Knowledge (XXG)

Natural nuclear fission reactor

Source 📝

1304:
reaction was unique, as far as is currently known, to the Oklo ore bodies. It is also possible that other natural nuclear fission reactors were once operating but have since been geologically disturbed so much as to be unrecognizable, possibly even "diluting" the uranium so far that the isotope ratio would no longer serve as a "fingerprint". Only a small part of the continental crust and no part of the oceanic crust reaches the age of the deposits at Oklo or an age during which isotope ratios of natural uranium would have allowed a self sustaining chain reaction with water as a moderator.
1172: 812: 629: 2967: 2957: 2937: 50: 346: 1136:; all five have been found trapped in the remnants of the natural reactor, in varying concentrations. The concentrations of xenon isotopes, found trapped in mineral formations 2 billion years later, make it possible to calculate the specific time intervals of reactor operation: approximately 30 minutes of criticality followed by 2 hours and 30 minutes of cooling down (exponentially decreasing residual 2947: 1333:. Therefore, increasing oxygen levels during the aging of the Earth may have allowed uranium to be dissolved and transported with groundwater to places where a high enough concentration could accumulate to form rich uranium ore bodies. Without the new aerobic environment available on Earth at the time, these concentrations probably could not have taken place. 1303:
The Oklo uranium ore deposits are the only known sites in which natural nuclear reactors existed. Other rich uranium ore bodies would also have had sufficient uranium to support nuclear reactions at that time, but the combination of uranium, water, and physical conditions needed to support the chain
567:
is exactly what happens in a nuclear reactor. A possible explanation was that the uranium ore had operated as a natural fission reactor in the distant geological past. Other observations led to the same conclusion, and on 25 September 1972 the CEA announced their finding that self-sustaining nuclear
333:
isotope. Normally the concentration is 0.72% while these samples had only 0.60%, a significant difference (some 17% less U-235 was contained in the samples than expected). This discrepancy required explanation, as all civilian uranium handling facilities must meticulously account for all fissionable
1354:
and elevated temperatures to a few hundred degrees Celsius. Most of the non-volatile fission products and actinides have only moved centimeters in the veins during the last 2 billion years. Studies have suggested this as a useful natural analogue for nuclear waste disposal. The overall
1125:. After cooling of the mineral deposit, the water returned, and the reaction restarted, completing a full cycle every 3 hours. The fission reaction cycles continued for hundreds of thousands of years and ended when the ever-decreasing fissile materials, coupled with the build-up of 1390:-93), 198 kilograms (437 lb) of caesium-135 (since decayed to barium-135, but the real value is probably lower as its parent nuclide, xenon-135, is a strong neutron poison and will have absorbed neutrons before decaying to 1488:
Several studies have analysed the relative concentrations of radioactive isotopes left behind at Oklo, and most have concluded that nuclear reactions then were much the same as they are today, which implies that
1648:
Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.-L. (1996). "Natural fission reactors in the Franceville Basin, Gabon: a review of the conditions and results of a "critical event" in a geologic system".
1117:
took place, producing heat that caused the groundwater to boil away; without a moderator that could slow the neutrons, however, the reaction slowed or stopped. The reactor thus had a negative
1906:
Petrov, Yu. V.; Nazarov, A. I.; Onegin, M. S.; Sakhnovsky, E. G. (2006). "Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core".
1168:
and thus scientists were able to determine the neutronics of this reactor by calculations based on those isotope ratios almost two billion years after it stopped fissioning uranium.
2970: 1614: 379:
mined at Oklo showed anomalous results compared to those obtained for uranium from other mines. Further investigations into this uranium deposit discovered uranium ore with a
1821:
De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L. (1980). "The Oklo Natural Reactor: Cumulative Fission Yields and Retentivity of the Symmetric Mass Region Fission Products".
2101: 2765: 803:
by neutron capture. This excess must be corrected (see above) to obtain agreement between this corrected isotopic composition and that deduced from fission yields.
1156:
if not allowed to absorb neutrons. While caesium-135 is relatively long lived, all caesium-135 produced by the Oklo reactor has since decayed further to stable
194: 371: 259: 2160: 1370:
is about 4.6 kilograms (10 lb). Over its lifetime the reactor produced roughly 100 megatonnes of TNT (420 PJ) in thermal energy, including
1205:
made up about 3.1% of the natural uranium, which is comparable to the amount used in some of today's reactors. (The remaining 96.9% was non-fissile
3011: 1307:
Another factor which probably contributed to the start of the Oklo natural nuclear reactor at 2 billion years, rather than earlier, was the
2094: 1374:. If one ignores fission of plutonium (which makes up roughly a third of fission events over the course of normal burnup in modern human-made 568:
chain reactions had occurred on Earth about 2 billion years ago. Later, other natural nuclear fission reactors were discovered in the region.
1805: 2406: 2323: 2399: 1959:
Davis, Edward D.; Hamdan, Leila (2015). "Reappraisal of the limit on the variation in α implied by the Oklo natural fission reactors".
2605: 1744:
Meshik, A. P.; et al. (2004). "Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon".
2054: 266:
Oklo is the only location where this phenomenon is known to have occurred, and consists of 16 sites with patches of centimeter-sized
3021: 2087: 1144:
is the strongest known neutron poison. However, it is not produced directly in appreciable amounts but rather as a decay product of
1435:
might have changed over the past 2 billion years. That is because α influences the rate of various nuclear reactions. For example,
713:
content, we can subtract the natural neodymium and gain access to the isotopic composition of neodymium produced by the fission of
397:
concentration as low as 0.44% (almost 40% below the normal value). Subsequent examination of isotopes of fission products such as
2940: 2915: 2780: 2858: 2692: 2530: 2294: 1857: 1382:
amount to roughly 129 kilograms (284 lb) of technetium-99 (since decayed to ruthenium-99), 108 kilograms (238 lb) of
538:
years being almost two orders of magnitude shorter than the time elapsed since the reactor operated, it has decayed to roughly
530:
must have also been present in higher than usual ratios during the time the reactor was operating, but due to its half life of
290:
of thermal power during that time. During that era, life on Earth consisted of little more than aquatic single-cell organisms.
2059: 2016: 2848: 2697: 2155: 2622: 2455: 299: 2055:
The natural nuclear reactor at Oklo: A comparison with modern nuclear reactors, Radiation Information Network, April 2005
2702: 2411: 2165: 1858:"2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)" 659:
The neodymium found at Oklo has a different isotopic composition to that of natural neodymium: the latter contains 27%
2996: 2960: 2922: 2760: 2587: 2525: 2350: 2254: 2140: 1336:
It is estimated that nuclear reactions in the uranium in centimeter- to meter-sized veins consumed about five tons of
1329:
was at least 3% or higher at all times prior to reactor startup. Uranium is soluble in water only in the presence of
899:
concentration than otherwise naturally occurring (27–30% vs. 12.7%). This anomaly could be explained by the decay of
187: 3026: 2808: 2487: 1502: 180: 2460: 2991: 2785: 2394: 2177: 89: 72: 3006: 3001: 2950: 2875: 2775: 2687: 94: 375:(CEA) began an investigation. A series of measurements of the relative abundances of the two most significant 2654: 1292:
in natural uranium is only 0.72%. A natural nuclear reactor is therefore no longer possible on Earth without
2905: 2880: 2494: 2271: 1746: 1429: 1308: 2770: 1683:
Davis, E. D.; Gould, C. R.; Sharapov, E. I. (2014). "Oklo reactors and implications for nuclear science".
1114: 219: 2800: 2755: 2217: 2145: 1797: 1379: 151: 146: 546:
its original value and thus basically nothing and below any abilities of current equipment to detect.
342:
is why people mine uranium, a significant amount "going missing" was also of direct economic concern.
2750: 2735: 2028: 1978: 1925: 1869: 1830: 1755: 1702: 1657: 1615:"Nature's Nuclear Reactors: The 2-Billion-Year-Old Natural Fission Reactors in Gabon, Western Africa" 1579: 1540: 1105:
The natural nuclear reactor at Oklo formed when a uranium-rich mineral deposit became inundated with
307: 695:
is not produced by fission; the ore contains both fission-produced and natural neodymium. From this
2910: 2885: 2670: 2264: 2132: 1375: 1122: 439: 424: 376: 156: 118: 67: 2790: 2627: 2554: 2365: 1994: 1968: 1941: 1915: 1726: 1692: 406: 234:, where self-sustaining nuclear reactions have occurred in the past, are verified by analysis of 937:. In the bar chart, the normal natural isotope signature of ruthenium is compared with that for 2069: 1175:
Change of content of Uranium-235 in natural uranium; the content was 3.65% 2 billion years ago.
811: 628: 2122: 1801: 1771: 1718: 1595: 1567: 1171: 1165: 1110: 1035: 1008: 852: 443: 303: 127: 41: 963:
with thermal neutrons. The fission ruthenium has a different isotope signature. The level of
519:
concentration present at the time the reactor was active would have long since decayed away.
3016: 2036: 1986: 1933: 1877: 1838: 1834: 1789: 1763: 1710: 1665: 1587: 1548: 1507: 1118: 420: 339: 283: 246: 2610: 2450: 2389: 2868: 2828: 2355: 2282: 2111: 2073: 1161: 1068: 942: 938: 490: 271: 242: 223: 215: 161: 2360: 2065:
NASA Astronomy Picture of the Day: NASA, Oklo, Fossile Reactor, Zone 15 (16 October 2002)
2032: 1982: 1929: 1873: 1759: 1706: 1661: 1583: 1544: 1034:. On the timescale of when the reactors were in operation, very little (about 0.17  2843: 2823: 2818: 2813: 2563: 2470: 2439: 2421: 1311:. Uranium is naturally present in the rocks of the earth, and the abundance of fissile 1149: 1126: 982: 335: 166: 1881: 1669: 1591: 49: 2985: 2299: 1998: 1945: 1842: 1730: 1409: 1180: 901: 1179:
A key factor that made the reaction possible was that, at the time the reactor went
1132:
Fission of uranium normally produces five known isotopes of the fission-product gas
419:
did not deviate significantly in its concentration from other natural samples. Both
17: 2574: 2079: 1531:
Kuroda, P. K. (1956). "On the Nuclear Physical Stability of the Uranium Minerals".
1437: 1413: 1383: 1094: 505: 286:, and continued for a few hundred thousand years, probably averaging less than 100 1767: 345: 2632: 2222: 2015:
Bentridi, S.E.; Gall, B.; Gauthier-Lafaye, F.; Seghour, A.; Medjadi, D. (2011).
1417: 1356: 1293: 1153: 1106: 508:
induced (n,2n) reactions in nuclear reactors. In Oklo any possible deviation of
315: 267: 227: 62: 2040: 1990: 1937: 873:
in more than trace quantities over the time since the reactors stopped working.
1894: 1714: 1157: 1145: 1137: 1020: 986: 279: 1722: 2343: 2333: 1253: 1141: 878: 402: 398: 99: 2838: 2064: 1775: 1599: 815:
Isotope signatures of natural ruthenium and fission product ruthenium from
632:
Isotope signatures of natural neodymium and fission product neodymium from
349:
Geological situation in Gabon leading to natural nuclear fission reactors
2863: 2712: 2707: 2647: 2316: 2244: 2227: 2212: 2187: 1478: 1371: 1297: 2853: 2833: 2232: 2207: 1920: 1512: 1387: 1184: 405:
also showed anomalies, as described in more detail below. However, the
275: 235: 212: 1552: 1416:(long since decayed to zirconium), and 185 kilograms (408 lb) of 1121:
of reactivity, something employed as a safety mechanism in human-made
2642: 2637: 2617: 2597: 2582: 2465: 2202: 2182: 2150: 1330: 313:
samples from the Oklo mine showed a discrepancy in the amount of the
2019:[Inception and evolution of Oklo natural nuclear reactors]. 1895:
New Scientist: Oklo Reactor and fine-structure value. June 30, 2004.
1481:
isotopes in samples from Oklo can be used to calculate the value of
1093:(quickly followed by beta decay) can only have occurred during high 2192: 1973: 27:
Naturally occurring uranium self-sustaining nuclear chain reactions
2679: 2535: 2338: 2328: 1697: 1170: 1133: 810: 627: 344: 254: 238: 1428:
The natural reactor of Oklo has been used to check if the atomic
334:
isotopes to ensure that none are diverted to the construction of
249:
of those fission products). This was first discovered in 1972 in
2540: 2429: 2239: 2197: 1473:, and since the rate of neutron capture depends on the value of 287: 250: 2083: 981:
in the fission product mixture is low because fission produces
2513: 2377: 263:(CEA) under conditions very similar to Kuroda's predictions. 274:
reactions are thought to have taken place approximately 1.7
48: 1412:(since decayed to silver), 86 kilograms (190 lb) of 1274:, and thus decays more rapidly, the current abundance of 1097:
and thus ceased when the fission chain reaction stopped.
1643: 1641: 1639: 1637: 1635: 1007:
would only be produced in appreciable quantities by
2898: 2799: 2729: 2678: 2669: 2596: 2562: 2553: 2512: 2505: 2485: 2438: 2420: 2376: 2281: 2263: 2131: 2017:"Génèse et évolution des réacteurs naturels d'Oklo" 1309:
increasing oxygen content in the Earth's atmosphere
877:Similar investigations into the isotopic ratios of 833:which had been subjected to thermal neutrons. The 1113:for the neutrons produced by nuclear fission. A 677:, while that of Oklo contains less than 6%. The 438:concentrations significantly different from the 1424:Relation to the atomic fine-structure constant 1152:). Xenon-135 itself is unstable and decays to 2766:Small sealed transportable autonomous (SSTAR) 2095: 1408:in some cases), 28 kilograms (62 lb) of 650:which had been subjected to thermal neutrons. 188: 8: 1568:"The Workings of an Ancient Nuclear Reactor" 1129:, no longer could sustain a chain reaction. 222:occur. The conditions under which a natural 2946: 2743: 2675: 2559: 2509: 2502: 2278: 2102: 2088: 2080: 195: 181: 29: 1972: 1919: 1696: 1685:International Journal of Modern Physics E 1164:in xenon-135 decays extremely slowly via 570: 1523: 1160:. Meanwhile, xenon-136, the product of 39: 2693:Liquid-fluoride thorium reactor (LFTR) 1056:will have occurred. Other pathways of 226:could exist were predicted in 1956 by 2698:Molten-Salt Reactor Experiment (MSRE) 941:ruthenium which is the result of the 489:and due to it being both consumed by 294:Discovery of the Oklo fossil reactors 7: 2703:Integral Molten Salt Reactor (IMSR) 1823:Earth and Planetary Science Letters 1011:of the very long-lived (half life 624:Fission product isotope signatures 25: 1592:10.1038/scientificamerican1105-82 1359:from the fission of five tons of 372:Commissariat à l'énergie atomique 300:Tricastin uranium enrichment site 260:Commissariat à l'énergie atomique 2966: 2965: 2956: 2955: 2945: 2936: 2935: 2786:Fast Breeder Test Reactor (FBTR) 1613:Mervin, Evelyn (July 13, 2011). 1420:(long since decayed to barium). 1183:1.7 billion years ago, the 302:at Pierrelatte, France, routine 230:. The remnants of an extinct or 1650:Geochimica et Cosmochimica Acta 1566:Meshik, A. P. (November 2005). 855:) has not had time to decay to 209:natural nuclear fission reactor 3012:Radioactive waste repositories 2776:Energy Multiplier Module (EM2) 1140:) to complete a 3-hour cycle. 232:fossil nuclear fission reactor 1: 1882:10.1016/S1631-0705(02)01351-8 1768:10.1103/PhysRevLett.93.182302 1670:10.1016/S0016-7037(96)00245-1 1455:captures a neutron to become 478:being enriched together with 2576:Uranium Naturel Graphite Gaz 1856:Gauthier-Lafaye, F. (2002). 1843:10.1016/0012-821X(80)90135-1 1619:blogs.scientificamerican.com 881:at Oklo found a much higher 2923:Aircraft Reactor Experiment 1533:Journal of Chemical Physics 257:by researchers from French 3043: 2761:Liquid-metal-cooled (LMFR) 2041:10.1016/j.crte.2011.09.008 1991:10.1103/physrevc.92.014319 1938:10.1103/PHYSREVC.74.064610 1503:Deep geological repository 1485:from 2 billion years ago. 152:Shunga-Francevillian event 2931: 2886:Stable Salt Reactor (SSR) 2781:Reduced-moderation (RMWR) 2746: 2588:Advanced gas-cooled (AGR) 2118: 2021:Comptes Rendus Geoscience 1794:Chemistry of the Elements 1792:; Earnshaw, Alan (1997). 1715:10.1142/S0218301314300070 1539:(4): 781–782, 1295–1296. 851:(an extremely long-lived 767:lead to the formation of 270:. There, self-sustaining 95:Francevillian A Formation 90:Francevillian B Formation 3022:Nuclear reactors by type 2951:List of nuclear reactors 2791:Dual fluid reactor (DFR) 2407:Steam-generating (SGHWR) 2941:Nuclear fusion reactors 2906:Organic nuclear reactor 2112:nuclear fission reactor 1862:Comptes Rendus Physique 1835:1980E&PSL..50..238D 1747:Physical Review Letters 1578:(5): 82–86, 88, 90–91. 1477:, the ratio of the two 1430:fine-structure constant 1109:, which could act as a 220:nuclear chain reactions 1380:fission product yields 1176: 874: 651: 366: 278:years ago, during the 241:of uranium and of the 218:where self-sustaining 84:Geology and localities 53: 1798:Butterworth-Heinemann 1790:Greenwood, Norman N. 1174: 983:neutron rich isotopes 814: 631: 353:Nuclear reactor zones 348: 338:. Furthermore, since 147:Great Oxidation Event 141:Evolutionary concepts 52: 2771:Traveling-wave (TWR) 2255:Supercritical (SCWR) 2070:הכור הגרעיני של הטבע 2060:Oklo Fossil Reactors 1376:light water reactors 1123:light water reactors 298:In May 1972, at the 18:Oklo Fossil Reactors 2141:Aqueous homogeneous 2033:2011CRGeo.343..738B 1983:2015PhRvC..92a4319D 1930:2006PhRvC..74f4610P 1874:2002CRPhy...3..839G 1760:2004PhRvL..93r2302M 1707:2014IJMPE..2330007D 1662:1996GeCoA..60.4831G 1584:2005SciAm.293e..82M 1572:Scientific American 1545:1956JChPh..25..781K 1223:and roughly 55 ppm 985:which subsequently 853:double beta emitter 731:. The two isotopes 572: 440:secular equilibrium 425:reprocessed uranium 377:isotopes of uranium 157:Huronian glaciation 119:Francevillian biota 42:Francevillian basin 34:Part of a series on 2997:Geography of Gabon 2961:Nuclear technology 2027:(11–12): 738–748. 1691:(4): 1430007–236. 1493:was the same too. 1386:(since decayed to 1177: 875: 652: 571: 493:and produced from 427:will usually have 407:trace radioisotope 367: 54: 3027:Nuclear chemistry 2979: 2978: 2971:Nuclear accidents 2894: 2893: 2725: 2724: 2721: 2720: 2665: 2664: 2549: 2548: 2481: 2480: 1961:Physical Review C 1908:Physical Review C 1807:978-0-08-037941-8 1656:(23): 4831–4852. 1553:10.1063/1.1743058 1166:double beta decay 1009:double beta decay 621: 620: 467:. This is due to 359:Uranium ore layer 304:mass spectrometry 247:daughter nuclides 205: 204: 132: 16:(Redirected from 3034: 2992:Nuclear reactors 2969: 2968: 2959: 2958: 2949: 2948: 2939: 2938: 2881:Helium gas (GFR) 2744: 2739: 2676: 2560: 2510: 2503: 2498: 2497: 2279: 2275: 2274: 2104: 2097: 2090: 2081: 2044: 2003: 2002: 1976: 1956: 1950: 1949: 1923: 1903: 1897: 1892: 1886: 1885: 1868:(7–8): 839–849. 1853: 1847: 1846: 1818: 1812: 1811: 1800:. p. 1257. 1796:(2nd ed.). 1786: 1780: 1779: 1741: 1735: 1734: 1700: 1680: 1674: 1673: 1645: 1630: 1629: 1627: 1625: 1610: 1604: 1603: 1563: 1557: 1556: 1528: 1508:Geology of Gabon 1472: 1471: 1470: 1463: 1462: 1454: 1452: 1451: 1444: 1443: 1407: 1406: 1405: 1398: 1397: 1369: 1367: 1366: 1353: 1352: 1351: 1344: 1343: 1328: 1327: 1326: 1319: 1318: 1291: 1290: 1289: 1282: 1281: 1273: 1272: 1271: 1264: 1263: 1251: 1250: 1249: 1242: 1241: 1233: 1231: 1230: 1222: 1221: 1220: 1213: 1212: 1204: 1203: 1202: 1195: 1194: 1119:void coefficient 1092: 1090: 1089: 1081: 1079: 1078: 1067:production like 1066: 1064: 1063: 1055: 1054: 1053: 1046: 1045: 1033: 1031: 1030: 1018: 1016: 1006: 1005: 1004: 997: 996: 980: 979: 978: 971: 970: 962: 961: 960: 953: 952: 936: 935: 934: 927: 926: 918: 916: 915: 908: 907: 898: 897: 896: 889: 888: 872: 871: 870: 863: 862: 850: 849: 848: 841: 840: 832: 831: 830: 823: 822: 802: 801: 800: 793: 792: 784: 783: 782: 775: 774: 766: 765: 764: 757: 756: 748: 747: 746: 739: 738: 730: 729: 728: 721: 720: 712: 711: 710: 703: 702: 694: 693: 692: 685: 684: 676: 675: 674: 667: 666: 649: 648: 647: 640: 639: 573: 566: 565: 564: 557: 556: 545: 543: 537: 535: 529: 527: 526: 518: 516: 515: 503: 501: 500: 488: 486: 485: 477: 475: 474: 466: 464: 463: 455: 453: 452: 437: 435: 434: 421:depleted uranium 418: 416: 415: 396: 395: 394: 387: 386: 369:Thus the French 340:fissile material 332: 330: 329: 322: 321: 284:Paleoproterozoic 245:(and the stable 243:fission products 197: 190: 183: 124: 30: 21: 3042: 3041: 3037: 3036: 3035: 3033: 3032: 3031: 3007:Nuclear fission 3002:Nuclear physics 2982: 2981: 2980: 2975: 2927: 2890: 2795: 2740: 2733: 2732: 2717: 2661: 2592: 2567: 2545: 2517: 2499: 2492: 2491: 2490: 2477: 2443: 2434: 2416: 2381: 2372: 2286: 2269: 2268: 2267: 2259: 2173:Natural fission 2127: 2126: 2114: 2108: 2074:Hebrew language 2051: 2014: 2011: 2006: 1958: 1957: 1953: 1905: 1904: 1900: 1893: 1889: 1855: 1854: 1850: 1820: 1819: 1815: 1808: 1788: 1787: 1783: 1743: 1742: 1738: 1682: 1681: 1677: 1647: 1646: 1633: 1623: 1621: 1612: 1611: 1607: 1565: 1564: 1560: 1530: 1529: 1525: 1521: 1499: 1469: 1467: 1466: 1465: 1461: 1459: 1458: 1457: 1456: 1450: 1448: 1447: 1446: 1442: 1440: 1439: 1438: 1436: 1426: 1404: 1402: 1401: 1400: 1396: 1394: 1393: 1392: 1391: 1365: 1363: 1362: 1361: 1360: 1350: 1348: 1347: 1346: 1342: 1340: 1339: 1338: 1337: 1325: 1323: 1322: 1321: 1317: 1315: 1314: 1313: 1312: 1288: 1286: 1285: 1284: 1280: 1278: 1277: 1276: 1275: 1270: 1268: 1267: 1266: 1262: 1260: 1259: 1258: 1257: 1248: 1246: 1245: 1244: 1240: 1238: 1237: 1236: 1235: 1229: 1227: 1226: 1225: 1224: 1219: 1217: 1216: 1215: 1211: 1209: 1208: 1207: 1206: 1201: 1199: 1198: 1197: 1193: 1191: 1190: 1189: 1188: 1162:neutron capture 1150:parent nuclides 1148:(or one of its 1127:neutron poisons 1103: 1088: 1086: 1085: 1084: 1083: 1077: 1075: 1074: 1073: 1072: 1069:neutron capture 1062: 1060: 1059: 1058: 1057: 1052: 1050: 1049: 1048: 1044: 1042: 1041: 1040: 1039: 1029: 1027: 1026: 1025: 1024: 1014: 1012: 1003: 1001: 1000: 999: 995: 993: 992: 991: 990: 977: 975: 974: 973: 969: 967: 966: 965: 964: 959: 957: 956: 955: 951: 949: 948: 947: 946: 939:fission product 933: 931: 930: 929: 925: 923: 922: 921: 920: 914: 912: 911: 910: 906: 904: 903: 902: 900: 895: 893: 892: 891: 887: 885: 884: 883: 882: 869: 867: 866: 865: 861: 859: 858: 857: 856: 847: 845: 844: 843: 839: 837: 836: 835: 834: 829: 827: 826: 825: 821: 819: 818: 817: 816: 809: 799: 797: 796: 795: 791: 789: 788: 787: 786: 781: 779: 778: 777: 773: 771: 770: 769: 768: 763: 761: 760: 759: 755: 753: 752: 751: 750: 745: 743: 742: 741: 737: 735: 734: 733: 732: 727: 725: 724: 723: 719: 717: 716: 715: 714: 709: 707: 706: 705: 701: 699: 698: 697: 696: 691: 689: 688: 687: 683: 681: 680: 679: 678: 673: 671: 670: 669: 665: 663: 662: 661: 660: 657: 646: 644: 643: 642: 638: 636: 635: 634: 633: 626: 563: 561: 560: 559: 555: 553: 552: 551: 550: 541: 539: 533: 531: 525: 523: 522: 521: 520: 514: 512: 511: 510: 509: 499: 497: 496: 495: 494: 491:neutron capture 484: 482: 481: 480: 479: 473: 471: 470: 469: 468: 462: 460: 459: 458: 457: 451: 449: 448: 447: 446: 433: 431: 430: 429: 428: 414: 412: 411: 410: 409: 393: 391: 390: 389: 385: 383: 382: 381: 380: 365: 336:nuclear weapons 328: 326: 325: 324: 320: 318: 317: 316: 314: 311: 296: 272:nuclear fission 224:nuclear reactor 201: 172: 171: 162:Lomagundi event 142: 134: 133: 113: 105: 104: 85: 77: 28: 23: 22: 15: 12: 11: 5: 3040: 3038: 3030: 3029: 3024: 3019: 3014: 3009: 3004: 2999: 2994: 2984: 2983: 2977: 2976: 2974: 2973: 2963: 2953: 2943: 2932: 2929: 2928: 2926: 2925: 2920: 2919: 2918: 2913: 2902: 2900: 2896: 2895: 2892: 2891: 2889: 2888: 2883: 2878: 2873: 2872: 2871: 2866: 2861: 2856: 2851: 2846: 2841: 2836: 2831: 2826: 2821: 2816: 2805: 2803: 2797: 2796: 2794: 2793: 2788: 2783: 2778: 2773: 2768: 2763: 2758: 2756:Integral (IFR) 2753: 2747: 2741: 2730: 2727: 2726: 2723: 2722: 2719: 2718: 2716: 2715: 2710: 2705: 2700: 2695: 2690: 2684: 2682: 2673: 2667: 2666: 2663: 2662: 2660: 2659: 2658: 2657: 2652: 2651: 2650: 2645: 2640: 2635: 2620: 2615: 2614: 2613: 2602: 2600: 2594: 2593: 2591: 2590: 2585: 2580: 2571: 2569: 2565: 2557: 2551: 2550: 2547: 2546: 2544: 2543: 2538: 2533: 2528: 2522: 2520: 2515: 2507: 2500: 2486: 2483: 2482: 2479: 2478: 2476: 2475: 2474: 2473: 2468: 2463: 2458: 2447: 2445: 2441: 2436: 2435: 2433: 2432: 2426: 2424: 2418: 2417: 2415: 2414: 2409: 2404: 2403: 2402: 2397: 2386: 2384: 2379: 2374: 2373: 2371: 2370: 2369: 2368: 2363: 2358: 2353: 2348: 2347: 2346: 2341: 2336: 2326: 2321: 2320: 2319: 2314: 2311: 2308: 2305: 2291: 2289: 2284: 2276: 2261: 2260: 2258: 2257: 2252: 2251: 2250: 2247: 2242: 2237: 2236: 2235: 2230: 2220: 2215: 2210: 2205: 2200: 2195: 2190: 2185: 2175: 2170: 2169: 2168: 2163: 2158: 2153: 2143: 2137: 2135: 2129: 2128: 2120: 2119: 2116: 2115: 2109: 2107: 2106: 2099: 2092: 2084: 2078: 2077: 2067: 2062: 2057: 2050: 2049:External links 2047: 2046: 2045: 2010: 2007: 2005: 2004: 1951: 1921:hep-ph/0506186 1898: 1887: 1848: 1829:(1): 238–246. 1813: 1806: 1781: 1754:(18): 182302. 1736: 1675: 1631: 1605: 1558: 1522: 1520: 1517: 1516: 1515: 1510: 1505: 1498: 1495: 1468: 1460: 1449: 1441: 1425: 1422: 1403: 1395: 1364: 1349: 1341: 1324: 1316: 1287: 1279: 1269: 1261: 1252:has a shorter 1247: 1239: 1228: 1218: 1210: 1200: 1192: 1115:chain reaction 1102: 1099: 1087: 1076: 1061: 1051: 1043: 1028: 1002: 994: 976: 968: 958: 950: 932: 924: 913: 905: 894: 886: 868: 860: 846: 838: 828: 820: 808: 805: 798: 790: 780: 772: 762: 754: 744: 736: 726: 718: 708: 700: 690: 682: 672: 664: 656: 653: 645: 637: 625: 622: 619: 618: 615: 612: 609: 606: 603: 600: 596: 595: 592: 589: 586: 583: 580: 577: 562: 554: 524: 513: 498: 483: 472: 461: 450: 432: 413: 392: 384: 364: 363: 360: 357: 354: 350: 327: 319: 309: 295: 292: 282:period of the 203: 202: 200: 199: 192: 185: 177: 174: 173: 170: 169: 167:Origin of Life 164: 159: 154: 149: 143: 140: 139: 136: 135: 123: 122: 114: 111: 110: 107: 106: 103: 102: 97: 92: 86: 83: 82: 79: 78: 76: 75: 70: 65: 59: 56: 55: 45: 44: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3039: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2989: 2987: 2972: 2964: 2962: 2954: 2952: 2944: 2942: 2934: 2933: 2930: 2924: 2921: 2917: 2914: 2912: 2909: 2908: 2907: 2904: 2903: 2901: 2897: 2887: 2884: 2882: 2879: 2877: 2874: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2812: 2811: 2810: 2807: 2806: 2804: 2802: 2801:Generation IV 2798: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2751:Breeder (FBR) 2749: 2748: 2745: 2742: 2737: 2728: 2714: 2711: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2685: 2683: 2681: 2677: 2674: 2672: 2668: 2656: 2653: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2630: 2629: 2626: 2625: 2624: 2621: 2619: 2616: 2612: 2609: 2608: 2607: 2604: 2603: 2601: 2599: 2595: 2589: 2586: 2584: 2581: 2579: 2577: 2573: 2572: 2570: 2568: 2561: 2558: 2556: 2552: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2523: 2521: 2519: 2511: 2508: 2504: 2501: 2496: 2489: 2484: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2453: 2452: 2449: 2448: 2446: 2444: 2437: 2431: 2428: 2427: 2425: 2423: 2419: 2413: 2410: 2408: 2405: 2401: 2398: 2396: 2393: 2392: 2391: 2388: 2387: 2385: 2383: 2375: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2345: 2342: 2340: 2337: 2335: 2332: 2331: 2330: 2327: 2325: 2322: 2318: 2315: 2312: 2309: 2306: 2303: 2302: 2301: 2298: 2297: 2296: 2293: 2292: 2290: 2288: 2280: 2277: 2273: 2266: 2262: 2256: 2253: 2248: 2246: 2243: 2241: 2238: 2234: 2231: 2229: 2226: 2225: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2180: 2179: 2176: 2174: 2171: 2167: 2164: 2162: 2159: 2157: 2154: 2152: 2149: 2148: 2147: 2144: 2142: 2139: 2138: 2136: 2134: 2130: 2125: 2124: 2117: 2113: 2105: 2100: 2098: 2093: 2091: 2086: 2085: 2082: 2075: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2053: 2052: 2048: 2042: 2038: 2034: 2030: 2026: 2023:(in French). 2022: 2018: 2013: 2012: 2008: 2000: 1996: 1992: 1988: 1984: 1980: 1975: 1970: 1967:(1): 014319. 1966: 1962: 1955: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1922: 1917: 1914:(6): 064610. 1913: 1909: 1902: 1899: 1896: 1891: 1888: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1852: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1817: 1814: 1809: 1803: 1799: 1795: 1791: 1785: 1782: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1748: 1740: 1737: 1732: 1728: 1724: 1720: 1716: 1712: 1708: 1704: 1699: 1694: 1690: 1686: 1679: 1676: 1671: 1667: 1663: 1659: 1655: 1651: 1644: 1642: 1640: 1638: 1636: 1632: 1620: 1616: 1609: 1606: 1601: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1562: 1559: 1554: 1550: 1546: 1542: 1538: 1534: 1527: 1524: 1518: 1514: 1511: 1509: 1506: 1504: 1501: 1500: 1496: 1494: 1492: 1486: 1484: 1480: 1476: 1453: 1434: 1431: 1423: 1421: 1419: 1415: 1411: 1410:palladium-107 1389: 1385: 1381: 1377: 1373: 1358: 1334: 1332: 1310: 1305: 1301: 1299: 1295: 1255: 1186: 1182: 1173: 1169: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1130: 1128: 1124: 1120: 1116: 1112: 1108: 1100: 1098: 1096: 1070: 1037: 1022: 1010: 988: 984: 944: 940: 917: 880: 854: 813: 806: 804: 654: 630: 623: 616: 613: 610: 607: 604: 601: 598: 597: 593: 590: 587: 584: 581: 578: 575: 574: 569: 549:This loss in 547: 507: 492: 445: 441: 426: 422: 408: 404: 400: 378: 374: 373: 361: 358: 355: 352: 351: 347: 343: 341: 337: 331: 312: 305: 301: 293: 291: 289: 285: 281: 277: 273: 269: 264: 262: 261: 256: 252: 248: 244: 240: 237: 233: 229: 225: 221: 217: 214: 210: 198: 193: 191: 186: 184: 179: 178: 176: 175: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 144: 138: 137: 130: 129: 121: 120: 116: 115: 109: 108: 101: 98: 96: 93: 91: 88: 87: 81: 80: 74: 71: 69: 66: 64: 61: 60: 58: 57: 51: 47: 46: 43: 38: 35: 32: 31: 19: 2809:Sodium (SFR) 2736:fast-neutron 2575: 2172: 2121: 2024: 2020: 1964: 1960: 1954: 1911: 1907: 1901: 1890: 1865: 1861: 1851: 1826: 1822: 1816: 1793: 1784: 1751: 1745: 1739: 1688: 1684: 1678: 1653: 1649: 1622:. Retrieved 1618: 1608: 1575: 1571: 1561: 1536: 1532: 1526: 1490: 1487: 1482: 1474: 1432: 1427: 1414:strontium-90 1384:zirconium-93 1335: 1306: 1302: 1178: 1131: 1104: 1095:neutron flux 876: 658: 548: 506:fast neutron 456:relative to 370: 368: 297: 265: 258: 231: 208: 206: 126: 117: 63:Preservation 33: 2844:Superphénix 2671:Molten-salt 2623:VHTR (HTGR) 2400:HW BLWR 250 2366:R4 Marviken 2295:Pressurized 2265:Heavy water 2249:many others 2178:Pressurized 2133:Light water 1418:caesium-137 1357:mass defect 1294:heavy water 1234:.) Because 1154:caesium-135 1107:groundwater 1038:) decay to 228:Paul Kuroda 2986:Categories 2628:PBR (PBMR) 1974:1503.06011 1519:References 1158:barium-135 1146:iodine-135 1138:decay heat 1021:molybdenum 987:beta decay 306:comparing 280:Statherian 268:ore layers 125:(Also see 2680:Fluorides 2344:IPHWR-700 2339:IPHWR-540 2334:IPHWR-220 2123:Moderator 2110:Types of 1999:119227720 1946:118272311 1731:118394767 1723:0218-3013 1698:1404.4948 1372:neutrinos 1254:half-life 1142:Xenon-135 1111:moderator 1101:Mechanism 879:ruthenium 807:Ruthenium 655:Neodymium 403:ruthenium 399:neodymium 356:Sandstone 100:Oklo Mine 2713:TMSR-LF1 2708:TMSR-500 2688:Fuji MSR 2648:THTR-300 2488:Graphite 2351:PHWR KWU 2317:ACR-1000 2245:IPWR-900 2228:ACPR1000 2223:HPR-1000 2213:CPR-1000 2188:APR-1400 1776:15525157 1600:16318030 1497:See also 1479:samarium 1378:), then 1298:graphite 1187:isotope 1181:critical 1023:isotope 128:Akouemma 3017:Uranium 2854:FBR-600 2834:CFR-600 2829:BN-1200 2495:coolant 2422:Organic 2307:CANDU 9 2304:CANDU 6 2272:coolant 2233:ACP1000 2208:CAP1400 2146:Boiling 2029:Bibcode 2009:Sources 1979:Bibcode 1926:Bibcode 1870:Bibcode 1831:Bibcode 1756:Bibcode 1703:Bibcode 1658:Bibcode 1624:July 7, 1580:Bibcode 1541:Bibcode 1513:Mounana 1388:niobium 1185:fissile 1019:years) 943:fission 362:Granite 276:billion 236:isotope 216:deposit 213:uranium 112:Fossils 73:History 2899:Others 2839:Phénix 2824:BN-800 2819:BN-600 2814:BN-350 2643:HTR-PM 2638:HTR-10 2618:UHTREX 2583:Magnox 2578:(UNGG) 2471:Lucens 2466:KS 150 2203:ATMEA1 2183:AP1000 2166:Kerena 1997:  1944:  1804:  1774:  1729:  1721:  1598:  1331:oxygen 442:of 55 239:ratios 2916:Piqua 2911:Arbus 2869:PRISM 2611:MHR-T 2606:GTMHR 2536:EGP-6 2531:AMB-X 2506:Water 2451:HWGCR 2390:HWLWR 2329:IPHWR 2300:CANDU 2161:ESBWR 1995:S2CID 1969:arXiv 1942:S2CID 1916:arXiv 1727:S2CID 1693:arXiv 1256:than 1134:xenon 617:1.06 614:0.98 611:1.01 608:1.00 605:1.00 602:0.99 532:2.348 255:Gabon 211:is a 68:Biota 2876:Lead 2859:CEFR 2849:PFBR 2731:None 2541:RBMK 2526:AM-1 2456:EL-4 2430:WR-1 2412:AHWR 2356:MZFR 2324:CVTR 2313:AFCR 2240:VVER 2198:APWR 2193:APR+ 2156:ABWR 2072:(in 1802:ISBN 1772:PMID 1719:ISSN 1626:2017 1596:PMID 989:and 785:and 749:and 599:C/M 594:150 591:148 588:146 585:145 582:144 579:143 423:and 401:and 251:Oklo 40:The 2864:PFR 2655:PMR 2633:AVR 2555:Gas 2493:by 2461:KKN 2395:ATR 2310:EC6 2270:by 2218:EPR 2151:BWR 2037:doi 2025:343 1987:doi 1934:doi 1878:doi 1839:doi 1764:doi 1711:doi 1666:doi 1588:doi 1576:293 1549:doi 1296:or 1082:or 1071:in 1036:ppb 1013:7.1 945:of 919:to 576:Nd 540:1.4 504:by 444:ppm 2988:: 2598:He 2564:CO 2440:CO 2361:R3 2035:. 1993:. 1985:. 1977:. 1965:92 1963:. 1940:. 1932:. 1924:. 1912:74 1910:. 1876:. 1864:. 1860:. 1837:. 1827:50 1825:. 1770:. 1762:. 1752:93 1750:. 1725:. 1717:. 1709:. 1701:. 1689:23 1687:. 1664:. 1654:60 1652:. 1634:^ 1617:. 1594:. 1586:. 1574:. 1570:. 1547:. 1537:25 1535:. 1464:Sm 1445:Sm 1399:Cs 1300:. 1091:Tc 1080:Ru 1065:Ru 1047:Ru 1032:Mo 1017:10 998:Ru 972:Ru 928:Ru 909:Tc 890:Ru 864:Ru 842:Mo 794:Nd 776:Nd 758:Nd 740:Nd 704:Nd 686:Nd 668:Nd 544:10 536:10 308:UF 288:kW 253:, 207:A 2738:) 2734:( 2566:2 2518:O 2516:2 2514:H 2442:2 2382:O 2380:2 2378:H 2287:O 2285:2 2283:D 2103:e 2096:t 2089:v 2076:) 2043:. 2039:: 2031:: 2001:. 1989:: 1981:: 1971:: 1948:. 1936:: 1928:: 1918:: 1884:. 1880:: 1872:: 1866:3 1845:. 1841:: 1833:: 1810:. 1778:. 1766:: 1758:: 1733:. 1713:: 1705:: 1695:: 1672:. 1668:: 1660:: 1628:. 1602:. 1590:: 1582:: 1555:. 1551:: 1543:: 1491:α 1483:α 1475:α 1433:α 1368:U 1345:U 1320:U 1283:U 1265:U 1243:U 1232:U 1214:U 1196:U 1015:× 954:U 824:U 722:U 641:U 558:U 542:× 534:× 528:U 517:U 502:U 487:U 476:U 465:U 454:U 436:U 417:U 388:U 323:U 310:6 196:e 189:t 182:v 131:) 20:)

Index

Oklo Fossil Reactors
Francevillian basin

Preservation
Biota
History
Francevillian B Formation
Francevillian A Formation
Oklo Mine
Francevillian biota
Akouemma
Great Oxidation Event
Shunga-Francevillian event
Huronian glaciation
Lomagundi event
Origin of Life
v
t
e
uranium
deposit
nuclear chain reactions
nuclear reactor
Paul Kuroda
isotope
ratios
fission products
daughter nuclides
Oklo
Gabon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.