Knowledge (XXG)

Northern blot

Source πŸ“

218:
tumor-suppressor genes in cancerous cells when compared to 'normal' tissue, as well as the gene expression in the rejection of transplanted organs. If an upregulated gene is observed by an abundance of mRNA on the northern blot the sample can then be sequenced to determine if the gene is known to researchers or if it is a novel finding. The expression patterns obtained under given conditions can provide insight into the function of that gene. Since the RNA is first separated by size, if only one probe type is used variance in the level of each band on the membrane can provide insight into the size of the product, suggesting alternative splice products of the same gene or repetitive sequence motifs. The variance in size of a gene product can also indicate deletions or errors in transcript processing. By altering the probe target used along the known sequence it is possible to determine which region of the RNA is missing.
230:, serial analysis of gene expression (SAGE), as well as northern blotting. Microarrays are quite commonly used and are usually consistent with data obtained from northern blots; however, at times northern blotting is able to detect small changes in gene expression that microarrays cannot. The advantage that microarrays have over northern blots is that thousands of genes can be visualized at a time, while northern blotting is usually looking at one or a small number of genes. 127:
probe has been labeled, it is hybridized to the RNA on the membrane. Experimental conditions that can affect the efficiency and specificity of hybridization include ionic strength, viscosity, duplex length, mismatched base pairs, and base composition. The membrane is washed to ensure that the probe has bound specifically and to prevent background signals from arising. The hybrid signals are then detected by X-ray film and can be quantified by
114: 31: 1250: 148: 209:) is attached to the enzyme (e.g. HRP). X-ray film can detect both the radioactive and chemiluminescent signals and many researchers prefer the chemiluminescent signals because they are faster, more sensitive, and reduce the health hazards that go along with radioactive labels. The same membrane can be probed up to five times without a significant loss of the target RNA. 238:). The chemicals used in most northern blots can be a risk to the researcher, since formaldehyde, radioactive material, ethidium bromide, DEPC, and UV light are all harmful under certain exposures. Compared to RT-PCR, northern blotting has a low sensitivity, but it also has a high specificity, which is important to reduce false positive results. 184:
Probes for northern blotting are composed of nucleic acids with a complementary sequence to all or part of the RNA of interest. They can be DNA, RNA, or oligonucleotides with a minimum of 25 complementary bases to the target sequence. RNA probes (riboprobes) that are transcribed in vitro are able to
175:
can also be used in RNA separation but it is most commonly used for fragmented RNA or microRNAs. An RNA ladder is often run alongside the samples on an electrophoresis gel to observe the size of fragments obtained but in total RNA samples the ribosomal subunits can act as size markers. Since the
73:
complementary to part of or the entire target sequence. Strictly speaking, the term 'northern blot' refers specifically to the capillary transfer of RNA from the electrophoresis gel to the blotting membrane. However, the entire process is commonly referred to as northern blotting. The northern blot
260:
Researchers occasionally use a variant of the procedure known as the reverse northern blot. In this procedure, the substrate nucleic acid (that is affixed to the membrane) is a collection of isolated DNA fragments, and the probe is RNA extracted from a tissue and radioactively labelled. The use of
265:
that have come into widespread use in the late 1990s and early 2000s is more akin to the reverse procedure, in that they involve the use of isolated DNA fragments affixed to a substrate, and hybridization with a probe made from cellular RNA. Thus the reverse procedure, though originally uncommon,
126:
because it lowers the annealing temperature of the probe-RNA interaction, thus eliminating the need for high temperatures, which could cause RNA degradation. Once the RNA has been transferred to the membrane, it is immobilized through covalent linkage to the membrane by UV light or heat. After a
241:
The advantages of using northern blotting include the detection of RNA size, the observation of alternate splice products, the use of probes with partial homology, the quality and quantity of RNA can be measured on the gel prior to blotting, and the membranes can be stored and reprobed for years
217:
Northern blotting allows one to observe a particular gene's expression pattern between tissues, organs, developmental stages, environmental stress levels, pathogen infection, and over the course of treatment. The technique has been used to show overexpression of oncogenes and downregulation of
185:
withstand more rigorous washing steps preventing some of the background noise. Commonly cDNA is created with labelled primers for the RNA sequence of interest to act as the probe in the northern blot. The probes must be labelled either with radioactive isotopes (P) or with
110:. RNA samples are then separated by gel electrophoresis. Since the gels are fragile and the probes are unable to enter the matrix, the RNA samples, now separated by size, are transferred to a nylon membrane through a capillary or vacuum blotting system. 233:
A problem in northern blotting is often sample degradation by RNases (both endogenous to the sample and through environmental contamination), which can be avoided by proper sterilization of glassware and the use of RNase inhibitors such as DEPC
197:(HRP) break down chemiluminescent substrates producing a detectable emission of light. The chemiluminescent labelling can occur in two ways: either the probe is attached to the enzyme, or the probe is labelled with a ligand (e.g. 121:
A nylon membrane with a positive charge is the most effective for use in northern blotting since the negatively charged nucleic acids have a high affinity for them. The transfer buffer used for the blotting usually contains
742:
Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., Havelda, Z. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nuc. Acids Research. 32:
814:
Engler-Blum, G.; Meier, M.; Frank, J.; Muller, G. A. (1993). "Reduction of Background Problems in Nonradioactive Northern and Southern Blot Analysis Enables Higher Sensitivity Than 32P-Based Hybridizations".
176:
large ribosomal subunit is 28S (approximately 5kb) and the small ribosomal subunit is 18S (approximately 2kb) two prominent bands appear on the gel, the larger at close to twice the intensity of the smaller.
852:
Baldwin, D., Crane, V., Rice, D. (1999) A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Current Opinion in Plant Biol. 2: 96–103.
102:
A general blotting procedure starts with extraction of total RNA from a homogenized tissue sample or from cells. Eukaryotic mRNA can then be isolated through the use of oligo (dT) cellulose
252:
the nonradioactive technique was compared to a radioactive technique and found as sensitive as the radioactive one, but requires no protection against radiation and is less time-consuming.
346:
Kevil, C. G., Walsh, L., Laroux, F. S., Kalogeris, T., Grisham, M. B., Alexander, J. S. (1997) An Improved, Rapid Northern Protocol. Biochem. and Biophys. Research Comm. 238:277–279.
961:
Kreft, K., Kreft, S., Komel, R., Grubič, Z. (2000). Nonradioactive northern blotting for the determination of acetylcholinesterase mRNA. PflΓΌgers Arch – Eur J Physiol, 439:R66-R67
1146: 337:
Alberts, B., Johnson, A., Lewis, J. Raff, M., Roberts, K., Walter, P. 2008. Molecular Biology of the Cell, 5th ed. Garland Science, Taylor & Francis Group, NY, pp 538–539.
61:
With northern blotting it is possible to observe cellular control over structure and function by determining the particular gene expression rates during differentiation and
549:
Mori, H.; Takeda-Yoshikawa, Y.; Hara-Nishimura, I.; Nishimura, M. (1991). "Pumpkin malate synthase Cloning and sequencing of the cDNA and Northern blot analysis".
659:
Streit, S.; Michalski, C. W.; Erkan, M.; Kleef, J.; Friess, H. (2009). "Northern blot analysis for detection of RNA in pancreatic cancer cells and tissues".
704:"A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme" 1030: 1230: 1139: 927:
Taniguchi, M.; Miura, K.; Iwao, H.; Yamanaka, S. (2001). "Quantitative Assessment of DNA Microarrays – Comparison with Northern Blot Analysis".
131:. To create controls for comparison in a northern blot, samples not displaying the gene product of interest can be used after determination by 503:
Durand, G. M.; Zukin, R. S. (1993). "Developmental Regulation of mRNAs Encoding Rat Brain Kainate/AMPA Receptors: A Northern Analysis Study".
1276: 1094: 974: 756:
Gortner, G.; Pfenninger, M.; Kahl, G.; Weising, K. (1996). "Northern blot analysis of simple repetitive sequence transcription in plants".
1132: 75: 414:"Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes" 1023: 226:
Analysis of gene expression can be done by several different methods including RT-PCR, RNase protection assays, microarrays,
867:"Chronic cardiac rejection: Identification of five upregulated genes in transplanted hearts by differential mRNA display" 359:
Schlamp, K.; Weinmann, A.; Krupp, M.; Maass, T.; Galle, P. R.; Teufel, A. (2008). "BlotBase: A northern blot database".
1254: 1197: 1016: 151:
RNA run on a formaldehyde agarose gel to highlight the 28S (top band) and 18S (lower band) ribosomal subunits.
1220: 801:
Liang, P. Pardee, A. B. (1995) Recent advances in differential display. Current Opinion Immunol. 7: 274–280.
117:
Capillary blotting system setup for the transfer of RNA from an electrophoresis gel to a blotting membrane.
194: 993: 878: 425: 304: 267: 246: 235: 190: 1172: 79: 70: 1192: 1155: 781: 684: 528: 270:, in which many (possibly all) of the genes in an organism may have their expression monitored. 1177: 1112: 1088: 944: 906: 832: 773: 725: 676: 618: 566: 520: 453: 376: 289: 186: 167:(EtBr) and viewed under UV light to observe the quality and quantity of RNA before blotting. 163:
as a denaturing agent for the RNA to limit secondary structure. The gels can be stained with
43: 1187: 1106: 1100: 936: 896: 886: 824: 765: 715: 668: 608: 600: 558: 512: 480: 443: 433: 368: 299: 294: 164: 82:. Northern blotting takes its name from its similarity to the first blotting technique, the 1124: 1039: 66: 47: 471:
Bor, Y.C.; Swartz, J.; Li, Y.; Coyle, J.; Rekosh, D.; Hammarskjold, Marie-Louise (2006).
882: 429: 65:, as well as in abnormal or diseased conditions. Northern blotting involves the use of 1212: 562: 516: 323:
Gilbert, S. F. (2000) Developmental Biology, 6th Ed. Sunderland MA, Sinauer Associates.
262: 168: 103: 87: 613: 588: 587:
Yang, H.; McLeese, J.; Weisbart, M.; Dionne, J.-L.; Lemaire, I.; Aubin, R. A. (1993).
448: 413: 30: 1270: 1202: 1053: 901: 866: 83: 62: 988: 785: 688: 532: 113: 34:
Flow diagram outlining the general procedure for RNA detection by northern blotting.
1235: 1071: 1065: 284: 279: 206: 160: 128: 107: 17: 132: 372: 1225: 1164: 147: 604: 891: 865:
Utans, U.; Liang, P.; Wyner, L. R.; Karnovsky, M. J.; Russel, M. E. (1994).
769: 438: 123: 948: 940: 828: 680: 672: 485: 472: 380: 910: 836: 777: 729: 622: 570: 524: 720: 703: 457: 1003: 227: 156: 702:
Yamanaka, S.; Poksay, K. S.; Arnold, K. S.; Innerarity, T. L. (1997).
402:
Trayhurn, P. (1996) Northern Blotting. Pro. Nutrition Soc. 55:583–589.
202: 198: 136: 1008: 146: 112: 589:"Simplified high throughput protocol for Northern hybridization" 249: 172: 55: 1128: 1012: 91: 51: 473:"Northern Blot analysis of mRNA from mammalian polyribosomes" 69:
to separate RNA samples by size, and detection with a
1211: 1163: 1081: 1046: 809: 807: 90:. The major difference is that RNA, rather than 74:technique was developed in 1977 by James Alwine, 922: 920: 155:The RNA samples are most commonly separated on 848: 846: 751: 749: 654: 652: 398: 396: 394: 392: 390: 1140: 1024: 650: 648: 646: 644: 642: 640: 638: 636: 634: 632: 354: 352: 333: 331: 329: 8: 860: 858: 797: 795: 498: 496: 582: 580: 245:For northern blotting for the detection of 1147: 1133: 1125: 1031: 1017: 1009: 544: 542: 900: 890: 719: 612: 484: 447: 437: 266:enabled northern analysis to evolve into 1231:Restriction fragment length polymorphism 29: 1109:(lipid:post translational modification) 316: 42:, or RNA blot, is a technique used in 412:Alwine JC, Kemp DJ, Stark GR (1977). 7: 1095:Electrophoretic mobility shift assay 94:, is analyzed in the northern blot. 563:10.1111/j.1432-1033.1991.tb15915.x 517:10.1111/j.1471-4159.1993.tb07465.x 106:to isolate only those RNAs with a 25: 1074:(post translational modification) 1249: 1248: 201:) for which the ligand (e.g., 1: 1277:Molecular biology techniques 994:Resources in other libraries 418:Proc. Natl. Acad. Sci. U.S.A 222:Advantages and disadvantages 27:Molecular biology technique 1293: 871:Proc. Natl. Acad. Sci. USA 373:10.1016/j.gene.2008.08.026 1244: 1198:Site-directed mutagenesis 989:Resources in your library 268:gene expression profiling 171:gel electrophoresis with 892:10.1073/pnas.91.14.6463 770:10.1002/elps.1150170702 439:10.1073/pnas.74.12.5350 1158:: key methods of study 941:10.1006/geno.2000.6427 829:10.1006/abio.1993.1189 673:10.1038/nprot.2008.216 605:10.1093/nar/21.14.3337 593:Nucleic Acids Research 486:10.1038/nprot.2006.216 195:horseradish peroxidase 152: 118: 86:, named for biologist 78:, and George Stark at 35: 256:Reverse northern blot 150: 116: 33: 721:10.1101/gad.11.3.321 305:Differential display 247:acetylcholinesterase 236:diethylpyrocarbonate 191:alkaline phosphatase 1173:Gel electrophoresis 883:1994PNAS...91.6463U 430:1977PNAS...74.5350A 80:Stanford University 71:hybridization probe 1193:Restriction digest 1156:Molecular genetics 153: 119: 46:research to study 36: 1264: 1263: 1178:Molecular cloning 1122: 1121: 1113:Northwestern blot 1103:(protein:protein) 1089:Southwestern blot 975:Library resources 877:(14): 6463–6467. 599:(14): 3337–3338. 290:Northwestern blot 187:chemiluminescence 44:molecular biology 18:Northern blotting 16:(Redirected from 1284: 1252: 1251: 1188:Promoter bashing 1149: 1142: 1135: 1126: 1107:Far-eastern blot 1101:Far-western blot 1040:Molecular probes 1033: 1026: 1019: 1010: 962: 959: 953: 952: 924: 915: 914: 904: 894: 862: 853: 850: 841: 840: 811: 802: 799: 790: 789: 764:(7): 1183–1189. 753: 744: 740: 734: 733: 723: 699: 693: 692: 661:Nature Protocols 656: 627: 626: 616: 584: 575: 574: 546: 537: 536: 511:(6): 2239–2246. 500: 491: 490: 488: 477:Nature Protocols 468: 462: 461: 451: 441: 409: 403: 400: 385: 384: 356: 347: 344: 338: 335: 324: 321: 300:Far-western blot 295:Far-eastern blot 242:after blotting. 165:ethidium bromide 159:gels containing 50:by detection of 21: 1292: 1291: 1287: 1286: 1285: 1283: 1282: 1281: 1267: 1266: 1265: 1260: 1240: 1221:Gene sequencing 1207: 1159: 1153: 1123: 1118: 1077: 1042: 1037: 1000: 999: 998: 983: 982: 978: 971: 966: 965: 960: 956: 926: 925: 918: 864: 863: 856: 851: 844: 813: 812: 805: 800: 793: 758:Electrophoresis 755: 754: 747: 741: 737: 701: 700: 696: 658: 657: 630: 586: 585: 578: 551:Eur. J. Biochem 548: 547: 540: 502: 501: 494: 470: 469: 465: 411: 410: 406: 401: 388: 358: 357: 350: 345: 341: 336: 327: 322: 318: 313: 276: 263:DNA microarrays 258: 224: 215: 182: 145: 100: 67:electrophoresis 58:) in a sample. 48:gene expression 28: 23: 22: 15: 12: 11: 5: 1290: 1288: 1280: 1279: 1269: 1268: 1262: 1261: 1259: 1258: 1245: 1242: 1241: 1239: 1238: 1233: 1228: 1223: 1217: 1215: 1213:Bioinformatics 1209: 1208: 1206: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1169: 1167: 1161: 1160: 1154: 1152: 1151: 1144: 1137: 1129: 1120: 1119: 1117: 1116: 1110: 1104: 1098: 1092: 1085: 1083: 1079: 1078: 1076: 1075: 1069: 1063: 1057: 1050: 1048: 1044: 1043: 1038: 1036: 1035: 1028: 1021: 1013: 1007: 1006: 997: 996: 991: 985: 984: 973: 972: 970: 969:External links 967: 964: 963: 954: 916: 854: 842: 823:(2): 235–244. 803: 791: 745: 735: 714:(3): 321–333. 694: 628: 576: 557:(2): 331–336. 538: 492: 463: 424:(12): 5350–4. 404: 386: 367:(1–2): 47–50. 348: 339: 325: 315: 314: 312: 309: 308: 307: 302: 297: 292: 287: 282: 275: 272: 257: 254: 223: 220: 214: 211: 181: 178: 169:Polyacrylamide 144: 141: 104:chromatography 99: 96: 88:Edwin Southern 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1289: 1278: 1275: 1274: 1272: 1257: 1256: 1247: 1246: 1243: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1218: 1216: 1214: 1210: 1204: 1203:Southern blot 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1183:Northern blot 1181: 1179: 1176: 1174: 1171: 1170: 1168: 1166: 1162: 1157: 1150: 1145: 1143: 1138: 1136: 1131: 1130: 1127: 1115:(RNA:protein) 1114: 1111: 1108: 1105: 1102: 1099: 1097:(DNA:protein) 1096: 1093: 1091:(protein:DNA) 1090: 1087: 1086: 1084: 1080: 1073: 1070: 1067: 1064: 1061: 1060:Northern blot 1058: 1055: 1054:Southern blot 1052: 1051: 1049: 1045: 1041: 1034: 1029: 1027: 1022: 1020: 1015: 1014: 1011: 1005: 1002: 1001: 995: 992: 990: 987: 986: 981: 980:Northern blot 976: 968: 958: 955: 950: 946: 942: 938: 934: 930: 923: 921: 917: 912: 908: 903: 898: 893: 888: 884: 880: 876: 872: 868: 861: 859: 855: 849: 847: 843: 838: 834: 830: 826: 822: 818: 817:Anal. Biochem 810: 808: 804: 798: 796: 792: 787: 783: 779: 775: 771: 767: 763: 759: 752: 750: 746: 739: 736: 731: 727: 722: 717: 713: 709: 705: 698: 695: 690: 686: 682: 678: 674: 670: 666: 662: 655: 653: 651: 649: 647: 645: 643: 641: 639: 637: 635: 633: 629: 624: 620: 615: 610: 606: 602: 598: 594: 590: 583: 581: 577: 572: 568: 564: 560: 556: 552: 545: 543: 539: 534: 530: 526: 522: 518: 514: 510: 506: 499: 497: 493: 487: 482: 478: 474: 467: 464: 459: 455: 450: 445: 440: 435: 431: 427: 423: 419: 415: 408: 405: 399: 397: 395: 393: 391: 387: 382: 378: 374: 370: 366: 362: 355: 353: 349: 343: 340: 334: 332: 330: 326: 320: 317: 310: 306: 303: 301: 298: 296: 293: 291: 288: 286: 283: 281: 278: 277: 273: 271: 269: 264: 255: 253: 251: 248: 243: 239: 237: 231: 229: 221: 219: 212: 210: 208: 204: 200: 196: 192: 188: 179: 177: 174: 170: 166: 162: 158: 149: 142: 140: 138: 134: 130: 125: 115: 111: 109: 105: 97: 95: 93: 89: 85: 84:Southern blot 81: 77: 72: 68: 64: 63:morphogenesis 59: 57: 54:(or isolated 53: 49: 45: 41: 40:northern blot 32: 19: 1253: 1236:STR analysis 1182: 1165:Experimental 1082:Interactions 1072:Eastern blot 1066:Western blot 1059: 979: 957: 935:(1): 34–39. 932: 928: 874: 870: 820: 816: 761: 757: 738: 711: 707: 697: 667:(1): 37–43. 664: 660: 596: 592: 554: 550: 508: 505:J. Neurochem 504: 476: 466: 421: 417: 407: 364: 360: 342: 319: 285:Eastern blot 280:Western blot 259: 244: 240: 232: 225: 216: 213:Applications 207:streptavidin 183: 161:formaldehyde 154: 129:densitometry 120: 108:poly(A) tail 101: 60: 39: 37: 1004:OpenWetWare 133:microarrays 1226:Microarray 311:References 76:David Kemp 1068:(protein) 708:Genes Dev 189:in which 124:formamide 98:Procedure 1271:Category 1255:Category 949:11161795 929:Genomics 786:36857667 689:24980302 681:19131955 533:33955961 381:18838116 274:See also 1047:General 911:8022806 879:Bibcode 837:7685563 778:8855401 730:9030685 623:8341618 571:1709098 525:8245974 426:Bibcode 228:RNA-Seq 157:agarose 977:about 947:  909:  899:  835:  784:  776:  728:  687:  679:  621:  614:309787 611:  569:  531:  523:  458:414220 456:  449:431715 446:  379:  203:avidin 199:biotin 180:Probes 137:RT-PCR 1062:(RNA) 1056:(DNA) 902:44222 782:S2CID 743:e175. 685:S2CID 529:S2CID 945:PMID 907:PMID 833:PMID 774:PMID 726:PMID 677:PMID 619:PMID 567:PMID 521:PMID 454:PMID 377:PMID 361:Gene 250:mRNA 173:urea 143:Gels 56:mRNA 38:The 937:doi 897:PMC 887:doi 825:doi 821:210 766:doi 716:doi 669:doi 609:PMC 601:doi 559:doi 555:197 513:doi 481:doi 444:PMC 434:doi 369:doi 365:427 205:or 193:or 135:or 92:DNA 52:RNA 1273:: 943:. 933:71 931:. 919:^ 905:. 895:. 885:. 875:91 873:. 869:. 857:^ 845:^ 831:. 819:. 806:^ 794:^ 780:. 772:. 762:17 760:. 748:^ 724:. 712:11 710:. 706:. 683:. 675:. 663:. 631:^ 617:. 607:. 597:21 595:. 591:. 579:^ 565:. 553:. 541:^ 527:. 519:. 509:61 507:. 495:^ 479:. 475:. 452:. 442:. 432:. 422:74 420:. 416:. 389:^ 375:. 363:. 351:^ 328:^ 139:. 1148:e 1141:t 1134:v 1032:e 1025:t 1018:v 951:. 939:: 913:. 889:: 881:: 839:. 827:: 788:. 768:: 732:. 718:: 691:. 671:: 665:4 625:. 603:: 573:. 561:: 535:. 515:: 489:. 483:: 460:. 436:: 428:: 383:. 371:: 234:( 20:)

Index

Northern blotting

molecular biology
gene expression
RNA
mRNA
morphogenesis
electrophoresis
hybridization probe
David Kemp
Stanford University
Southern blot
Edwin Southern
DNA
chromatography
poly(A) tail

formamide
densitometry
microarrays
RT-PCR

agarose
formaldehyde
ethidium bromide
Polyacrylamide
urea
chemiluminescence
alkaline phosphatase
horseradish peroxidase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑