 246:Definitions 223:half-spaces 109:mathematics 3416:Categories 3163:Fukuda, K. 3049:, Ser. A, 3041:Kalai, Gil 2725:References 2696:bit-length 2375:1-skeleton 2356:isomorphic 2155:Properties 2137:convex sum 283:convex set 237:(infinite 229:(infinite 196:half-plane 189:polyhedron 48:convex set 3422:Polytopes 3393:MathWorld 3374:MathWorld 3347:0025-5718 3027:120222616 2925:cite book 2682:. As for 2605:… 2495:simplices 2251:≤ 2226:are its ( 2210:are its ( 2197:halfspace 1895:∩ 1823:⊆ 1814:∩ 1805:∈ 1644:⋂ 1601:∈ 1482:≤ 1459:essential 1323:× 1223:× 1177:× 1128:≤ 1053:≤ 1016:⋯ 945:⋮ 930:⋮ 919:⋮ 908:⋮ 886:≤ 849:⋯ 769:≤ 732:⋯ 613:≤ 587:⋯ 233:), and a 206:with two 18:Nonconvex 3281:13846330 3165:(2000). 3151:, p. 56. 3143:, 1993, 2883:(1986), 2803:(1995), 2787:, 466pp. 2771:, 2003, 2702:See also 2582:polygons 2521:-simplex 2439:manifold 2334:Eulerian 2216:vertices 1838:. Since 1772:interior 1192:matrix, 489:vertices 182:Examples 44:polytope 3325:Bibcode 3273:0677089 3069:0964396 3019:0921106 2979:2371086 2903:0859549 2383:Whitney 2337:lattice 2161:simplex 2143:of the 1548:bounded 280:compact 101:bounded 3345:  3279:  3271:  3227:  3185:  3147:  3120:179936 3118:  3067:  3025:  3017:  2977:  2901:  2891:  2856:  2831:  2783:  2775:  2767:, and 2680:oracle 2664:volume 2421:. Let 2224:ridges 2208:facets 2129:and a 1455:unique 1312:is an 1292:, and 1212:is an 1166:is an 1146:where 1109:matrix 1087:where 631:where 345:convex 294:A set 3277:S2CID 3116:S2CID 3098:arXiv 3023:S2CID 2975:JSTOR 2837:p. 68 2413:, is 2323:basis 2220:edges 1968:. If 1463:facet 517:facet 231:prism 200:angle 3343:ISSN 3225:ISBN 3183:ISBN 3145:ISBN 2931:link 2889:ISBN 2854:ISBN 2829:ISBN 2781:ISBN 2773:ISBN 2512:+1) 2469:of ( 2419:ball 2361:The 2192:face 2171:and 1878:and 1590:Let 1546:The 1422:and 427:and 239:cone 225:, a 219:slab 208:rays 3333:doi 3292:doi 3259:doi 3175:doi 3108:doi 3055:doi 3007:doi 2965:hdl 2957:doi 2690:of 1910:is 1606:ext 1554:of 1501:of 1395:An 1365:to 1265:to 511:or 483:or 387:in 343:is 314:of 255:of 3418:: 3404:, 3390:. 3371:. 3341:. 3331:. 3321:57 3319:. 3315:. 3284:; 3275:, 3269:MR 3267:, 3255:28 3253:, 3213:; 3209:; 3205:; 3181:. 3169:. 3139:, 3114:. 3106:. 3094:19 3092:. 3086:. 3065:MR 3063:, 3051:49 3021:, 3015:MR 3013:, 3003:34 3001:, 2973:. 2963:. 2953:54 2951:. 2927:}} 2923:{{ 2899:MR 2897:, 2879:; 2868:^ 2835:, 2817:^ 2792:^ 2779:, 2763:, 2753:, 2733:^ 2547:. 2481:. 2429:= 2373:, 2369:, 2358:. 2286:. 2189:A 2151:. 1889::= 1640::= 1465:. 827:22 796:21 710:12 679:11 659:: 530:: 522:A 367:, 290:: 191:". 178:. 115:. 38:A 3408:. 3396:. 3377:. 3349:. 3335:: 3327:: 3301:. 3294:: 3261:: 3233:. 3191:. 3177:: 3110:: 3100:: 3072:. 3057:: 3030:. 3009:: 2981:. 2967:: 2959:: 2933:) 2862:. 2812:. 2644:m 2640:m 2638:( 2636:O 2616:m 2612:v 2608:, 2602:, 2597:1 2593:v 2525:P 2519:r 2510:r 2506:P 2502:r 2471:m 2463:m 2459:m 2453:m 2451:( 2435:m 2431:n 2427:m 2423:m 2411:R 2365:( 2327:j 2319:A 2315:j 2311:j 2307:n 2284:A 2280:A 2276:P 2268:A 2254:b 2248:x 2245:A 2235:P 2228:d 2212:d 2204:d 2111:d 2107:d 2076:D 2056:k 2036:D 2016:x 1996:x 1976:D 1955:} 1952:x 1949:{ 1945:= 1942:D 1922:D 1898:O 1892:U 1886:D 1866:P 1846:x 1826:P 1820:) 1817:O 1811:U 1808:( 1802:x 1782:O 1758:x 1738:U 1718:x 1696:i 1692:H 1669:i 1665:H 1659:k 1654:1 1651:= 1648:i 1637:P 1617:) 1614:P 1611:( 1598:x 1569:n 1564:R 1516:n 1511:R 1485:b 1479:x 1476:A 1430:b 1410:A 1378:m 1374:b 1351:1 1347:b 1326:1 1320:m 1300:b 1278:n 1274:x 1251:1 1247:x 1226:1 1220:n 1200:x 1180:n 1174:m 1154:A 1131:b 1125:x 1122:A 1095:m 1066:m 1062:b 1044:n 1040:x 1034:n 1031:m 1027:a 1019:+ 1013:+ 1004:2 1000:x 994:2 991:m 987:a 979:+ 970:1 966:x 960:1 957:m 953:a 899:2 895:b 877:n 873:x 867:n 864:2 860:a 852:+ 846:+ 837:2 833:x 823:a 815:+ 806:1 802:x 792:a 782:1 778:b 760:n 756:x 750:n 747:1 743:a 735:+ 729:+ 720:2 716:x 706:a 698:+ 689:1 685:x 675:a 639:n 616:b 608:n 604:x 598:n 594:a 590:+ 584:+ 579:2 575:x 569:2 565:a 561:+ 556:1 552:x 546:1 542:a 507:( 479:( 467:. 455:K 435:b 415:a 395:K 375:b 355:a 329:n 324:R 302:K 214:. 164:n 159:R 137:n 85:n 80:R 58:n 20:)

Index

Nonconvex

polytope
convex set
bounded
mathematics
linear programming
discrete geometry
polyhedron
half-plane
angle
polygonal chain
rays
convex polygon
slab
half-spaces
polyhedral cylinder
prism
polyhedral cone
cone
intersection
half-spaces
convex hull
Convex Polytopes
compact
convex set
extreme points
convex hull
vertices
integral polytope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑