Knowledge

Ogden–Roxburgh model

Source 📝

550: 382: 164: 645:
De Souza Neto, E. A.; Perić, D.; Owen, D. R. J. (1994). "A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers : Formulation and computational aspects".
374: 545:{\displaystyle {\boldsymbol {S}}=\eta (W,W_{max}){\boldsymbol {S}}_{0},\quad {\text{where }}\eta {\begin{cases}=1,\quad &W=W_{max},\\<1,&W<W_{max}\end{cases}}\quad .} 225: 196: 73: 296: 107: 265: 245: 115: 44: 169:
The key idea of pseudo-elastic material models is that the stress during the first loading process is equal to the basic stress
301: 76: 713: 708: 718: 555:
It was shown that this idea can also be used to extend arbitrary inelastic material models for softening effects.
723: 201: 172: 49: 270: 81: 36:
and D. G. Roxburgh. The fundamental idea of the approach can already be found in a paper by De Souza Neto
21: 572:
Ogden, R. W; Roxburgh, D. G. (1999). "A pseudo–elastic model for the Mullins effect in filled rubber".
581: 454: 682: 675:"On the thermodynamics of pseudo-elastic material models which reproduce the Mullins effect" 655: 620: 589: 250: 230: 159:{\displaystyle {\boldsymbol {S}}=2{\frac {\partial W}{\partial {\boldsymbol {C}}}}\quad .} 585: 29: 25: 702: 659: 33: 687: 674: 593: 624: 608: 43:
The basis of pseudo-elastic material models is a hyperelastic
534: 369:{\displaystyle W_{max}(t):=\max\{W(\tau ),\tau \leq t\}} 385: 304: 273: 253: 233: 204: 175: 118: 84: 52: 544: 368: 290: 259: 239: 219: 190: 158: 101: 67: 333: 227:is multiplied by a positive softening function 20:is an approach published in 1999 which extends 679:International Journal of Solids and Structures 648:Journal of the Mechanics and Physics of Solids 8: 574:Proceedings of the Royal Society of London A 363: 336: 686: 519: 479: 449: 441: 431: 426: 410: 386: 384: 309: 303: 280: 272: 252: 232: 211: 206: 203: 182: 177: 174: 144: 130: 119: 117: 91: 83: 59: 54: 51: 564: 427: 387: 281: 207: 178: 145: 120: 92: 55: 267:thereby depends on the strain energy 220:{\displaystyle {\boldsymbol {S}}_{0}} 191:{\displaystyle {\boldsymbol {S}}_{0}} 68:{\displaystyle {\boldsymbol {S}}_{0}} 7: 609:"Softening of Rubber by Deformation" 298:of the current load and its maximum 291:{\displaystyle W({\boldsymbol {C}})} 102:{\displaystyle W({\boldsymbol {C}})} 75:, which is derived from a suitable 28:. It is used in several commercial 673:Naumann, C.; Ihlemann, J. (2015). 141: 133: 14: 376:in the history of the material: 613:Rubber Chemistry and Technology 538: 466: 440: 198:. Upon unloading and reloading 152: 688:10.1016/j.ijsolstr.2015.05.014 422: 397: 348: 342: 327: 321: 285: 277: 96: 88: 77:strain energy density function 1: 45:second Piola–Kirchhoff stress 660:10.1016/0022-5096(94)90086-8 22:hyperelastic material models 740: 32:codes, and is named after 594:10.1098/rspa.1999.0431 546: 370: 292: 261: 241: 221: 192: 160: 103: 69: 547: 371: 293: 262: 260:{\displaystyle \eta } 242: 240:{\displaystyle \eta } 222: 193: 161: 104: 70: 714:Elasticity (physics) 607:Mullins, L. (1969). 383: 302: 271: 251: 231: 202: 173: 116: 82: 50: 18:Ogden–Roxburgh model 709:Continuum mechanics 586:1999RSPSA.455.2861W 580:(1988): 2861–2877. 681:. 69–70: 360–369. 542: 533: 366: 288: 257: 237: 217: 188: 156: 99: 65: 719:Rubber properties 654:(10): 1533–1550. 625:10.5254/1.3539210 444: 150: 24:to allow for the 731: 693: 692: 690: 670: 664: 663: 642: 636: 635: 633: 631: 604: 598: 597: 569: 551: 549: 548: 543: 537: 536: 530: 529: 490: 489: 445: 442: 436: 435: 430: 421: 420: 390: 375: 373: 372: 367: 320: 319: 297: 295: 294: 289: 284: 266: 264: 263: 258: 246: 244: 243: 238: 226: 224: 223: 218: 216: 215: 210: 197: 195: 194: 189: 187: 186: 181: 165: 163: 162: 157: 151: 149: 148: 139: 131: 123: 108: 106: 105: 100: 95: 74: 72: 71: 66: 64: 63: 58: 739: 738: 734: 733: 732: 730: 729: 728: 724:Solid mechanics 699: 698: 697: 696: 672: 671: 667: 644: 643: 639: 629: 627: 606: 605: 601: 571: 570: 566: 561: 532: 531: 515: 507: 495: 494: 475: 467: 450: 425: 406: 381: 380: 305: 300: 299: 269: 268: 249: 248: 247:. The function 229: 228: 205: 200: 199: 176: 171: 170: 140: 132: 114: 113: 80: 79: 53: 48: 47: 12: 11: 5: 737: 735: 727: 726: 721: 716: 711: 701: 700: 695: 694: 665: 637: 619:(1): 339–362. 599: 563: 562: 560: 557: 553: 552: 541: 535: 528: 525: 522: 518: 514: 511: 508: 506: 503: 500: 497: 496: 493: 488: 485: 482: 478: 474: 471: 468: 465: 462: 459: 456: 455: 453: 448: 439: 434: 429: 424: 419: 416: 413: 409: 405: 402: 399: 396: 393: 389: 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 332: 329: 326: 323: 318: 315: 312: 308: 287: 283: 279: 276: 256: 236: 214: 209: 185: 180: 167: 166: 155: 147: 143: 138: 135: 129: 126: 122: 98: 94: 90: 87: 62: 57: 30:finite element 26:Mullins effect 13: 10: 9: 6: 4: 3: 2: 736: 725: 722: 720: 717: 715: 712: 710: 707: 706: 704: 689: 684: 680: 676: 669: 666: 661: 657: 653: 649: 641: 638: 626: 622: 618: 614: 610: 603: 600: 595: 591: 587: 583: 579: 575: 568: 565: 558: 556: 539: 526: 523: 520: 516: 512: 509: 504: 501: 498: 491: 486: 483: 480: 476: 472: 469: 463: 460: 457: 451: 446: 437: 432: 417: 414: 411: 407: 403: 400: 394: 391: 379: 378: 377: 360: 357: 354: 351: 345: 339: 330: 324: 316: 313: 310: 306: 274: 254: 234: 212: 183: 153: 136: 127: 124: 112: 111: 110: 85: 78: 60: 46: 41: 39: 35: 31: 27: 23: 19: 678: 668: 651: 647: 640: 630:16 September 628:. Retrieved 616: 612: 602: 577: 573: 567: 554: 168: 42: 37: 17: 15: 443:where  40:from 1994. 703:Categories 559:References 34:R.W. Ogden 447:η 395:η 358:≤ 355:τ 346:τ 255:η 235:η 142:∂ 134:∂ 582:Bibcode 38:et al. 632:2023 513:< 499:< 16:The 683:doi 656:doi 621:doi 590:doi 578:455 334:max 705:: 677:. 652:42 650:. 617:42 615:. 611:. 588:. 576:. 331::= 109:: 691:. 685:: 662:. 658:: 634:. 623:: 596:. 592:: 584:: 540:. 527:x 524:a 521:m 517:W 510:W 505:, 502:1 492:, 487:x 484:a 481:m 477:W 473:= 470:W 464:, 461:1 458:= 452:{ 438:, 433:0 428:S 423:) 418:x 415:a 412:m 408:W 404:, 401:W 398:( 392:= 388:S 364:} 361:t 352:, 349:) 343:( 340:W 337:{ 328:) 325:t 322:( 317:x 314:a 311:m 307:W 286:) 282:C 278:( 275:W 213:0 208:S 184:0 179:S 154:. 146:C 137:W 128:2 125:= 121:S 97:) 93:C 89:( 86:W 61:0 56:S

Index

hyperelastic material models
Mullins effect
finite element
R.W. Ogden
second Piola–Kirchhoff stress
strain energy density function
Bibcode
1999RSPSA.455.2861W
doi
10.1098/rspa.1999.0431
"Softening of Rubber by Deformation"
doi
10.5254/1.3539210
doi
10.1016/0022-5096(94)90086-8
"On the thermodynamics of pseudo-elastic material models which reproduce the Mullins effect"
doi
10.1016/j.ijsolstr.2015.05.014
Categories
Continuum mechanics
Elasticity (physics)
Rubber properties
Solid mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.