Knowledge (XXG)

Protective relay

Source đź“ť

643:
commercially available digital protective relay was introduced to the power industry in 1984 by Schweitzer Engineering Laboratories (SEL) based in Pullman, Washington. In spite of the developments of complex algorithms for implementing protection functions the microprocessor based-relays marketed in the 1980s did not incorporate them. A microprocessor-based digital protection relay can replace the functions of many discrete electromechanical instruments. These relays convert voltage and currents to digital form and process the resulting measurements using a microprocessor. The digital relay can emulate functions of many discrete electromechanical relays in one device, simplifying protection design and maintenance. Each digital relay can run self-test routines to confirm its readiness and alarm if a fault is detected. Digital relays can also provide functions such as communications (
381:"Armature"-type relays have a pivoted lever supported on a hinge or knife-edge pivot, which carries a moving contact. These relays may work on either alternating or direct current, but for alternating current, a shading coil on the pole is used to maintain contact force throughout the alternating current cycle. Because the air gap between the fixed coil and the moving armature becomes much smaller when the relay has operated, the current required to maintain the relay closed is much smaller than the current to first operate it. The "returning ratio" or "differential" is the measure of how much the current must be reduced to reset the relay. 647:) interface, monitoring of contact inputs, metering, waveform analysis, and other useful features. Digital relays can, for example, store multiple sets of protection parameters, which allows the behavior of the relay to be changed during maintenance of attached equipment. Digital relays also can provide protection strategies impossible to implement with electromechanical relays. This is particularly so in long-distance high voltage or multi-terminal circuits or in lines that are series or shunt compensated They also offer benefits in self-testing and communication to supervisory control systems. 214: 1850:, differ in principle from other forms of protection in that their performance is not governed by the magnitude of the current or voltage in the protected circuit but rather on the ratio of these two quantities. Distance relays are actually double actuating quantity relays with one coil energized by voltage and other coil by current. The current element produces a positive or pick up torque while the voltage element produces a negative or reset torque. The relay operates only when the 405: 568:
electromagnet. The secondary winding has connections on the upper electromagnet that are energised from the primary winding and connected to the lower electromagnet. Once the upper and lower electromagnets are energised they produce eddy currents that are induced onto the metal disc and flow through the flux paths. This relationship of eddy currents and fluxes creates torque proportional to the input current of the primary winding, due to the two flux paths being out of phase by 90°.
1872: 1863:. The voltage at the PT location depends on the distance between the PT and the fault. If the measured voltage is lesser, that means the fault is nearer and vice versa. Hence the protection called Distance relay. The load flowing through the line appears as an impedance to the relay and sufficiently large loads (as impedance is inversely proportional to the load) can lead to a trip of the relay even in the absence of a fault. 3504: 4083: 651: 671:
protection relays. Each type, however, shares a similar architecture, thus enabling designers to build an entire system solution that is based on a relatively small number of flexible components. They use high speed processors executing appropriate algorithms. Most numerical relays are also multifunctional and have multiple setting groups each often with tens or hundreds of settings.
262:
over electromechanical relays. However, due to their very long life span, tens of thousands of these "silent sentinels" are still protecting transmission lines and electrical apparatus all over the world. Important transmission lines and generators have cubicles dedicated to protection, with many individual electromechanical devices, or one or two microprocessor relays.
412:"Induction" disk meters work by inducing currents in a disk that is free to rotate; the rotary motion of the disk operates a contact. Induction relays require alternating current; if two or more coils are used, they must be at the same frequency otherwise no net operating force is produced. These electromagnetic relays use the induction principle discovered by 273:. The need to act quickly to protect circuits and equipment often requires protective relays to respond and trip a breaker within a few thousandths of a second. In some instances these clearance times are prescribed in legislation or operating rules. A maintenance or testing program is used to determine the performance and availability of protection systems. 1934: 757:
significantly larger than the feeder impedance then the characteristic of the IDMT relay cannot be exploited and DTOC may be utilized. Secondly if the source impedance varies and becomes weaker with less generation during light loads then this leads to slower clearance time hence negating the purpose of the IDMT relay.
305:"It is not practical to make a relay that develops a torque equal to the quotient of two a.c. quantities. This, however is not important; the only significant condition for a relay is its setting and the setting can be made to correspond to a ratio regardless of the component values over a wide range." 770:
While it is more common to use IDMT relays for current protection it is possible to utilize IDMT mode of operation for voltage protection. It is possible to program customised curves in some protective relays and other manufacturers have special curves specific to their relays. Some numerical relays
740:
is an overcurrent relay which operates only when the magnitude of their operating current is inversely proportional to the magnitude of the energize quantities. The operating time of relay decreases with the increases in the current. The operation of the relay depends on the magnitude of the current.
727:
is an overcurrent relay which has no intentional time delay for operation. The contacts of the relay are closed instantly when the current inside the relay rises beyond the operational value. The time interval between the instant pick-up value and the closing contacts of the relay is very low. It has
328:
In a large installation of electromechanical relays, it would be difficult to determine which device originated the signal that tripped the circuit. This information is useful to operating personnel to determine the likely cause of the fault and to prevent its re-occurrence. Relays may be fitted with
1878:
A differential scheme acts on the difference between current entering a protected zone (which may be a bus bar, generator, transformer or other apparatus) and the current leaving that zone. A fault outside the zone gives the same fault current at the entry and exit of the zone, but faults within the
320:
are used on direct-current circuits to detect, for example, reverse current into a generator. These relays can be made bistable, maintaining a contact closed with no coil current and requiring reverse current to reset. For AC circuits, the principle is extended with a polarizing winding connected to
571:
In an overcurrent condition, a value of current will be reached that overcomes the control spring pressure on the spindle and the braking magnet, causing the metal disc to rotate towards the fixed contact. This initial movement of the disc is also held off to a critical positive value of current by
301:
Protective relays can also be classified by the type of measurement they make. A protective relay may respond to the magnitude of a quantity such as voltage or current. Induction relays can respond to the product of two quantities in two field coils, which could for example represent the power in a
702:
is 50 for an IOC relay or a DTOC relay. In a typical application, the over current relay is connected to a current transformer and calibrated to operate at or above a specific current level. When the relay operates, one or more contacts will operate and energize to trip a circuit breaker. The DTOC
670:
The distinction between digital and numerical protection relay rests on points of fine technical detail, and is rarely found in areas other than Protection. Numerical relays are the product of the advances in technology from digital relays. Generally, there are several different types of numerical
575:
Providing the relay is free from dirt, the metal disc and the spindle with its contact will reach the fixed contact, thus sending a signal to trip and isolate the circuit, within its designed time and current specifications. Drop off current of the relay is much lower than its operating value, and
1921:
A synchronism checking relay provides a contact closure when the frequency and phase of two sources are similar to within some tolerance margin. A "synch check" relay is often applied where two power systems are interconnected, such as at a switchyard connecting two power grids, or at a generator
572:
small slots that are often cut into the side of the disc. The time taken for rotation to make the contacts is not only dependent on current but also the spindle backstop position, known as the time multiplier (tm). The time multiplier is divided into 10 linear divisions of the full rotation time.
261:
provide only rudimentary indication of the location and origin of a fault. In many cases a single microprocessor relay provides functions that would take two or more electromechanical devices. By combining several functions in one case, numerical relays also save capital cost and maintenance cost
588:
amplifiers and continued up to 1956. Devices using electron tubes were studied but never applied as commercial products, because of the limitations of vacuum tube amplifiers. A relatively large standby current is required to maintain the tube filament temperature; inconvenient high voltages are
416:
in the late 19th century. The magnetic system in induction disc overcurrent relays is designed to detect overcurrents in a power system and operate with a pre-determined time delay when certain overcurrent limits have been reached. In order to operate, the magnetic system in the relays produces
1912:
uses an additional polarizing source of voltage or current to determine the direction of a fault. Directional elements respond to the phase shift between a polarizing quantity and an operate quantity. The fault can be located upstream or downstream of the relay's location, allowing appropriate
642:
Digital protective relays were in their infancy during the late 1960s. An experimental digital protection system was tested in the lab and in the field in the early 1970s. Unlike the relays mentioned above, digital protective relays have two main parts: hardware and software. The world's first
1892:
Current transformers in a differential scheme must be chosen to have near-identical response to high overcurrents. If a "through fault" results in one set of current transformers saturating before another, the zone differential protection will see a false "operate" current and may false trip.
297:
with fixed and usually ill-defined operating voltage thresholds and operating times, protective relays have well-established, selectable, and adjustable time and current (or other operating parameter) operating characteristics. Protection relays may use arrays of induction disks, shaded-pole,
756:
If the source impedance remains constant and the fault current changes appreciably as we move away from the relay then it is advantageous to use IDMT overcurrent protection to achieve high speed protection over a large section of the protected circuit. However, if the source impedance is
567:
The relay's primary winding is supplied from the power systems current transformer via a plug bridge, which is called the plug setting multiplier (psm). Usually seven equally spaced tappings or operating bands determine the relays sensitivity. The primary winding is located on the upper
1619: 623:
or their combinations. Static relays offer the advantage of higher sensitivity than purely electromechanical relays, because power to operate output contacts is derived from a separate supply, not from the signal circuits. Static relays eliminated or reduced
1179: 1395: 1287: 1830:
The above equations result in a "family" of curves as a result of using different time multiplier setting (TMS) settings. It is evident from the relay characteristic equations that a larger TMS will result in a slower clearance time for a given PMS
1507: 2229:
Warrington, A. R. van C. (1968-01-01). "Relay Design and Construction: Characteristics—Choice of Measuring Units—Construction of Measuring Units—Construction of Timing Units—Details of Design—Cases—Panel Mounting—Operation Indicators—Finishes".
308:
Several operating coils can be used to provide "bias" to the relay, allowing the sensitivity of response in one circuit to be controlled by another. Various combinations of "operate torque" and "restraint torque" can be produced in the relay.
1826: 728:
low operating time and starts operating instantly when the value of current is more than the relay setting. This relay operates only when the impedance between the source and the relay is less than that provided in the section.
1630:= is the ratio of the fault current to the relay setting current or a Plug Setting Multiplier. "Plug" is a reference from the electromechanical relay era and were available in discrete steps. TD is the Time Dial setting. 1886:. Time grading with other protection systems is therefore not required, allowing for tripping without additional delay. Differential protection is therefore suited as fast main protection for all important plant items." 1854:
ratio falls below a predetermined value (or set value). During a fault on the transmission line the fault current increases and the voltage at the fault point decreases. The V/I ratio is measured at the location of
1942:
Self-powered relays operate on energy derived from the protected circuit, through the current transformers used to measure line current, for example. This eliminates the cost and reliability question of a separate
3198: 395:
but with a contact lever instead of a pointer. These can be made with very high sensitivity. Another type of moving coil suspends the coil from two conductive ligaments, allowing very long travel of the coil.
3261: 324:
Lightweight contacts make for sensitive relays that operate quickly, but small contacts can't carry or break heavy currents. Often the measuring relay will trigger auxiliary telephone-type armature relays.
472: 276:
Based on the end application and applicable legislation, various standards such as ANSI C37.90, IEC255-4, IEC60255-3, and IAC govern the response time of the relay to the fault conditions that may occur.
241:
when a fault is detected. The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detection of abnormal operating conditions such as over-current,
654:
A digital (numeric) multifunction protective relay for distribution networks. A single such device can replace many single-function electromechanical relays, and provides self-testing and communication
853: 990: 919: 695:
is a type of protective relay which operates when the load current exceeds a pickup value. It is of two types: instantaneous over current (IOC) relay and definite time overcurrent (DTOC) relay.
1056: 1882:"The differential protection is 100% selective and therefore only responds to faults within its protected zone. The boundary of the protected zone is uniquely defined by the location of the 1889:
Differential protection can be used to provide protection for zones with multiple terminals and can be used to protect lines, generators, motors, transformers, and other electrical plant.
1522: 1082: 1999: 1298: 1190: 1410: 715:
is a relay that operates after a definite period of time once the current exceeds the pickup value. Hence, this relay has current setting range as well as time setting range.
408:
When the input current is above the current limit, the disk rotates, the contact moves left and reaches the fixed contact. The scale above the plate indicates the delay-time.
221:
generating plant. The relays are in round glass cases. The rectangular devices are test connection blocks, used for testing and isolation of instrument transformer circuits.
703:
relay has been used extensively in the United Kingdom but its inherent issue of operating slower for faults closer to the source led to the development of the IDMT relay.
1946:
Auxiliary powered relays rely on a battery or external ac supply. Some relays can use either AC or DC. The auxiliary supply must be highly reliable during a system fault.
2713:
Sham, M.V.; Vittal, K.P. (2011-12-01). "Development of DSP based high speed numerical distance relay and its evaluation using hardware in loop power system simulator".
1635: 528: 501: 548: 3355: 257:
digital protection relays now emulate the original devices, as well as providing types of protection and supervision impractical with electromechanical relays.
4028: 200: 4107: 3064:
Elneweihi, A.F.; Schweitzer, E.O.; Feltis, M.W. (1993). "Negative-sequence overcurrent element application and coordination in distribution protection".
135: 2059:. American Public Power Association's Engineering & Operations Workshop. Salt Lake City, Utah: Schweitzer Engineering Laboratories, Inc. p. 1. 760: 4112: 1949:
Dual powered relays can be also auxiliary powered, so all batteries, chargers and other external elements are made redundant and used as a backup.
97: 3307: 3244: 3181: 3156: 2971: 2915: 2888: 2730: 2689: 2656: 2470: 2415: 2390: 2337: 2312: 2247: 2184: 1982: 2601:"Working Group (WGI-01), Relaying Practices Subcommittee". Understanding microprocessor-based technology applied to relaying (Report). IEEE. 4086: 329:
a "target" or "flag" unit, which is released when the relay operates, to display a distinctive colored signal when the relay has tripped.
3925: 1900:) circuit breakers combine overcurrent protection and differential protection (non-adjustable) in standard, commonly available modules. 4033: 3503: 3348: 2844: 2028: 3653: 3108: 2577: 2362: 2272: 422: 1897: 763:
standard 60255-151 specifies the IDMT relay curves as shown below. The four curves in Table 1 are derived from the now withdrawn
793: 3816: 3741: 3612: 576:
once reached the relay will be reset in a reverse motion by the pressure of the control spring governed by the braking magnet.
193: 930: 3988: 3920: 3910: 3786: 3686: 3341: 864: 589:
required for the circuits, and vacuum tube amplifiers had difficulty with incorrect operation due to noise disturbances.
3841: 3801: 3378: 1001: 753:
are protective relays which were developed to overcome the shortcomings of the definite time overcurrent (DTOC) relays.
298:
magnets, operating and restraint coils, solenoid-type operators, telephone-relay contacts, and phase-shifting networks.
2672:
Khan, Z.A; Imran, A. (2008-03-01). "Algorithms and hardware design of modern numeric overcurrent and distance relays".
2533: 4068: 4063: 3781: 3756: 3746: 3722: 3717: 3423: 2494:
Rockefeller, G.D.; Udren, E.A. (1972-05-01). "High-Speed Distance Relaying Using a Digital Computer II-Test Results".
1614:{\displaystyle t={\frac {TD}{7}}{\biggl \{}{\biggl (}{\frac {0.02394}{I_{r}^{0.02}-1}}{\biggl )}+0.01694{\biggl \}}} 3983: 3701: 3671: 3448: 186: 34: 2203:
Protective Relays Application Guide (Report). London: The General Electric Company (PLC) of England. January 1974.
2108: 4038: 3527: 3488: 2148: 1174:{\displaystyle t={\frac {TD}{7}}{\biggl \{}{\biggl (}{\frac {0.0515}{I_{r}^{0.02}-1}}{\biggl )}+0.114{\biggl \}}} 290: 63: 49: 2860: 1937:
A dual powered protection relay powered by the current obtained from the line by a CT. The striker is also shown
4013: 3821: 3761: 3418: 2154: 2084: 637: 213: 3051:
Adaptive Inverse Time Elements Take Microprocessor-Based Technology Beyond Emulating Electromechanical Relays
2766: 1390:{\displaystyle t={\frac {TD}{7}}{\biggl \{}{\biggl (}{\frac {28.2}{I_{r}^{2}-1}}{\biggl )}+0.1217{\biggl \}}} 1282:{\displaystyle t={\frac {TD}{7}}{\biggl \{}{\biggl (}{\frac {19.61}{I_{r}^{2}-1}}{\biggl )}+0.491{\biggl \}}} 3952: 3942: 3932: 3269:. Relay Protection and Substation Automation of Modern Power Systems. Cheboksary Chuvashia: CIGRE. p. 1 620: 417:
torque that acts on a metal disc to make contact, according to the following basic current/torque equation:
270: 254: 1502:{\displaystyle t={\frac {TD}{7}}{\biggl \{}{\biggl (}{\frac {5.95}{I_{r}^{2}-1}}{\biggl )}+0.18{\biggl \}}} 3873: 3736: 3519: 3408: 612: 226: 68: 4008: 3776: 3771: 3751: 771:
can be used to provide inverse time overvoltage protection or negative sequence overcurrent protection.
106: 3325: 404: 3602: 3364: 2499: 2436: 3973: 3806: 3706: 3681: 3634: 3443: 3433: 3398: 1883: 1871: 1856: 680: 286: 1821:{\displaystyle PSM={\frac {Primary\ fault\ current}{Relay\ current\ setting\ \times \ CT\ ratio}}} 265:
The theory and application of these protective devices is an important part of the education of a
3847: 3458: 2981: 2931: 2740: 2695: 2583: 2174: 699: 616: 78: 73: 584:
Application of electronic amplifiers to protective relays was described as early as 1928, using
3231:. 63rd Annual Conference for Protective Relay Engineers. College Station, TX: IEEE. p. 3. 506: 479: 316:, a relay can be made to respond to current in one direction differently from in another. Such 3998: 3878: 3483: 3303: 3240: 3177: 3152: 3104: 3081: 2967: 2911: 2884: 2840: 2726: 2685: 2652: 2573: 2515: 2452: 2411: 2386: 2358: 2333: 2308: 2268: 2243: 2180: 1978: 1860: 384:
A variant application of the attraction principle is the plunger-type or solenoid operator. A
266: 149: 58: 42: 3294:. 63rd Annual Conference for Protective Engineers. College Station, TX: IEEE. pp. 1–12. 3289: 3226: 2054: 533: 3888: 3592: 3587: 3564: 3473: 3413: 3295: 3232: 3144: 3073: 2959: 2718: 2677: 2565: 2507: 2444: 2235: 1922:
circuit breaker to ensure the generator is synchronized to the system before connecting it.
764: 683:. For example, a relay including function 51 would be a timed overcurrent protective relay. 599:. Measuring elements of static relays have been successfully and economically built up from 413: 313: 2800:. South East Asia Protection and Automation Conference -CIGRE Australia Panel B5. p. 2 4117: 3978: 3937: 3915: 3796: 3766: 3731: 3691: 3493: 2993: 2752: 665: 608: 238: 126: 116: 2073:. Newark, New Jersey: Westinghouse Electric & Manufacturing Company. 1940. p. 3. 2503: 2440: 4003: 3993: 3791: 3403: 1064:
Table 2. Curves derives from ANSI standard (North American IDMT relay characteristics)
625: 247: 154: 144: 121: 88: 2932:"BS 142-0:1992 - Electrical protection relays. General introduction and list of Parts" 2792: 4101: 4023: 3811: 3696: 3676: 3607: 3597: 3554: 3438: 3393: 2587: 1930:
The relays can also be classified on the type of power source that they use to work.
218: 111: 2722: 2699: 679:
The various protective functions available on a given relay are denoted by standard
342:
Electromechanical relays can be classified into several different types as follows:
4043: 4018: 3883: 3852: 3666: 3468: 592: 392: 391:"Moving coil" meters use a loop of wire turns in a stationary magnet, similar to a 2821: 2905: 767:
BS 142. The other five, in Table 2, are derived from the ANSI standard C37.112.
17: 3868: 3836: 3629: 3617: 3537: 3463: 3453: 3383: 2615:
Digital Protection: Protective Relaying from Electromechanical to Microprocessor
2239: 604: 585: 560:
Maximum torque is produced when the two alternating fluxes are 90 degrees apart.
243: 2963: 1913:
protective devices to be operated inside or outside of the zone of protection.
650: 595:
have no or few moving parts, and became practical with the introduction of the
3831: 3826: 3639: 3622: 3478: 3299: 3236: 3148: 2681: 596: 385: 3085: 2519: 2511: 2456: 2448: 3547: 3542: 3428: 3388: 2431:
Rockefeller, G.D. (1969-04-01). "Fault Protection with a Digital Computer".
83: 2767:"Numerical relays - Protection and control products for power distribution" 557:
Two alternating fluxes with a phase shift are needed for torque production.
2956:
IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays
553:
The following important conclusions can be drawn from the above equation.
3661: 169: 164: 1933: 27:
Relay device designed to trip a circuit breaker when a fault is detected
3582: 3572: 3333: 3128:. 20th Annual Western Protective relay Conference, Spokane, Washington. 2632:. 17th Annual Western Protective relay Conference, Spokane, Washington. 3077: 3577: 2569: 159: 3260:
Gajić, Z.; BrnÄŤić, I.; Einarsson, T.; et al. (September 2009).
628:, and could provide fast operation, long life and low maintenance. 2630:
Novel Applications of a Digital Relay with Multiple Setting Groups
1932: 1870: 649: 644: 600: 403: 317: 294: 258: 234: 212: 3532: 3263:
New and re-discovered theories and practices in relay protection
2219:, GEC Alsthom Measurements Ltd. 1987, no ISBN, pages 9-10, 83-93 3337: 2628:
Tziouvaras, Demetrios A.; Hawbaker, William D. (October 1990).
3174:
Numerical differential protection: principles and applications
3124:
Roberts, J.; Guzman, A; Schweitzer, III, E.O. (October 1993).
2674:
2008 Second International Conference on Electrical Engineering
2000:"100 years of relay protection, the Swedish ABB relay history" 467:{\displaystyle T\propto \phi _{s}\times \phi _{u}\sin \alpha } 3225:
Miller, H.; Burger, J.; Fischer, N.; Kasztenny, B. (2010).
2862:
Instruction Manual Overcurrent Protection Relay GRD110-xxxD
3141:
2012 65th Annual Conference for Protective Relay Engineers
2471:"PAC World magazine: Interview with George Rockefeller Jr" 848:{\displaystyle t=TMS\times {\frac {0.14}{I_{r}^{0.02}-1}}} 563:
The resultant torque is steady and not a function of time.
3036:
Combined Overcurrent & Earth fault Relays - SPAJ 140C
2056:
Microprocessor-Based Transmission Line Relay Applications
3024:(Technical report). Markham, Ontario: GE Multilin. 2011. 2794:
Protection relay settings management in the modern world
2410:. New Delhi: PHI Learning Private Limited. p. 151. 2907:
Protective Relays: Their Theory and Practice Volume One
2109:"Protection System Maintenance - A Technical Reference" 285:
Electromechanical protective relays operate by either
3228:
Modern Line Current Differential Protection Solutions
1638: 1525: 1413: 1301: 1193: 1085: 1004: 985:{\displaystyle t=TMS\times {\frac {80}{I_{r}^{2}-1}}} 933: 867: 796: 536: 509: 482: 425: 3291:
Fundamentals and Improvements for Directional Relays
2816: 2814: 4052: 3962: 3899: 3861: 3715: 3652: 3563: 3518: 3511: 3371: 2288:Metha, V.K. & Rohit (July 2008). "Chapter 21". 914:{\displaystyle t=TMS\times {\frac {13.5}{I_{r}-1}}} 3022:Instruction Manual- F35 Multiple Feeder Protection 1820: 1613: 1501: 1389: 1281: 1173: 1051:{\displaystyle t=TMS\times {\frac {120}{I_{r}-1}}} 1050: 984: 913: 847: 542: 522: 495: 466: 1606: 1593: 1556: 1549: 1494: 1481: 1444: 1437: 1382: 1369: 1332: 1325: 1274: 1261: 1224: 1217: 1166: 1153: 1116: 1109: 2496:IEEE Transactions on Power Apparatus and Systems 2433:IEEE Transactions on Power Apparatus and Systems 2303:Paithankar, Y.G. & Bhide, S.R. (July 2013). 388:is another example of the attraction principle. 3288:Zimmerman, Karl; Costello, David (March 2010). 3008:Technical Reference Manual Voltage Relay REU610 2385:(2nd ed.). New Delhi: India Professional. 2217:Protective Relays Application Guide 3rd Edition 2143:(Technical report). Texas Instruments. SLAA466. 2617:. New Delhi: New Age International. p. 4. 3349: 3199:"Multi-Terminal Line Differential Protection" 2328:Bakshi, U.A. & A.V. (2010). "Chapter 1". 194: 8: 3049:Guzmán; Anderson; Labuschagne (2014-09-23). 2265:Power System Protection: Systems and methods 3176:. Erlangen: Publicis Corporate Publishing. 250:flow, over-frequency, and under-frequency. 3515: 3356: 3342: 3334: 2651:. Levallois-Perret, France: Alstom. 2002. 2560:Johns, A. T.; Salman, S. K. (1995-01-01). 2357:. New Delhi: Tata McGraw-Hill. p. 7. 2307:(2nd ed.). PHI Learning. p. 33. 2176:The Art and Science of Protective Relaying 2022: 2020: 751:inverse definite minimum time (IDMT) relay 293:. Unlike switching type electromechanical 201: 187: 29: 2649:Network Protection & Automation Guide 1879:zone show up as a difference in current. 1651: 1637: 1605: 1604: 1592: 1591: 1576: 1571: 1561: 1555: 1554: 1548: 1547: 1532: 1524: 1493: 1492: 1480: 1479: 1464: 1459: 1449: 1443: 1442: 1436: 1435: 1420: 1412: 1381: 1380: 1368: 1367: 1352: 1347: 1337: 1331: 1330: 1324: 1323: 1308: 1300: 1273: 1272: 1260: 1259: 1244: 1239: 1229: 1223: 1222: 1216: 1215: 1200: 1192: 1165: 1164: 1152: 1151: 1136: 1131: 1121: 1115: 1114: 1108: 1107: 1092: 1084: 1033: 1023: 1003: 967: 962: 952: 932: 896: 886: 866: 830: 825: 815: 795: 535: 514: 508: 487: 481: 449: 436: 424: 217:Electromechanical protective relays at a 2555: 2553: 2534:"PAC World magazine: Protection History" 2376: 2374: 2267:. London: Peter Peregrinus. p. 15. 2212: 2210: 1062: 773: 3099:Ram, Badri; Vishwakarma, D.N. (2007) . 3053:. Annual PAC World Americas Conference. 2881:Fundamentals of Power System protection 2643: 2641: 2639: 2353:Ram, Badri; Vishwakarma, D.N. (2007) . 2305:Fundamentals of Power System Protection 2263:IEE (1981). Electricity Council (ed.). 2198: 2196: 2168: 2166: 2164: 1973:Paithankar, Yeshwant (September 1997). 1958: 713:definite time over-current (DTOC) relay 134: 96: 48: 41: 3126:Z = V/I Does Not Make a Distance Relay 3101:Power System Protection and Switchgear 2989: 2979: 2879:Paithankar, Y.G; Bhinde, S.R. (2003). 2748: 2738: 2408:Switchgear and Power System Protection 2383:Power System Protection: Static Relays 2355:Power System Protection and Switchgear 2332:. Technical Publications. p. 16. 2173:Mason, C. Russell (January 15, 1956). 2146: 1867:Current differential protection scheme 738:inverse-time over-current (ITOC) relay 550:is the phase angle between the fluxes 2292:(4th ed.). S Chand. p. 503. 2141:A Numerical Protection Relay Solution 1968: 1966: 1964: 1962: 7: 2910:. Stafford, Uk: Chapman & Hall. 2562:Digital Protection for Power Systems 2134: 2132: 775:Table 1. Curves derived from BS 142 312:By use of a permanent magnet in the 3066:IEEE Transactions on Power Delivery 2139:Gadgil, Kaustubh (September 2010). 2027:Schossig, Walter (September 2014). 745:Inverse definite minimum time relay 4034:Renewable energy commercialization 3139:Rincon, Cesar; Perez, Joe (2012). 2835:Hewitson, L.G.; Brown, M. (2005). 25: 4108:Electric power systems components 2837:Practical Power System Protection 2791:Henderson, Brad (17 March 2009). 2053:Mooney, Joe (March 25–28, 1996). 136:Electric power systems components 4082: 4081: 3502: 1898:ground fault circuit interrupter 725:instantaneous over-current relay 719:Instantaneous over-current relay 707:Definite time over-current relay 400:Induction disc overcurrent relay 4113:Over-current protection devices 3103:. New Delhi: Tata McGraw-Hill. 2904:Warrington, A.R.van C. (1968). 2723:10.1109/ISET-India.2011.6145351 2234:. Springer US. pp. 29–49. 1975:Transmission Network Protection 732:Inverse-time over-current relay 333:Types according to construction 3038:(Technical report). ABB. 2004. 3010:(Technical report). ABB. 2006. 996:Long time standard earth fault 1: 4029:Renewable Energy Certificates 3989:Cost of electricity by source 3911:Arc-fault circuit interrupter 3787:High-voltage shore connection 98:Electric power infrastructure 4044:Spark/Dark/Quark/Bark spread 3842:Transmission system operator 3802:Mains electricity by country 3379:Automatic generation control 2883:. New Delhi: Ashok K Goshe. 321:a reference voltage source. 4069:List of electricity sectors 4064:Electric energy consumption 3782:High-voltage direct current 3757:Electric power transmission 3747:Electric power distribution 3424:Energy return on investment 2958:. 1997-01-01. pp. i–. 2406:Singh, Ravindra P. (2009). 2240:10.1007/978-1-4684-6459-7_2 4134: 3984:Carbon offsets and credits 3702:Three-phase electric power 2964:10.1109/IEEESTD.1997.81576 2330:Protection of Power System 2290:Principles of Power System 663: 635: 367: 357: 347: 237:device designed to trip a 4077: 4039:Renewable Energy Payments 3528:Fossil fuel power station 3500: 3329:1949 edition online text 3300:10.1109/cpre.2010.5469483 3237:10.1109/CPRE.2010.5469504 3172:Ziegler, Gerhard (2005). 3149:10.1109/CPRE.2012.6201255 2682:10.1109/ICEE.2008.4553897 2498:. PAS-91 (3): 1244–1258. 2381:Rao, T.S Madhava (1989). 523:{\displaystyle \phi _{s}} 496:{\displaystyle \phi _{u}} 64:Electric power conversion 50:Electric power conversion 3822:Single-wire earth return 3762:Electrical busbar system 3419:Energy demand management 2512:10.1109/TPAS.1972.293483 2449:10.1109/TPAS.1969.292466 1077:IEEE Moderately Inverse 638:Digital protective relay 621:field effect transistors 259:Electromechanical relays 3953:Residual-current device 3943:Power system protection 3933:Generator interlock kit 2868:. Japan: Toshiba. 2010. 2564:. IET Digital Library. 2435:. PAS-88 (4): 438–464. 613:unijunction transistors 543:{\displaystyle \alpha } 530:are the two fluxes and 271:power system protection 3737:Distributed generation 3409:Electric power quality 3197:Moxley & Lippert. 2085:"AEMC - Current Rules" 1938: 1875: 1822: 1615: 1503: 1391: 1293:Extremely Inverse (EI) 1283: 1175: 1052: 986: 925:Extremely Inverse (EI) 915: 849: 656: 544: 524: 497: 468: 409: 227:electrical engineering 222: 69:HVDC converter station 4009:Fossil fuel phase-out 3777:Electricity retailing 3772:Electrical substation 3752:Electric power system 1936: 1874: 1823: 1616: 1504: 1392: 1284: 1185:IEE Very Inverse (VI) 1176: 1053: 987: 916: 850: 788:Standard Inverse (SI) 653: 545: 525: 498: 469: 407: 253:Microprocessor-based 216: 107:Electric power system 3365:Electricity delivery 3143:. pp. 467–480. 2613:Singh, L.P. (1997). 2153:: CS1 maint: year ( 2029:"Protection History" 1884:current transformers 1636: 1523: 1411: 1299: 1191: 1083: 1069:Relay Characteristic 1002: 931: 865: 794: 780:Relay Characteristic 534: 507: 480: 423: 281:Operation principles 3974:Availability factor 3926:Sulfur hexafluoride 3807:Overhead power line 3707:Virtual power plant 3682:Induction generator 3635:Sustainable biofuel 3444:Home energy storage 3434:Grid energy storage 3399:Droop speed control 2822:"Overcurrent Relay" 2504:1972ITPAS..91.1244R 2441:1969ITPAS..88..438R 1998:Lundqvist, Bertil. 1581: 1469: 1357: 1249: 1141: 1065: 972: 835: 776: 681:ANSI device numbers 675:Relays by functions 617:bipolar transistors 287:magnetic attraction 269:who specializes in 3848:Transmission tower 3459:Nameplate capacity 2717:. pp. 37–42. 1939: 1876: 1818: 1611: 1567: 1517:Short Time inverse 1499: 1455: 1387: 1343: 1279: 1235: 1171: 1127: 1063: 1048: 982: 958: 911: 845: 821: 774: 700:ANSI device number 657: 615:, p-n-p and n-p-n 540: 520: 493: 464: 410: 350:attracted armature 291:magnetic induction 223: 79:DC-to-DC converter 74:AC-to-AC converter 4095: 4094: 3999:Environmental tax 3879:Cascading failure 3648: 3647: 3484:Utility frequency 3309:978-1-4244-6073-1 3246:978-1-4244-6073-1 3183:978-3-89578-234-3 3158:978-1-4673-1842-6 3078:10.1109/61.252618 2973:978-1-55937-887-1 2936:shop.bsigroup.com 2917:978-1-4684-6459-7 2890:978-81-203-2194-6 2839:. Elsevier {BV}. 2732:978-1-4673-0315-6 2691:978-1-4244-2292-0 2658:978-2-9518589-0-9 2417:978-81-203-3660-5 2392:978-0-07-460307-9 2339:978-81-8431-606-3 2314:978-81-203-4123-4 2249:978-1-4684-6461-0 2232:Protective Relays 2186:978-0-471-57552-8 1984:978-0-8247-9911-3 1917:Synchronism check 1910:directional relay 1904:Directional relay 1816: 1799: 1790: 1784: 1760: 1736: 1695: 1677: 1624: 1623: 1589: 1545: 1477: 1433: 1365: 1321: 1257: 1213: 1149: 1105: 1061: 1060: 1046: 980: 909: 843: 693:overcurrent relay 687:Overcurrent relay 379: 378: 338:Electromechanical 211: 210: 150:Grid-tie inverter 59:Voltage converter 43:Power engineering 18:Overvoltage relay 16:(Redirected from 4125: 4085: 4084: 3994:Energy subsidies 3948:Protective relay 3889:Rolling blackout 3516: 3506: 3474:Power-flow study 3414:Electrical fault 3358: 3351: 3344: 3335: 3327:Silent Sentinels 3314: 3313: 3285: 3279: 3278: 3276: 3274: 3268: 3257: 3251: 3250: 3222: 3216: 3215: 3213: 3212: 3203: 3194: 3188: 3187: 3169: 3163: 3162: 3136: 3130: 3129: 3121: 3115: 3114: 3096: 3090: 3089: 3061: 3055: 3054: 3046: 3040: 3039: 3032: 3026: 3025: 3018: 3012: 3011: 3004: 2998: 2997: 2991: 2987: 2985: 2977: 2952: 2946: 2945: 2943: 2942: 2928: 2922: 2921: 2901: 2895: 2894: 2876: 2870: 2869: 2867: 2857: 2851: 2850: 2832: 2826: 2825: 2818: 2809: 2808: 2806: 2805: 2799: 2788: 2782: 2781: 2779: 2778: 2763: 2757: 2756: 2750: 2746: 2744: 2736: 2710: 2704: 2703: 2676:. pp. 1–5. 2669: 2663: 2662: 2645: 2634: 2633: 2625: 2619: 2618: 2610: 2604: 2602: 2598: 2592: 2591: 2570:10.1049/pbpo015e 2557: 2548: 2547: 2545: 2544: 2530: 2524: 2523: 2491: 2485: 2484: 2482: 2481: 2467: 2461: 2460: 2428: 2422: 2421: 2403: 2397: 2396: 2378: 2369: 2368: 2350: 2344: 2343: 2325: 2319: 2318: 2300: 2294: 2293: 2285: 2279: 2278: 2260: 2254: 2253: 2226: 2220: 2214: 2205: 2204: 2200: 2191: 2190: 2170: 2159: 2158: 2152: 2149:cite tech report 2144: 2136: 2127: 2126: 2124: 2123: 2113: 2105: 2099: 2098: 2096: 2095: 2081: 2075: 2074: 2071:Silent Sentinels 2067: 2061: 2060: 2050: 2044: 2043: 2041: 2039: 2024: 2015: 2014: 2012: 2010: 2004: 1995: 1989: 1988: 1970: 1846:, also known as 1827: 1825: 1824: 1819: 1817: 1815: 1797: 1788: 1782: 1758: 1734: 1717: 1693: 1675: 1652: 1620: 1618: 1617: 1612: 1610: 1609: 1597: 1596: 1590: 1588: 1580: 1575: 1562: 1560: 1559: 1553: 1552: 1546: 1541: 1533: 1508: 1506: 1505: 1500: 1498: 1497: 1485: 1484: 1478: 1476: 1468: 1463: 1450: 1448: 1447: 1441: 1440: 1434: 1429: 1421: 1396: 1394: 1393: 1388: 1386: 1385: 1373: 1372: 1366: 1364: 1356: 1351: 1338: 1336: 1335: 1329: 1328: 1322: 1317: 1309: 1288: 1286: 1285: 1280: 1278: 1277: 1265: 1264: 1258: 1256: 1248: 1243: 1230: 1228: 1227: 1221: 1220: 1214: 1209: 1201: 1180: 1178: 1177: 1172: 1170: 1169: 1157: 1156: 1150: 1148: 1140: 1135: 1122: 1120: 1119: 1113: 1112: 1106: 1101: 1093: 1066: 1057: 1055: 1054: 1049: 1047: 1045: 1038: 1037: 1024: 991: 989: 988: 983: 981: 979: 971: 966: 953: 920: 918: 917: 912: 910: 908: 901: 900: 887: 854: 852: 851: 846: 844: 842: 834: 829: 816: 777: 765:British Standard 609:avalanche diodes 549: 547: 546: 541: 529: 527: 526: 521: 519: 518: 502: 500: 499: 494: 492: 491: 473: 471: 470: 465: 454: 453: 441: 440: 414:Galileo Ferraris 345: 344: 318:polarized relays 314:magnetic circuit 231:protective relay 203: 196: 189: 175:Protective relay 30: 21: 4133: 4132: 4128: 4127: 4126: 4124: 4123: 4122: 4098: 4097: 4096: 4091: 4073: 4057: 4055: 4048: 3979:Capacity factor 3967: 3965: 3958: 3938:Numerical relay 3916:Circuit breaker 3904: 3902: 3895: 3857: 3797:Load management 3767:Electrical grid 3732:Demand response 3725: 3720: 3711: 3692:Microgeneration 3644: 3559: 3507: 3498: 3494:Vehicle-to-grid 3367: 3362: 3322: 3317: 3310: 3287: 3286: 3282: 3272: 3270: 3266: 3259: 3258: 3254: 3247: 3224: 3223: 3219: 3210: 3208: 3201: 3196: 3195: 3191: 3184: 3171: 3170: 3166: 3159: 3138: 3137: 3133: 3123: 3122: 3118: 3111: 3098: 3097: 3093: 3063: 3062: 3058: 3048: 3047: 3043: 3034: 3033: 3029: 3020: 3019: 3015: 3006: 3005: 3001: 2988: 2978: 2974: 2954: 2953: 2949: 2940: 2938: 2930: 2929: 2925: 2918: 2903: 2902: 2898: 2891: 2878: 2877: 2873: 2865: 2859: 2858: 2854: 2847: 2834: 2833: 2829: 2820: 2819: 2812: 2803: 2801: 2797: 2790: 2789: 2785: 2776: 2774: 2765: 2764: 2760: 2747: 2737: 2733: 2712: 2711: 2707: 2692: 2671: 2670: 2666: 2659: 2647: 2646: 2637: 2627: 2626: 2622: 2612: 2611: 2607: 2600: 2599: 2595: 2580: 2559: 2558: 2551: 2542: 2540: 2532: 2531: 2527: 2493: 2492: 2488: 2479: 2477: 2469: 2468: 2464: 2430: 2429: 2425: 2418: 2405: 2404: 2400: 2393: 2380: 2379: 2372: 2365: 2352: 2351: 2347: 2340: 2327: 2326: 2322: 2315: 2302: 2301: 2297: 2287: 2286: 2282: 2275: 2262: 2261: 2257: 2250: 2228: 2227: 2223: 2215: 2208: 2202: 2201: 2194: 2187: 2172: 2171: 2162: 2145: 2138: 2137: 2130: 2121: 2119: 2111: 2107: 2106: 2102: 2093: 2091: 2089:www.aemc.gov.au 2083: 2082: 2078: 2069: 2068: 2064: 2052: 2051: 2047: 2037: 2035: 2026: 2025: 2018: 2008: 2006: 2002: 1997: 1996: 1992: 1985: 1972: 1971: 1960: 1956: 1928: 1919: 1906: 1869: 1848:impedance relay 1844:Distance relays 1841: 1834: 1718: 1653: 1634: 1633: 1629: 1566: 1534: 1521: 1520: 1516: 1454: 1422: 1409: 1408: 1404: 1342: 1310: 1297: 1296: 1234: 1202: 1189: 1188: 1126: 1094: 1081: 1080: 1029: 1028: 1000: 999: 957: 929: 928: 892: 891: 863: 862: 820: 792: 791: 747: 734: 721: 709: 689: 677: 668: 666:Numerical relay 662: 640: 634: 582: 532: 531: 510: 505: 504: 483: 478: 477: 445: 432: 421: 420: 402: 340: 335: 283: 239:circuit breaker 207: 127:Demand response 117:Electrical grid 28: 23: 22: 15: 12: 11: 5: 4131: 4129: 4121: 4120: 4115: 4110: 4100: 4099: 4093: 4092: 4090: 4089: 4078: 4075: 4074: 4072: 4071: 4066: 4060: 4058: 4054:Statistics and 4053: 4050: 4049: 4047: 4046: 4041: 4036: 4031: 4026: 4021: 4016: 4011: 4006: 4004:Feed-in tariff 4001: 3996: 3991: 3986: 3981: 3976: 3970: 3968: 3963: 3960: 3959: 3957: 3956: 3950: 3945: 3940: 3935: 3930: 3929: 3928: 3923: 3913: 3907: 3905: 3900: 3897: 3896: 3894: 3893: 3892: 3891: 3881: 3876: 3871: 3865: 3863: 3859: 3858: 3856: 3855: 3850: 3845: 3839: 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3794: 3792:Interconnector 3789: 3784: 3779: 3774: 3769: 3764: 3759: 3754: 3749: 3744: 3742:Dynamic demand 3739: 3734: 3728: 3726: 3716: 3713: 3712: 3710: 3709: 3704: 3699: 3694: 3689: 3684: 3679: 3674: 3672:Combined cycle 3669: 3664: 3658: 3656: 3650: 3649: 3646: 3645: 3643: 3642: 3637: 3632: 3627: 3626: 3625: 3620: 3615: 3610: 3605: 3595: 3590: 3585: 3580: 3575: 3569: 3567: 3561: 3560: 3558: 3557: 3552: 3551: 3550: 3545: 3540: 3535: 3524: 3522: 3513: 3509: 3508: 3501: 3499: 3497: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3461: 3456: 3451: 3449:Load-following 3446: 3441: 3436: 3431: 3426: 3421: 3416: 3411: 3406: 3404:Electric power 3401: 3396: 3391: 3386: 3381: 3375: 3373: 3369: 3368: 3363: 3361: 3360: 3353: 3346: 3338: 3332: 3331: 3321: 3320:External links 3318: 3316: 3315: 3308: 3280: 3252: 3245: 3217: 3189: 3182: 3164: 3157: 3131: 3116: 3109: 3091: 3072:(3): 915–924. 3056: 3041: 3027: 3013: 2999: 2990:|journal= 2972: 2947: 2923: 2916: 2896: 2889: 2871: 2852: 2846:978-0750663977 2845: 2827: 2810: 2783: 2758: 2749:|journal= 2731: 2715:ISGT2011-India 2705: 2690: 2664: 2657: 2635: 2620: 2605: 2593: 2578: 2549: 2525: 2486: 2462: 2423: 2416: 2398: 2391: 2370: 2363: 2345: 2338: 2320: 2313: 2295: 2280: 2273: 2255: 2248: 2221: 2206: 2192: 2185: 2160: 2128: 2100: 2076: 2062: 2045: 2016: 1990: 1983: 1957: 1955: 1952: 1951: 1950: 1947: 1944: 1927: 1924: 1918: 1915: 1905: 1902: 1868: 1865: 1840: 1839:Distance relay 1837: 1832: 1814: 1811: 1808: 1805: 1802: 1796: 1793: 1787: 1781: 1778: 1775: 1772: 1769: 1766: 1763: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1733: 1730: 1727: 1724: 1721: 1716: 1713: 1710: 1707: 1704: 1701: 1698: 1692: 1689: 1686: 1683: 1680: 1674: 1671: 1668: 1665: 1662: 1659: 1656: 1650: 1647: 1644: 1641: 1627: 1622: 1621: 1608: 1603: 1600: 1595: 1587: 1584: 1579: 1574: 1570: 1565: 1558: 1551: 1544: 1540: 1537: 1531: 1528: 1518: 1514: 1510: 1509: 1496: 1491: 1488: 1483: 1475: 1472: 1467: 1462: 1458: 1453: 1446: 1439: 1432: 1428: 1425: 1419: 1416: 1406: 1402: 1398: 1397: 1384: 1379: 1376: 1371: 1363: 1360: 1355: 1350: 1346: 1341: 1334: 1327: 1320: 1316: 1313: 1307: 1304: 1294: 1290: 1289: 1276: 1271: 1268: 1263: 1255: 1252: 1247: 1242: 1238: 1233: 1226: 1219: 1212: 1208: 1205: 1199: 1196: 1186: 1182: 1181: 1168: 1163: 1160: 1155: 1147: 1144: 1139: 1134: 1130: 1125: 1118: 1111: 1104: 1100: 1097: 1091: 1088: 1078: 1074: 1073: 1072:IEEE Equation 1070: 1059: 1058: 1044: 1041: 1036: 1032: 1027: 1022: 1019: 1016: 1013: 1010: 1007: 997: 993: 992: 978: 975: 970: 965: 961: 956: 951: 948: 945: 942: 939: 936: 926: 922: 921: 907: 904: 899: 895: 890: 885: 882: 879: 876: 873: 870: 860: 856: 855: 841: 838: 833: 828: 824: 819: 814: 811: 808: 805: 802: 799: 789: 785: 784: 781: 746: 743: 733: 730: 720: 717: 708: 705: 688: 685: 676: 673: 664:Main article: 661: 658: 636:Main article: 633: 630: 626:contact bounce 581: 578: 565: 564: 561: 558: 539: 517: 513: 490: 486: 463: 460: 457: 452: 448: 444: 439: 435: 431: 428: 401: 398: 377: 376: 375: 374: 371: 366: 365: 364: 363:motor operated 361: 356: 355: 354: 351: 339: 336: 334: 331: 282: 279: 267:power engineer 209: 208: 206: 205: 198: 191: 183: 180: 179: 178: 177: 172: 167: 162: 157: 155:Energy storage 152: 147: 145:Ring main unit 139: 138: 132: 131: 130: 129: 124: 122:Interconnector 119: 114: 109: 101: 100: 94: 93: 92: 91: 86: 81: 76: 71: 66: 61: 53: 52: 46: 45: 39: 38: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4130: 4119: 4116: 4114: 4111: 4109: 4106: 4105: 4103: 4088: 4080: 4079: 4076: 4070: 4067: 4065: 4062: 4061: 4059: 4051: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4024:Pigouvian tax 4022: 4020: 4017: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3990: 3987: 3985: 3982: 3980: 3977: 3975: 3972: 3971: 3969: 3961: 3954: 3951: 3949: 3946: 3944: 3941: 3939: 3936: 3934: 3931: 3927: 3924: 3922: 3921:Earth-leakage 3919: 3918: 3917: 3914: 3912: 3909: 3908: 3906: 3898: 3890: 3887: 3886: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3866: 3864: 3862:Failure modes 3860: 3854: 3851: 3849: 3846: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3812:Power station 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3733: 3730: 3729: 3727: 3724: 3719: 3714: 3708: 3705: 3703: 3700: 3698: 3697:Rankine cycle 3695: 3693: 3690: 3688: 3685: 3683: 3680: 3678: 3677:Cooling tower 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3659: 3657: 3655: 3651: 3641: 3638: 3636: 3633: 3631: 3628: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3604: 3601: 3600: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3570: 3568: 3566: 3562: 3556: 3553: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3530: 3529: 3526: 3525: 3523: 3521: 3520:Non-renewable 3517: 3514: 3510: 3505: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3439:Grid strength 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3394:Demand factor 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3376: 3374: 3370: 3366: 3359: 3354: 3352: 3347: 3345: 3340: 3339: 3336: 3330: 3328: 3324: 3323: 3319: 3311: 3305: 3301: 3297: 3293: 3292: 3284: 3281: 3265: 3264: 3256: 3253: 3248: 3242: 3238: 3234: 3230: 3229: 3221: 3218: 3207: 3200: 3193: 3190: 3185: 3179: 3175: 3168: 3165: 3160: 3154: 3150: 3146: 3142: 3135: 3132: 3127: 3120: 3117: 3112: 3110:9780074623503 3106: 3102: 3095: 3092: 3087: 3083: 3079: 3075: 3071: 3067: 3060: 3057: 3052: 3045: 3042: 3037: 3031: 3028: 3023: 3017: 3014: 3009: 3003: 3000: 2995: 2983: 2975: 2969: 2965: 2961: 2957: 2951: 2948: 2937: 2933: 2927: 2924: 2919: 2913: 2909: 2908: 2900: 2897: 2892: 2886: 2882: 2875: 2872: 2864: 2863: 2856: 2853: 2848: 2842: 2838: 2831: 2828: 2824:. 2016-06-29. 2823: 2817: 2815: 2811: 2796: 2795: 2787: 2784: 2772: 2768: 2762: 2759: 2754: 2742: 2734: 2728: 2724: 2720: 2716: 2709: 2706: 2701: 2697: 2693: 2687: 2683: 2679: 2675: 2668: 2665: 2660: 2654: 2650: 2644: 2642: 2640: 2636: 2631: 2624: 2621: 2616: 2609: 2606: 2597: 2594: 2589: 2585: 2581: 2579:9781849194310 2575: 2571: 2567: 2563: 2556: 2554: 2550: 2539: 2535: 2529: 2526: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2490: 2487: 2476: 2472: 2466: 2463: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2424: 2419: 2413: 2409: 2402: 2399: 2394: 2388: 2384: 2377: 2375: 2371: 2366: 2364:9780074623503 2360: 2356: 2349: 2346: 2341: 2335: 2331: 2324: 2321: 2316: 2310: 2306: 2299: 2296: 2291: 2284: 2281: 2276: 2274:9780906048535 2270: 2266: 2259: 2256: 2251: 2245: 2241: 2237: 2233: 2225: 2222: 2218: 2213: 2211: 2207: 2199: 2197: 2193: 2188: 2182: 2178: 2177: 2169: 2167: 2165: 2161: 2156: 2150: 2142: 2135: 2133: 2129: 2117: 2110: 2104: 2101: 2090: 2086: 2080: 2077: 2072: 2066: 2063: 2058: 2057: 2049: 2046: 2034: 2030: 2023: 2021: 2017: 2001: 1994: 1991: 1986: 1980: 1977:. CRC Press. 1976: 1969: 1967: 1965: 1963: 1959: 1953: 1948: 1945: 1941: 1940: 1935: 1931: 1925: 1923: 1916: 1914: 1911: 1903: 1901: 1899: 1894: 1890: 1887: 1885: 1880: 1873: 1866: 1864: 1862: 1858: 1853: 1849: 1845: 1838: 1836: 1828: 1812: 1809: 1806: 1803: 1800: 1794: 1791: 1785: 1779: 1776: 1773: 1770: 1767: 1764: 1761: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1731: 1728: 1725: 1722: 1719: 1714: 1711: 1708: 1705: 1702: 1699: 1696: 1690: 1687: 1684: 1681: 1678: 1672: 1669: 1666: 1663: 1660: 1657: 1654: 1648: 1645: 1642: 1639: 1631: 1601: 1598: 1585: 1582: 1577: 1572: 1568: 1563: 1542: 1538: 1535: 1529: 1526: 1519: 1512: 1511: 1489: 1486: 1473: 1470: 1465: 1460: 1456: 1451: 1430: 1426: 1423: 1417: 1414: 1407: 1400: 1399: 1377: 1374: 1361: 1358: 1353: 1348: 1344: 1339: 1318: 1314: 1311: 1305: 1302: 1295: 1292: 1291: 1269: 1266: 1253: 1250: 1245: 1240: 1236: 1231: 1210: 1206: 1203: 1197: 1194: 1187: 1184: 1183: 1161: 1158: 1145: 1142: 1137: 1132: 1128: 1123: 1102: 1098: 1095: 1089: 1086: 1079: 1076: 1075: 1071: 1068: 1067: 1042: 1039: 1034: 1030: 1025: 1020: 1017: 1014: 1011: 1008: 1005: 998: 995: 994: 976: 973: 968: 963: 959: 954: 949: 946: 943: 940: 937: 934: 927: 924: 923: 905: 902: 897: 893: 888: 883: 880: 877: 874: 871: 868: 861: 858: 857: 839: 836: 831: 826: 822: 817: 812: 809: 806: 803: 800: 797: 790: 787: 786: 783:IEC Equation 782: 779: 778: 772: 768: 766: 762: 758: 754: 752: 744: 742: 739: 731: 729: 726: 718: 716: 714: 706: 704: 701: 696: 694: 686: 684: 682: 674: 672: 667: 659: 652: 648: 646: 639: 631: 629: 627: 622: 618: 614: 610: 606: 602: 598: 594: 593:Static relays 590: 587: 579: 577: 573: 569: 562: 559: 556: 555: 554: 551: 537: 515: 511: 488: 484: 474: 461: 458: 455: 450: 446: 442: 437: 433: 429: 426: 418: 415: 406: 399: 397: 394: 389: 387: 382: 372: 369: 368: 362: 359: 358: 352: 349: 348: 346: 343: 337: 332: 330: 326: 322: 319: 315: 310: 306: 303: 299: 296: 292: 288: 280: 278: 274: 272: 268: 263: 260: 256: 251: 249: 245: 240: 236: 232: 228: 220: 219:hydroelectric 215: 204: 199: 197: 192: 190: 185: 184: 182: 181: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 142: 141: 140: 137: 133: 128: 125: 123: 120: 118: 115: 113: 112:Power station 110: 108: 105: 104: 103: 102: 99: 95: 90: 87: 85: 82: 80: 77: 75: 72: 70: 67: 65: 62: 60: 57: 56: 55: 54: 51: 47: 44: 40: 36: 32: 31: 19: 4019:Net metering 3966:and policies 3947: 3884:Power outage 3853:Utility pole 3817:Pumped hydro 3723:distribution 3718:Transmission 3667:Cogeneration 3469:Power factor 3326: 3290: 3283: 3271:. Retrieved 3262: 3255: 3227: 3220: 3209:. Retrieved 3205: 3192: 3173: 3167: 3140: 3134: 3125: 3119: 3100: 3094: 3069: 3065: 3059: 3050: 3044: 3035: 3030: 3021: 3016: 3007: 3002: 2955: 2950: 2939:. Retrieved 2935: 2926: 2906: 2899: 2880: 2874: 2861: 2855: 2836: 2830: 2802:. Retrieved 2793: 2786: 2775:. Retrieved 2770: 2761: 2714: 2708: 2673: 2667: 2648: 2629: 2623: 2614: 2608: 2596: 2561: 2541:. Retrieved 2538:www.pacw.org 2537: 2528: 2495: 2489: 2478:. Retrieved 2475:www.pacw.org 2474: 2465: 2432: 2426: 2407: 2401: 2382: 2354: 2348: 2329: 2323: 2304: 2298: 2289: 2283: 2264: 2258: 2231: 2224: 2216: 2175: 2140: 2120:. Retrieved 2116:www.nerc.com 2115: 2103: 2092:. Retrieved 2088: 2079: 2070: 2065: 2055: 2048: 2036:. Retrieved 2032: 2007:. Retrieved 1993: 1974: 1929: 1926:Power source 1920: 1909: 1907: 1895: 1891: 1888: 1881: 1877: 1851: 1847: 1843: 1842: 1829: 1632: 1625: 859:Very Inverse 769: 759: 755: 750: 748: 737: 735: 724: 722: 712: 710: 697: 692: 690: 678: 669: 641: 605:zener diodes 591: 583: 574: 570: 566: 552: 475: 419: 411: 393:galvanometer 390: 383: 380: 341: 327: 323: 311: 307: 304: 300: 284: 275: 264: 252: 230: 224: 174: 4014:Load factor 3869:Black start 3837:Transformer 3538:Natural gas 3489:Variability 3464:Peak demand 3454:Merit order 3384:Backfeeding 3206:siemens.com 2771:new.abb.com 2118:. p. 1 2038:30 December 2009:30 December 586:vacuum tube 353:moving coil 255:solid-state 244:overvoltage 4102:Categories 4056:production 3901:Protective 3832:Super grid 3827:Smart grid 3654:Generation 3588:Geothermal 3479:Repowering 3273:11 January 3211:2016-01-05 2941:2016-01-14 2804:2016-01-05 2777:2016-01-05 2543:2016-01-13 2480:2016-01-13 2122:2016-01-05 2094:2015-12-30 1954:References 655:functions. 597:transistor 386:reed relay 370:mechanical 246:, reverse 3964:Economics 3687:Micro CHP 3565:Renewable 3548:Petroleum 3543:Oil shale 3429:Grid code 3389:Base load 3086:0885-8977 2992:ignored ( 2982:cite book 2751:ignored ( 2741:cite book 2588:106644987 2520:0018-9510 2457:0018-9510 2179:. Wiley. 1835:) value. 1786:× 1583:− 1471:− 1359:− 1251:− 1143:− 1040:− 1021:× 974:− 950:× 903:− 884:× 837:− 813:× 660:Numerical 538:α 512:ϕ 485:ϕ 462:α 459:⁡ 447:ϕ 443:× 434:ϕ 430:∝ 360:induction 302:circuit. 84:Rectifier 4087:Category 3874:Brownout 3662:AC power 3372:Concepts 2700:34642073 2033:Pacworld 170:Recloser 165:Bus duct 89:Inverter 35:a series 33:Part of 3903:devices 3613:Thermal 3608:Osmotic 3603:Current 3583:Biomass 3573:Biofuel 3555:Nuclear 3512:Sources 2500:Bibcode 2437:Bibcode 1943:supply. 1602:0.01694 1564:0.02394 1405:inverse 632:Digital 373:thermal 4118:Relays 3598:Marine 3578:Biogas 3306:  3243:  3180:  3155:  3107:  3084:  2970:  2914:  2887:  2843:  2729:  2698:  2688:  2655:  2586:  2576:  2518:  2455:  2414:  2389:  2361:  2336:  2311:  2271:  2246:  2183:  1981:  1896:GFCI ( 1798:  1789:  1783:  1759:  1735:  1694:  1676:  1378:0.1217 1124:0.0515 601:diodes 580:Static 476:Where 295:relays 160:Busbar 3955:(GFI) 3844:(TSO) 3630:Solar 3618:Tidal 3593:Hydro 3267:(PDF) 3202:(PDF) 2866:(PDF) 2798:(PDF) 2773:. ABB 2696:S2CID 2584:S2CID 2112:(PDF) 2005:. ABB 2003:(PDF) 1513:US CO 1401:US CO 1270:0.491 1232:19.61 1162:0.114 645:SCADA 289:, or 248:power 235:relay 233:is a 3721:and 3640:Wind 3623:Wave 3533:Coal 3304:ISBN 3275:2016 3241:ISBN 3178:ISBN 3153:ISBN 3105:ISBN 3082:ISSN 2994:help 2968:ISBN 2912:ISBN 2885:ISBN 2841:ISBN 2753:help 2727:ISBN 2686:ISBN 2653:ISBN 2574:ISBN 2516:ISSN 2453:ISSN 2412:ISBN 2387:ISBN 2359:ISBN 2334:ISBN 2309:ISBN 2269:ISBN 2244:ISBN 2181:ISBN 2155:link 2040:2015 2011:2015 1979:ISBN 1859:and 1578:0.02 1490:0.18 1452:5.95 1340:28.2 1138:0.02 889:13.5 832:0.02 818:0.14 749:The 698:The 503:and 229:, a 3296:doi 3233:doi 3145:doi 3074:doi 2960:doi 2719:doi 2678:doi 2566:doi 2508:doi 2445:doi 2236:doi 1861:PTs 1857:CTs 1852:V/I 1026:120 761:IEC 736:An 723:An 691:An 456:sin 225:In 4104:: 3302:. 3239:. 3204:. 3151:. 3080:. 3068:. 2986:: 2984:}} 2980:{{ 2966:. 2934:. 2813:^ 2769:. 2745:: 2743:}} 2739:{{ 2725:. 2694:. 2684:. 2638:^ 2582:. 2572:. 2552:^ 2536:. 2514:. 2506:. 2473:. 2451:. 2443:. 2373:^ 2242:. 2209:^ 2195:^ 2163:^ 2151:}} 2147:{{ 2131:^ 2114:. 2087:. 2031:. 2019:^ 1961:^ 1908:A 1831:(I 955:80 711:A 619:, 611:, 607:, 603:, 37:on 3357:e 3350:t 3343:v 3312:. 3298:: 3277:. 3249:. 3235:: 3214:. 3186:. 3161:. 3147:: 3113:. 3088:. 3076:: 3070:8 2996:) 2976:. 2962:: 2944:. 2920:. 2893:. 2849:. 2807:. 2780:. 2755:) 2735:. 2721:: 2702:. 2680:: 2661:. 2603:. 2590:. 2568:: 2546:. 2522:. 2510:: 2502:: 2483:. 2459:. 2447:: 2439:: 2420:. 2395:. 2367:. 2342:. 2317:. 2277:. 2252:. 2238:: 2189:. 2157:) 2125:. 2097:. 2042:. 2013:. 1987:. 1833:r 1813:o 1810:i 1807:t 1804:a 1801:r 1795:T 1792:C 1780:g 1777:n 1774:i 1771:t 1768:t 1765:e 1762:s 1756:t 1753:n 1750:e 1747:r 1744:r 1741:u 1738:c 1732:y 1729:a 1726:l 1723:e 1720:R 1715:t 1712:n 1709:e 1706:r 1703:r 1700:u 1697:c 1691:t 1688:l 1685:u 1682:a 1679:f 1673:y 1670:r 1667:a 1664:m 1661:i 1658:r 1655:P 1649:= 1646:M 1643:S 1640:P 1628:r 1626:I 1607:} 1599:+ 1594:) 1586:1 1573:r 1569:I 1557:( 1550:{ 1543:7 1539:D 1536:T 1530:= 1527:t 1515:2 1495:} 1487:+ 1482:) 1474:1 1466:2 1461:r 1457:I 1445:( 1438:{ 1431:7 1427:D 1424:T 1418:= 1415:t 1403:8 1383:} 1375:+ 1370:) 1362:1 1354:2 1349:r 1345:I 1333:( 1326:{ 1319:7 1315:D 1312:T 1306:= 1303:t 1275:} 1267:+ 1262:) 1254:1 1246:2 1241:r 1237:I 1225:( 1218:{ 1211:7 1207:D 1204:T 1198:= 1195:t 1167:} 1159:+ 1154:) 1146:1 1133:r 1129:I 1117:( 1110:{ 1103:7 1099:D 1096:T 1090:= 1087:t 1043:1 1035:r 1031:I 1018:S 1015:M 1012:T 1009:= 1006:t 977:1 969:2 964:r 960:I 947:S 944:M 941:T 938:= 935:t 906:1 898:r 894:I 881:S 878:M 875:T 872:= 869:t 840:1 827:r 823:I 810:S 807:M 804:T 801:= 798:t 516:s 489:u 451:u 438:s 427:T 202:e 195:t 188:v 20:)

Index

Overvoltage relay
a series
Power engineering
Electric power conversion
Voltage converter
Electric power conversion
HVDC converter station
AC-to-AC converter
DC-to-DC converter
Rectifier
Inverter
Electric power infrastructure
Electric power system
Power station
Electrical grid
Interconnector
Demand response
Electric power systems components
Ring main unit
Grid-tie inverter
Energy storage
Busbar
Bus duct
Recloser
Protective relay
v
t
e

hydroelectric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑