Knowledge (XXG)

Outer billiards

Source đź“ť

33: 1469: 1461: 497:, the existence of periodic orbits is a major unsolved problem. For instance, it is unknown if every triangular shaped table has a periodic billiard path. More progress has been made for outer billiards, though the situation is far from well understood. As mentioned above, all the orbits are periodic when the system is defined relative to a convex rational polygon in the 381:
has some aperiodic orbits, thus clarifying the distinction between the dynamics in the rational and regular cases. In 1996, Philip Boyland showed that outer billiards relative to some shapes can have orbits which accumulate on the shape. In 2005, Daniel Genin showed that all orbits are bounded when
352:
gave the full proof of this result. A big advance in the polygonal case came over a period of several years when three teams of authors, Vivaldi-Shaidenko, Kolodziej, and Gutkin-Simanyi, each using different methods, showed that outer billiards relative to a
485:. (See the reference for the definition.) Filiz Doǧru and Samuel Otten then extended this work in 2011 by specifying the conditions under which a regular polygonal table in the hyperbolic plane have all orbits unbounded, that is, are large. 200:
of the point, namely ... x0 ↔ x1 ↔ x2 ↔ x3 ... That is, start at x0 and iteratively apply both the outer billiards map and the backwards outer billiards map. When P is a strictly convex shape, such as an
311:
informally posed the question as to whether or not one can have unbounded orbits in an outer billiards system, and Moser put it in writing in 1973. Sometimes this basic question has been called
209:, some points might not have well-defined orbits, on account of the potential ambiguity of choosing the midpoint of the relevant tangent line. Nevertheless, in the polygonal case, 535:
orbit periodic. The cases of the equilateral triangle and the square are trivial, and Tabachnikov answered this for the regular pentagon. These are the only cases known.
62: 1758: 1588: 453:
multiples of each other. In 2008, Dmitry Dolgopyat and Bassam Fayad showed that outer billiards defined relative to the semidisk has unbounded orbits. The
141:
shape in the plane. Given a point x0 outside P, there is typically a unique point x1 (also outside P) so that the line segment connecting x0 to x1 is
157: 1468: 1228: 830: 762: 592: 1421: 513:
Outer billiards is a subject still in its beginning phase. Most problems are still unsolved. Here are some open problems in the area.
1368: 1701: 1743: 1431: 461:
in half. The proof of Dolgopyat-Fayad is robust, and also works for regions obtained by cutting a disk nearly in half, when the word
1936: 84: 545:
understand the structure of periodic orbits relative to simple shapes in the hyperbolic plane, such as small equilateral triangles.
168:(or backwards) outer billiards map is also defined, as the map x1 -> x0. One gets the inverse map simply by replacing the word 263:
Defining an outer billiards system in a higher-dimensional space is beyond the scope of this article. Unlike the case of ordinary
1618: 945: 403: 337: 1436: 1426: 501:. Moreover, it is a recent theorem of Chris Culter (written up by Sergei Tabachnikov) that outer billiards relative to any 421:. Subsequently, Schwartz showed that outer billiards has unbounded orbits when defined relative to any irrational kite. An 1691: 357:
polygon has all orbits bounded. The notion of quasirational is technical (see references) but it includes the class of
1783: 1556: 279:
to rotate 90 degrees. These distinguished tangent lines can be used to define the outer billiards map roughly as above.
45: 1696: 55: 49: 41: 1763: 2035: 1221: 950: 149:
and a person walking from x0 to x1 would see P on the right. (See Figure.) The map F: x0 -> x1 is called the
1811: 1045: 66: 1515: 1460: 1676: 1441: 1348: 345: 341: 291:
in the late 1950s, though it seems that a few people cite an earlier construction in 1945, due to M. Day.
1716: 1328: 875: 628: 1866: 1773: 1571: 1398: 1333: 1308: 1214: 1012: 729: 473:
In 2003, Filiz Doǧru and Sergei Tabachnikov showed that all orbits are unbounded for a certain class of
1628: 1876: 1706: 1528: 1373: 1182: 1095: 1054: 969: 894: 839: 771: 620: 555: 410:
Kite, thus answering the original Moser-Neumann question in the affirmative. The Penrose kite is the
268: 633: 1836: 1793: 1778: 1623: 1576: 1561: 1546: 1446: 1378: 1353: 1338: 1323: 1163: 494: 478: 304: 296: 264: 181: 117: 113: 2014: 1881: 1711: 1598: 1593: 1485: 1363: 1265: 1172: 1154: 1083: 985: 959: 910: 884: 855: 787: 646: 608: 580: 458: 374: 538:
more broadly, characterize the structure of the set of periodic orbits relative to the typical
1901: 1886: 1851: 1841: 1738: 1358: 1280: 588: 307:. One can also consider higher-dimensional spaces, though no serious study has yet been made. 197: 1994: 1906: 1856: 1753: 1681: 1633: 1510: 1495: 1490: 1285: 1190: 1134: 1103: 1062: 977: 902: 847: 779: 706: 638: 378: 358: 308: 288: 276: 193: 165: 116:
or in other spaces that suitably generalize the plane. Outer billiards differs from a usual
101: 275:
body at each point. One obtains these tangents by starting with the normals and using the
1926: 1821: 1748: 1393: 1383: 1159:"A proof of Culter's theorem on existence of periodic orbits in polygonal outer billiards" 1025: 742: 528: 498: 450: 418: 370: 316: 300: 177: 156: 109: 1916: 1861: 333: 292: 1186: 1099: 1058: 1003:
Schwartz, Richard E. (2009). "outer billiards on kites". Annals of Mathematics Studies.
973: 898: 843: 775: 624: 2009: 1976: 1971: 1966: 1768: 1658: 1653: 1551: 1500: 1416: 1290: 539: 521: 502: 474: 411: 373:
coordinates. In the case of rational polygons, all the orbits are periodic. In 1995,
366: 349: 2029: 2004: 1961: 1951: 1946: 1846: 1826: 1686: 1608: 1505: 1313: 989: 859: 791: 650: 642: 434: 426: 414: 407: 1107: 914: 906: 1956: 1921: 1831: 1788: 1643: 1638: 1237: 532: 518: 406:
showed that outer billiards has some unbounded orbits when defined relative to the
210: 1603: 505:
has periodic orbits—in fact a periodic orbit outside of any given bounded region.
825: 757: 1941: 1931: 1816: 1566: 1388: 1295: 267:, the definition is not straightforward. One natural setting for the map is a 1999: 1896: 1343: 1195: 1158: 1067: 1040: 929: 873:
Boyland, Philip (1996). "Dual billiards, twist maps, and impact oscillators".
391: 272: 138: 105: 17: 1911: 1871: 1613: 1275: 1260: 446: 438: 430: 383: 1139: 1122: 981: 686:. Annals of Mathematics Studies. Vol. 77. Princeton University Press. 205:, every point in the exterior of P has a well defined orbit. When P is a 1648: 442: 146: 1318: 1270: 851: 783: 710: 206: 202: 142: 1891: 964: 889: 176:
in the definition given above. The figure shows the situation in the
319:
and solved only recently, has been a guiding problem in the field.
1177: 155: 724:
R. Douady (1982). "these de 3-eme cycle". University of Paris 7.
271:. In this case, there is a natural choice of line tangent to a 108:
shape in the plane. Classically, this system is defined for the
1210: 1206: 1086:(2003). "On Polygonal Dual Billiards in the Hyperbolic Plane". 805:
Kołodziej, Rafał (1989). "The antibilliard outside a polygon".
243:) if some bounded region in the plane contains the whole orbit. 390:
condition for the system to have all orbits bounded. (Not all
26: 666:
Iota: The Manchester University Mathematics Students' Journal
287:
Most people attribute the introduction of outer billiards to
664:
Neumann, Bernhard H. (25 Jan 1959). "Sharing Ham and Eggs".
587:. Panoramas et Synthèses. Société Mathématique de France. 758:"Global Stability of a class of discontinuous billiards" 295:
popularized the system in the 1970s as a toy model for
697:
Moser, JĂĽrgen (1978). "Is the Solar System Stable?".
315:. This question, originally posed for shapes in the 1985: 1802: 1729: 1667: 1537: 1524: 1476: 1407: 1251: 1244: 1041:"unbounded orbits for semicircular outer billiards" 120:in that it deals with a discrete sequence of moves 948:(2007). "unbounded orbits for outer billiards I". 611:(2002). "Dual Billiards in the Hyperbolic Plane". 299:. This system has been studied classically in the 575: 573: 571: 54:but its sources remain unclear because it lacks 931:Regular and chaotic dynamics of outer billiards 826:"Dual polygonal billiard and necklace dynamics" 934:(Ph.D. Thesis). Pennsylvania State University. 684:Stable and random motions in dynamical systems 386:, thus showing that quasirationality is not a 340:, that outer billiards relative to a 6-times- 160:Outer billiards defined relative to a pentagon 1222: 8: 756:Vivaldi, Franco; Shaidenko, Anna V. (1987). 112:but one can also consider the system in the 677: 675: 1534: 1248: 1229: 1215: 1207: 1127:American Journal of Undergraduate Research 1194: 1176: 1138: 1066: 1039:Dolgopyat, Dmitry; Fayad, Bassam (2009). 963: 888: 632: 429:with the following property: One of the 85:Learn how and when to remove this message 824:Gutkin, Eugene; Simanyi, Nandor (1991). 527:Show that outer billiards relative to a 469:Unbounded orbits in the hyperbolic plane 567: 398:Unbounded orbits in the Euclidean plane 1021: 1010: 831:Communications in Mathematical Physics 763:Communications in Mathematical Physics 738: 727: 517:Show that outer billiards relative to 328:Bounded orbits in the Euclidean plane 7: 1121:Doǧru, Filiz; Otten, Samuel (2011). 457:is the region one gets by cutting a 377:showed that outer billiards for the 124:the shape rather than inside of it. 1369:Measure-preserving dynamical system 25: 1937:Oleksandr Mykolayovych Sharkovsky 1123:"Sizing Up Outer Billiard Tables" 481:. The authors call such polygons 348:has all orbits bounded. In 1982, 1467: 1459: 213:point has a well-defined orbit. 31: 1108:10.1070/RD2003v008n01ABEH000226 1702:Rabinovich–Fabrikant equations 1: 1007:. Princeton University Press. 441:of equal area and the other 1088:Regular and Chaotic Dynamics 807:Bull. Polish Acad. Sci. Math 489:Existence of periodic orbits 445:divides the region into two 437:divides the region into two 180:, but the definition in the 1437:PoincarĂ© recurrence theorem 336:sketched a proof, based on 303:, and more recently in the 2052: 1432:Poincaré–Bendixson theorem 951:Journal of Modern Dynamics 699:Mathematical Intelligencer 643:10.1088/0951-7715/15/4/305 313:the Moser-Neumann question 1784:Swinging Atwood's machine 1457: 1427:Krylov–Bogolyubov theorem 1304: 1196:10.1007/s10711-007-9196-y 1068:10.1007/s00023-009-0409-9 928:Genin, Daniel I. (2005). 907:10.1088/0951-7715/9/6/002 465:is suitably interpreted. 417:from the kites-and-darts 259:Higher-dimensional spaces 221:if it eventually repeats. 184:is essentially the same. 1692:Lotka–Volterra equations 1516:Synchronization of chaos 1319:axiom A dynamical system 363:convex rational polygons 232:) if it is not periodic. 40:This article includes a 1677:Double scroll attractor 1442:Stable manifold theorem 1349:False nearest neighbors 254:) if it is not bounded. 133:The outer billiards map 69:more precise citations. 1717:Van der Pol oscillator 1697:Mackey–Glass equations 1329:Box-counting dimension 1140:10.33697/ajur.2011.008 1046:Annales Henri PoincarĂ© 1020:Cite journal requires 982:10.3934/jmd.2007.1.371 737:Cite journal requires 682:Moser, JĂĽrgen (1973). 323:Moser-Neumann question 161: 1867:Svetlana Jitomirskaya 1774:Multiscroll attractor 1619:Interval exchange map 1572:Dyadic transformation 1557:Complex quadratic map 1399:Topological conjugacy 1334:Correlation dimension 1309:Anosov diffeomorphism 524:has unbounded orbits. 159: 1877:Edward Norton Lorenz 946:Schwartz, Richard E. 556:Illumination problem 449:whose areas are not 394:are quasirational.) 369:whose vertices have 269:complex vector space 1837:Mitchell Feigenbaum 1779:Population dynamics 1764:HĂ©non–Heiles system 1624:Irrational rotation 1577:Dynamical billiards 1562:Coupled map lattice 1422:Liouville's theorem 1354:Hausdorff dimension 1339:Conservative system 1324:Bifurcation diagram 1187:2007arXiv0706.1003T 1164:Geometriae Dedicata 1100:2003RCD.....8...67D 1084:Tabachnikov, Sergei 1059:2009AnHP...10..357D 974:2007math......2073S 899:1996Nonli...9.1411B 844:1992CMaPh.143..431G 776:1987CMaPh.110..625V 625:2002Nonli..15.1051T 609:Tabachnikov, Sergei 495:polygonal billiards 297:celestial mechanics 246:An orbit is called 235:An orbit is called 224:An orbit is called 217:An orbit is called 192:An outer billiards 151:outer billiards map 2015:Santa Fe Institute 1882:Aleksandr Lyapunov 1712:Three-body problem 1599:Gingerbreadman map 1486:Bifurcation theory 1364:Lyapunov stability 1155:Tabachnikov, Serge 852:10.1007/BF02099259 784:10.1007/BF01205552 711:10.1007/BF03023062 581:Tabachnikov, Serge 375:Sergei Tabachnikov 344:shape of positive 196:is the set of all 162: 118:dynamical billiard 42:list of references 2036:Dynamical systems 2023: 2022: 1887:BenoĂ®t Mandelbrot 1852:Martin Gutzwiller 1842:Peter Grassberger 1725: 1724: 1707:Rössler attractor 1455: 1454: 1359:Invariant measure 1281:Lyapunov exponent 594:978-2-85629-030-9 277:complex structure 95: 94: 87: 16:(Redirected from 2043: 1995:Butterfly effect 1907:Itamar Procaccia 1857:Brosl Hasslacher 1754:Elastic pendulum 1682:Duffing equation 1629:Kaplan–Yorke map 1547:Arnold's cat map 1535: 1511:Stability theory 1496:Dynamical system 1491:Control of chaos 1471: 1463: 1447:Takens's theorem 1379:PoincarĂ© section 1249: 1231: 1224: 1217: 1208: 1201: 1200: 1198: 1180: 1151: 1145: 1144: 1142: 1118: 1112: 1111: 1079: 1073: 1072: 1070: 1036: 1030: 1029: 1023: 1018: 1016: 1008: 1000: 994: 993: 967: 942: 936: 935: 925: 919: 918: 892: 883:(6): 1411–1438. 870: 864: 863: 821: 815: 814: 802: 796: 795: 753: 747: 746: 740: 735: 733: 725: 721: 715: 714: 694: 688: 687: 679: 670: 669: 661: 655: 654: 636: 619:(4): 1051–1072. 605: 599: 598: 577: 479:hyperbolic plane 404:Richard Schwartz 379:regular pentagon 365:, namely those 359:regular polygons 309:Bernhard Neumann 305:hyperbolic plane 289:Bernhard Neumann 182:hyperbolic plane 114:hyperbolic plane 102:dynamical system 90: 83: 79: 76: 70: 65:this article by 56:inline citations 35: 34: 27: 21: 2051: 2050: 2046: 2045: 2044: 2042: 2041: 2040: 2026: 2025: 2024: 2019: 1987: 1981: 1927:Caroline Series 1822:Mary Cartwright 1804: 1798: 1749:Double pendulum 1731: 1721: 1670: 1663: 1589:Exponential map 1540: 1526: 1520: 1478: 1472: 1465: 1451: 1417:Ergodic theorem 1410: 1403: 1394:Stable manifold 1384:Recurrence plot 1300: 1254: 1240: 1235: 1205: 1204: 1153: 1152: 1148: 1120: 1119: 1115: 1081: 1080: 1076: 1038: 1037: 1033: 1019: 1009: 1002: 1001: 997: 944: 943: 939: 927: 926: 922: 872: 871: 867: 823: 822: 818: 804: 803: 799: 755: 754: 750: 736: 726: 723: 722: 718: 696: 695: 691: 681: 680: 673: 663: 662: 658: 634:10.1.1.408.9436 607: 606: 602: 595: 579: 578: 569: 564: 552: 529:regular polygon 511: 499:Euclidean plane 491: 475:convex polygons 471: 423:irrational kite 419:Penrose tilings 400: 382:the shape is a 367:convex polygons 330: 325: 317:Euclidean plane 301:Euclidean plane 285: 261: 190: 178:Euclidean plane 135: 130: 110:Euclidean plane 98:Outer billiards 91: 80: 74: 71: 60: 46:related reading 36: 32: 23: 22: 15: 12: 11: 5: 2049: 2047: 2039: 2038: 2028: 2027: 2021: 2020: 2018: 2017: 2012: 2010:Predictability 2007: 2002: 1997: 1991: 1989: 1983: 1982: 1980: 1979: 1977:Lai-Sang Young 1974: 1972:James A. Yorke 1969: 1967:Amie Wilkinson 1964: 1959: 1954: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1902:Henri PoincarĂ© 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1808: 1806: 1800: 1799: 1797: 1796: 1791: 1786: 1781: 1776: 1771: 1769:Kicked rotator 1766: 1761: 1756: 1751: 1746: 1741: 1739:Chua's circuit 1735: 1733: 1727: 1726: 1723: 1722: 1720: 1719: 1714: 1709: 1704: 1699: 1694: 1689: 1684: 1679: 1673: 1671: 1668: 1665: 1664: 1662: 1661: 1659:Zaslavskii map 1656: 1654:Tinkerbell map 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1585: 1584: 1574: 1569: 1564: 1559: 1554: 1549: 1543: 1541: 1538: 1532: 1522: 1521: 1519: 1518: 1513: 1508: 1503: 1501:Ergodic theory 1498: 1493: 1488: 1482: 1480: 1474: 1473: 1458: 1456: 1453: 1452: 1450: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1413: 1411: 1408: 1405: 1404: 1402: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1341: 1336: 1331: 1326: 1321: 1316: 1311: 1305: 1302: 1301: 1299: 1298: 1293: 1291:Periodic point 1288: 1283: 1278: 1273: 1268: 1263: 1257: 1255: 1252: 1246: 1242: 1241: 1236: 1234: 1233: 1226: 1219: 1211: 1203: 1202: 1146: 1113: 1082:Doǧru, Filiz; 1074: 1053:(2): 357–375. 1031: 1022:|journal= 995: 958:(3): 371–424. 937: 920: 865: 838:(3): 431–450. 816: 797: 770:(4): 625–640. 748: 739:|journal= 716: 689: 671: 656: 600: 593: 566: 565: 563: 560: 559: 558: 551: 548: 547: 546: 543: 540:convex polygon 536: 525: 522:convex polygon 510: 509:Open questions 507: 503:convex polygon 490: 487: 470: 467: 399: 396: 350:Raphael Douady 342:differentiable 329: 326: 324: 321: 284: 281: 260: 257: 256: 255: 244: 233: 222: 189: 186: 134: 131: 129: 126: 93: 92: 50:external links 39: 37: 30: 24: 18:Outer billiard 14: 13: 10: 9: 6: 4: 3: 2: 2048: 2037: 2034: 2033: 2031: 2016: 2013: 2011: 2008: 2006: 2005:Edge of chaos 2003: 2001: 1998: 1996: 1993: 1992: 1990: 1984: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1962:Marcelo Viana 1960: 1958: 1955: 1953: 1952:Audrey Terras 1950: 1948: 1947:Floris Takens 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1847:Celso Grebogi 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1827:Chen Guanrong 1825: 1823: 1820: 1818: 1815: 1813: 1812:Michael Berry 1810: 1809: 1807: 1801: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1736: 1734: 1728: 1718: 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1687:Lorenz system 1685: 1683: 1680: 1678: 1675: 1674: 1672: 1666: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1634:Langton's ant 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1609:Horseshoe map 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1583: 1580: 1579: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1544: 1542: 1536: 1533: 1530: 1523: 1517: 1514: 1512: 1509: 1507: 1506:Quantum chaos 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1483: 1481: 1475: 1470: 1466: 1462: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1414: 1412: 1406: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1314:Arnold tongue 1312: 1310: 1307: 1306: 1303: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1258: 1256: 1250: 1247: 1243: 1239: 1232: 1227: 1225: 1220: 1218: 1213: 1212: 1209: 1197: 1192: 1188: 1184: 1179: 1174: 1170: 1166: 1165: 1160: 1156: 1150: 1147: 1141: 1136: 1132: 1128: 1124: 1117: 1114: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1078: 1075: 1069: 1064: 1060: 1056: 1052: 1048: 1047: 1042: 1035: 1032: 1027: 1014: 1006: 999: 996: 991: 987: 983: 979: 975: 971: 966: 961: 957: 953: 952: 947: 941: 938: 933: 932: 924: 921: 916: 912: 908: 904: 900: 896: 891: 886: 882: 878: 877: 869: 866: 861: 857: 853: 849: 845: 841: 837: 833: 832: 827: 820: 817: 812: 808: 801: 798: 793: 789: 785: 781: 777: 773: 769: 765: 764: 759: 752: 749: 744: 731: 720: 717: 712: 708: 704: 700: 693: 690: 685: 678: 676: 672: 667: 660: 657: 652: 648: 644: 640: 635: 630: 626: 622: 618: 614: 610: 604: 601: 596: 590: 586: 582: 576: 574: 572: 568: 561: 557: 554: 553: 549: 544: 541: 537: 534: 530: 526: 523: 520: 516: 515: 514: 508: 506: 504: 500: 496: 488: 486: 484: 480: 476: 468: 466: 464: 460: 456: 452: 448: 444: 440: 436: 435:quadrilateral 432: 428: 427:quadrilateral 424: 420: 416: 415:quadrilateral 413: 409: 405: 397: 395: 393: 389: 385: 380: 376: 372: 368: 364: 360: 356: 355:quasirational 351: 347: 343: 339: 338:K.A.M. theory 335: 332:In the 70's, 327: 322: 320: 318: 314: 310: 306: 302: 298: 294: 290: 282: 280: 278: 274: 270: 266: 258: 253: 249: 245: 242: 238: 234: 231: 227: 223: 220: 216: 215: 214: 212: 208: 204: 199: 195: 187: 185: 183: 179: 175: 171: 167: 158: 154: 152: 148: 144: 140: 132: 127: 125: 123: 119: 115: 111: 107: 103: 99: 89: 86: 78: 68: 64: 58: 57: 51: 47: 43: 38: 29: 28: 19: 1957:Mary Tsingou 1922:David Ruelle 1917:Otto Rössler 1862:Michel HĂ©non 1832:Leon O. Chua 1789:Tilt-A-Whirl 1759:FPUT problem 1644:Standard map 1639:Logistic map 1581: 1464: 1238:Chaos theory 1168: 1162: 1149: 1130: 1126: 1116: 1094:(1): 67–82. 1091: 1087: 1077: 1050: 1044: 1034: 1013:cite journal 1004: 998: 965:math/0702073 955: 949: 940: 930: 923: 890:math/9408216 880: 876:Nonlinearity 874: 868: 835: 829: 819: 810: 806: 800: 767: 761: 751: 730:cite journal 719: 705:(2): 65–71. 702: 698: 692: 683: 665: 659: 616: 613:Nonlinearity 612: 603: 584: 533:almost every 519:almost every 512: 493:In ordinary 492: 482: 472: 462: 454: 422: 401: 387: 362: 354: 334:JĂĽrgen Moser 331: 312: 293:JĂĽrgen Moser 286: 262: 251: 247: 240: 236: 230:non-periodic 229: 225: 218: 211:almost every 191: 173: 172:by the word 169: 163: 150: 145:to P at its 136: 121: 97: 96: 81: 72: 61:Please help 53: 1942:Nina Snaith 1932:Yakov Sinai 1817:Rufus Bowen 1567:Duffing map 1552:Baker's map 1477:Theoretical 1389:SRB measure 1296:Phase space 1266:Bifurcation 137:Let P be a 128:Definitions 104:based on a 67:introducing 2000:Complexity 1897:Edward Ott 1744:Convection 1669:Continuous 1344:Ergodicity 813:: 163–168. 562:References 392:trapezoids 198:iterations 1912:Mary Rees 1872:Bryna Kra 1805:theorists 1614:Ikeda map 1604:HĂ©non map 1594:Gauss map 1276:Limit set 1261:Attractor 1178:0706.1003 1171:: 83–87. 990:119146537 860:121776396 792:111386812 651:250758250 629:CiteSeerX 585:Billiards 447:triangles 439:triangles 431:diagonals 402:In 2007, 388:necessary 384:trapezoid 346:curvature 265:billiards 248:unbounded 226:aperiodic 75:June 2013 2030:Category 1988:articles 1730:Physical 1649:Tent map 1539:Discrete 1479:branches 1409:Theorems 1245:Concepts 1157:(2007). 915:18709638 583:(1995). 550:See also 455:semidisk 451:rational 443:diagonal 371:rational 252:unstable 219:periodic 147:midpoint 1986:Related 1794:Weather 1732:systems 1525:Chaotic 1271:Fractal 1183:Bibcode 1133:: 1–8. 1096:Bibcode 1055:Bibcode 970:Bibcode 895:Bibcode 840:Bibcode 772:Bibcode 621:Bibcode 477:in the 433:of the 408:Penrose 283:History 237:bounded 207:polygon 203:ellipse 166:inverse 143:tangent 122:outside 63:improve 1892:Hee Oh 1527:maps ( 1374:Mixing 988:  913:  858:  790:  649:  631:  591:  463:nearly 412:convex 273:convex 241:stable 188:Orbits 139:convex 106:convex 1803:Chaos 1582:outer 1286:Orbit 1173:arXiv 986:S2CID 960:arXiv 911:S2CID 885:arXiv 856:S2CID 788:S2CID 647:S2CID 483:large 425:is a 361:and 194:orbit 170:right 100:is a 48:, or 1529:list 1253:Core 1026:help 743:help 589:ISBN 531:has 459:disk 250:(or 239:(or 228:(or 174:left 164:The 1191:doi 1169:129 1135:doi 1104:doi 1063:doi 1005:171 978:doi 903:doi 848:doi 836:143 780:doi 768:110 707:doi 639:doi 2032:: 1189:. 1181:. 1167:. 1161:. 1131:10 1129:. 1125:. 1102:. 1090:. 1061:. 1051:10 1049:. 1043:. 1017:: 1015:}} 1011:{{ 984:. 976:. 968:. 954:. 909:. 901:. 893:. 879:. 854:. 846:. 834:. 828:. 811:34 809:. 786:. 778:. 766:. 760:. 734:: 732:}} 728:{{ 701:. 674:^ 645:. 637:. 627:. 617:15 615:. 570:^ 153:. 52:, 44:, 1531:) 1230:e 1223:t 1216:v 1199:. 1193:: 1185:: 1175:: 1143:. 1137:: 1110:. 1106:: 1098:: 1092:8 1071:. 1065:: 1057:: 1028:) 1024:( 992:. 980:: 972:: 962:: 956:1 917:. 905:: 897:: 887:: 881:9 862:. 850:: 842:: 794:. 782:: 774:: 745:) 741:( 713:. 709:: 703:1 668:. 653:. 641:: 623:: 597:. 542:. 88:) 82:( 77:) 73:( 59:. 20:)

Index

Outer billiard
list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
dynamical system
convex
Euclidean plane
hyperbolic plane
dynamical billiard
convex
tangent
midpoint

inverse
Euclidean plane
hyperbolic plane
orbit
iterations
ellipse
polygon
almost every
billiards
complex vector space
convex
complex structure
Bernhard Neumann

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑