Knowledge (XXG)

Oligonucleotide

Source πŸ“

319:
trafficking towards the place of action are still largely unclear. Moreover, small differences in ON structure/modification (vide supra) and difference in cell type leads to huge differences in uptake. It is believed that cell uptake occurs on different pathways after adsorption of ONs on the cell surface. Notably, studies show that most tissue culture cells readily take up ASOs (phosphorothiote linkage) in a non-productive way, meaning that no antisense effect is observed. In contrast to that conjugation of ASO with ligands recognised by G-coupled receptors leads to an increased productive uptake. Next to that classification (non-productive vs. productive), cell internalisation mostly proceeds in an energy-dependant way (receptor mediated endocytosis) but energy-independent passive diffusion (gymnosis) may not be ruled out. After passing the cell membrane, ON therapeutics are encapsulated in early
340:. These conjugates are an excellent example for obtaining an increased cell uptake paired with targeted delivery as the corresponding receptors are overexpressed on the target cells leading to a targeted therapeutic (compare antibody-drug conjugates which exploit overexpressed receptors on cancer cells). Another broadly used and heavily investigated entity for targeted delivery and increased cell uptake of oligonucleotides are 2215: 173:
chain. A less than 100% yield of each synthetic step and the occurrence of side reactions set practical limits of the efficiency of the process. In general, oligonucleotide sequences are usually short (13–25 nucleotides long). The maximum length of synthetic oligonucleotides hardly exceeds 200 nucleotide residues.
327:
containing degrading enzymes at low pH. To exert its therapeutic function, the ON needs to escape the endosome prior to its degradation. Currently there is no universal method to overcome the problems of delivery, cell uptake and endosomal escape, but there exist several approaches which are tailored
202:
identification of each nucleotide and the ability to easily follow reactions involving the phosphorothioate nucleotides, which is useful in oligonucleotide synthesis. PS backbone modifications to oligonucleotides protects them against unwanted degradation by enzymes. Modifying the nucleotide backbone
185:
Creating chemically stable short oligonucleotides was the earliest challenge in developing ASO therapies. Naturally occurring oligonucleotides are easily degraded by nucleases, an enzyme that cleaves nucleotides and is ample in every cell type. Short oligonucleotide sequences also have weak intrinsic
331:
A conjugation of ON therapeutics to an entity responsible for cell recognition/uptake not only increases the uptake (vide supra) but is also believed to decrease the complexity of the cell uptake as mainly one (ideally known) mechanism is then involved. This has been achieved with small molecule-ON
318:
Cell uptake/internalisation still represents the biggest hurdle towards successful oligonucleotide (ON) therapeutics. A straightforward uptake, like for most small-molecule drugs, is hindered by the polyanionic backbone and the molecular size of ONs. The exact mechanisms of uptake and intracellular
172:
or, to a lesser extent, of non-nucleosidic compounds. The oligonucleotide chain assembly proceeds in the 3' to 5' direction by following a routine procedure referred to as a "synthetic cycle". Completion of a single synthetic cycle results in the addition of one nucleotide residue to the growing
203:
is widely used because it can be achieved with relative ease and accuracy on most nucleotides. Fluorescent modifications on 5' and 3' end of oligonucleotides was reported to evaluate the oligonucleotides structures, dynamics and interactions with respect to environment.
293:
Neurodegenerative diseases that are a result of a single mutant protein are good targets for antisense oligonucleotide therapies because of their ability to target and modify very specific sequences of RNA with high selectivity. Many genetic diseases including
219:. They also decrease non specific protein binding, increasing the accuracy of targeting specific proteins. Two of the most commonly used modifications are 2'-O-methyl and the 2'-O-methoxyethyl. Fluorescent modifications on the nucleobase was also reported. 1355:
Prakash, Thazha P.; Graham, Mark J.; Yu, Jinghua; Carty, Rick; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Zhao, Chenguang; Aghajan, Mariam; Murray, Heather F.; Riney, Stan; Booten, Sheri L.; Murray, Susan F.; Gaus, Hans; Crosby, Jeff (July 2014).
364:
stationary phases. Those phases have been investigated for the separation of oligonucleotides. Ion-pair reverse-phase high-performance liquid chromatography is used to separate and analyse the oligonucleotides after automated synthesis.
146:(oligodeoxyribonucleotides), which can be modified at the backbone or on the 2' sugar position to achieve different pharmacological effects. These modifications give new properties to the oligonucleotides and make them a key element in 1091:
Kumar B, Khanna M, Kumar P, Sood V, Vyas R, Banerjea AC (May 2012). "Nucleic acid-mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site".
107:, "part"). For example, an oligonucleotide of six nucleotides (nt) is a hexamer, while one of 25 nt would usually be called a "25-mer". Oligonucleotides readily bind, in a sequence-specific manner, to their respective 459:
Yang J, Stolee JA, Jiang H, Xiao L, Kiesman WF, Antia FD, et al. (October 2018). "Solid-Phase Synthesis of Phosphorothioate Oligonucleotides Using Sulfurization Byproducts for in Situ Capping".
1048:
Kumar P, Kumar B, Rajput R, Saxena L, Banerjea AC, Khanna M (November 2013). "Cross-protective effect of antisense oligonucleotide developed against the common 3' NCR of influenza A virus genome".
1542:
Distler AM, Allison J (April 2001). "5-Methoxysalicylic acid and spermine: a new matrix for the matrix-assisted laser desorption/ionization mass spectrometry analysis of oligonucleotides".
1685:
Gong P, Harbers GM, Grainger DW (April 2006). "Multi-technique comparison of immobilized and hybridized oligonucleotide surface density on commercial amine-reactive microarray slides".
1593:
Shah S, Friedman SH (March 2008). "An ESI-MS method for characterization of native and modified oligonucleotides used for RNA interference and other biological applications".
401:
sequences. One subtype of DNA microarrays can be described as substrates (nylon, glass, etc.) to which oligonucleotides have been bound at high density. There are a number of
397:, oligonucleotide based microarrays have more controlled specificity over hybridization, and the ability to measure the presence and prevalence of alternatively spliced or 1528: 215:. Modifying the 2' position sugar increases the effectiveness of oligonucleotides by enhancing the target binding capabilities of oligonucleotides, specifically in 2231: 310:(ALS) have been linked to DNA alterations that result in incorrect RNA sequences and result in mistranslated proteins that have a toxic physiological effect. 604:
Weiss, B., ed. (1997). Antisense Oligodeoxynucleotides and Antisense RNA : Novel Pharmacological and Therapeutic Agents. Boca Raton, Florida: CRC Press
257:. RNase H is an enzyme that hydrolyzes RNA, and when used in an antisense oligonucleotide application results in 80-95% down-regulation of mRNA expression. 382: 556:"ASPsiRNA: A Resource of ASP-siRNAs Having Therapeutic Potential for Human Genetic Disorders and Algorithm for Prediction of Their Inhibitory Efficacy" 1810: 61:, these small fragments of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for 707:
Frazier KS (January 2015). "Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective".
198:(PS) analogs of nucleotides give oligonucleotides some beneficial properties. Key beneficial properties that PS backbones give nucleotides are 174: 1725:
Spingler B (January 2012). "Chapter 3. Metal-Ion-Promoted Conformational Changes of Oligonucleotides". In Sigel A, Sigel H, Sigel RK (eds.).
385:
mass spectrometry. ElectroSpray Ionization Mass Spectrometry (ESI-MS) is also a powerful tool to characterize the mass of oligonucleotides.
1358:"Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice" 438: 108: 341: 78: 1413:
Buszewski B, Kasturi P, Gilpin RK, Gangoda ME, Jaroniec M (August 1994). "Chromatographic and related studies of alkylamide phases".
1896: 1481:
Gilar, M.; Fountain, K. J.; Budman, Y.; Neue, U. D.; Yardley, K. R.; Rainville, P. D.; Russell Rj, 2nd; Gebler, J. C. (2002-06-07).
216: 132: 2183: 81:. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression (e.g. 2188: 128: 233:
Antisense oligonucleotides (ASO) are single strands of DNA or RNA that are complementary to a chosen sequence. In the case of
429:, the appearance in a population of the same gene in multiple forms because of mutations; can often be tested with ASO probes 2085: 1971: 307: 115:
or, less often, hybrids of a higher order. This basic property serves as a foundation for the use of oligonucleotides as
809:
Eckstein F (April 2000). "Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them?".
560: 423:, oligos with non-natural backbones, which do not activate RNase-H but can reduce gene expression or modify RNA splicing 2198: 2193: 2178: 1803: 112: 1483:"Ion-pair reversed-phase high-performance liquid chromatography analysis of oligonucleotides:: Retention prediction" 246: 159: 136: 66: 62: 58: 432: 1186:
Ming, Xin; Alam, Md Rowshon; Fisher, Michael; Yan, Yongjun; Chen, Xiaoyuan; Juliano, Rudolph L. (2010-06-15).
898:"Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels" 374: 295: 290:. The antisense oligonucleotides have also been used to inhibit influenza virus replication in cell lines. 2246: 2218: 1911: 1796: 1482: 426: 303: 299: 212: 119:
for detecting specific sequences of DNA or RNA. Examples of procedures that use oligonucleotides include
2095: 1939: 1522: 1188:"Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor" 333: 269: 238: 89: 1777: 2130: 2113: 1944: 1551: 909: 96:
residues that make up the entire molecule. The length of the oligonucleotide is usually denoted by "
2125: 2108: 1966: 1849: 1009:"Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach" 195: 116: 2019: 2014: 1889: 1750: 1618: 1575: 1430: 1337: 1117: 1073: 732: 653: 484: 85:), or are degradation intermediates derived from the breakdown of larger nucleic acid molecules. 504:"VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets" 357: 2103: 2065: 2058: 2009: 1961: 1738: 1702: 1667: 1610: 1567: 1510: 1502: 1395: 1377: 1329: 1287: 1269: 1225: 1207: 1168: 1109: 1065: 1030: 989: 937: 875: 826: 788: 724: 689: 645: 587: 533: 476: 393:
DNA microarrays are a useful analytical application of oligonucleotides. Compared to standard
228: 147: 74: 1929: 1730: 1694: 1657: 1649: 1602: 1559: 1494: 1461: 1422: 1385: 1369: 1321: 1277: 1259: 1215: 1199: 1158: 1148: 1101: 1057: 1020: 979: 971: 927: 917: 865: 857: 818: 778: 770: 716: 635: 627: 577: 569: 523: 515: 468: 2053: 2024: 1762: 398: 273: 165: 50: 46: 1135:
Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, et al. (August 2006).
1555: 1450:"Analysis of oligonucleotides by liquid chromatography with alkylamide stationary phase" 913: 640: 615: 249:. Antisense oligonucleotides can be used to target a specific, complementary (coding or 2145: 2048: 1865: 1390: 1357: 1282: 1247: 1220: 1163: 1136: 984: 959: 932: 897: 783: 758: 582: 528: 503: 441:, PPRHs, oligonucleotides that can bind either DNA or RNA and decrease gene expression. 402: 394: 361: 250: 120: 101: 70: 1662: 1637: 1563: 1498: 870: 845: 2240: 2080: 2070: 1951: 1906: 1884: 242: 234: 124: 1579: 1434: 1121: 1077: 736: 488: 211:
Another modification that is useful for medical applications of oligonucleotides is
2163: 1983: 1901: 1820: 1622: 1341: 657: 555: 199: 54: 2075: 1734: 265: 17: 677: 2135: 1844: 1839: 1834: 1264: 1105: 1061: 822: 774: 519: 420: 337: 287: 283: 261: 169: 143: 93: 1506: 1381: 1273: 1211: 922: 720: 616:"Antisense RNA gene therapy for studying and modulating biological processes" 323:
which are transported towards late endosomes which are ultimately fused with
177:
and other methods can be used to isolate products with the desired sequence.
164:
Oligonucleotides are chemically synthesized using building blocks, protected
1999: 1783: 1653: 1309: 1248:"Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules" 861: 759:"Antisense oligonucleotides: treating neurodegeneration at the level of RNA" 472: 1742: 1706: 1671: 1614: 1606: 1571: 1514: 1466: 1449: 1399: 1333: 1291: 1229: 1172: 1113: 1069: 1034: 1025: 1008: 993: 941: 830: 792: 728: 693: 649: 591: 537: 480: 975: 879: 631: 573: 2153: 2004: 1934: 1788: 1729:. Vol. 10. Springer Science & Business Media. pp. 103–118. 1373: 1203: 378: 324: 320: 82: 42: 1187: 253:) RNA. If binding takes place this hybrid can be degraded by the enzyme 2158: 1426: 414: 278: 254: 97: 1698: 1636:
RelΓ³gio A, Schwager C, Richter A, Ansorge W, ValcΓ‘rcel J (June 2002).
846:"Physicochemical properties of phosphorothioate oligodeoxynucleotides" 2173: 2168: 2118: 1325: 1153: 186:
binding affinities, which contributes to their degradation in vivo.
1976: 502:
Qureshi A, Thakur N, Monga I, Thakur A, Kumar M (1 January 2014).
1137:"Antisense oligonucleotide therapy for neurodegenerative disease" 1780:: a database of RNAi libraries and their target analysis results 1792: 1310:"Cellular uptake and trafficking of antisense oligonucleotides" 896:
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A (2020).
2038: 1956: 1921: 1876: 1859: 1784:
physorg.com | Genetic source of muscular dystrophy neutralized
276:
and gene function, was first developed by Janet Heasman using
38: 34: 844:
Stein CA, Subasinghe C, Shinozuka K, Cohen JS (April 1988).
678:"Antisense oligonucleotides: basic concepts and mechanisms" 417:, oligonucleotides with important biological applications 381:
can be used as a matrix for oligonucleotides analysis in
554:
Monga I, Qureshi A, Thakur N, Gupta AK, Kumar M (2017).
1638:"Optimization of oligonucleotide-based DNA microarrays" 1544:
Journal of the American Society for Mass Spectrometry
2232:
A Review on Commercial Oligonucleotide Drug Products
1448:
Buszewski B, Safaei Z, StudziΕ„ska S (January 2015).
960:"Molecular Mechanisms of Antisense Oligonucleotides" 2144: 2094: 2037: 1992: 1920: 1875: 1858: 1827: 264:antisense oligonucleotides for gene knockdowns in 245:strands by binding to them, in a process called 1246:Hawner, Manuel; Ducho, Christian (2020-12-16). 1727:Interplay between metal ions and nucleic acids 549: 547: 1804: 811:Antisense & Nucleic Acid Drug Development 8: 45:, that have a wide range of applications in 1527:: CS1 maint: numeric names: authors list ( 1872: 1811: 1797: 1789: 1007:Heasman J, Kofron M, Wylie C (June 2000). 435:, an ODN with immunostimulatory properties 88:Oligonucleotides are characterized by the 1661: 1465: 1389: 1281: 1263: 1219: 1162: 1152: 1024: 983: 931: 921: 869: 782: 639: 581: 527: 139:, and the synthesis of artificial genes. 282:. FDA-approved Morpholino drugs include 451: 328:to specific cells and their receptors. 268:, which is now a standard technique in 1758: 1748: 1520: 614:Weiss B, Davidkova G, Zhou LW (1999). 111:oligonucleotides, DNA, or RNA to form 1303: 1301: 1241: 1239: 1141:The Journal of Clinical Investigation 953: 951: 891: 889: 439:Polypurine reverse-Hoogsteen hairpins 57:. Commonly made in the laboratory by 7: 804: 802: 752: 750: 748: 746: 671: 669: 667: 620:Cellular and Molecular Life Sciences 217:antisense oligonucleotides therapies 332:conjugates for example bearing an 168:of natural or chemically modified 25: 1935:Micro 757:DeVos SL, Miller TM (July 2013). 142:Oligonucleotides are composed of 133:fluorescent in situ hybridization 2214: 2213: 461:The Journal of Organic Chemistry 1890:precursor, heterogenous nuclear 676:Dias N, Stein CA (March 2002). 403:applications of DNA microarrays 2020:Trans-acting small interfering 1984:Enhancer RNAs 1902:Transfer 59:solid-phase chemical synthesis 1: 1907:Ribosomal 1885:Messenger 1564:10.1016/S1044-0305(01)00212-4 1499:10.1016/S0021-9673(02)00306-0 682:Molecular Cancer Therapeutics 308:amyotrophic lateral sclerosis 272:and is used to study altered 561:G3: Genes, Genomes, Genetics 1735:10.1007/978-94-007-2172-2_3 1487:Journal of Chromatography A 336:which targets receptors of 2263: 2086:Multicopy single-stranded 1930:Interferential 405:within the life sciences. 226: 223:Antisense oligonucleotides 157: 27:Class of short biopolymers 2209: 2000:Guide 1265:10.3390/molecules25245963 1106:10.1007/s12033-011-9437-z 1062:10.1007/s12033-013-9670-8 964:Nucleic Acid Therapeutics 823:10.1089/oli.1.2000.10.117 775:10.1007/s13311-013-0194-5 160:oligonucleotide synthesis 67:polymerase chain reaction 63:artificial gene synthesis 1962:Small nuclear 958:Crooke ST (April 2017). 923:10.3389/fchem.2020.00112 721:10.1177/0192623314551840 433:CpG Oligodeoxynucleotide 207:Sugar ring modifications 2076:Genomic 1094:Molecular Biotechnology 1050:Molecular Biotechnology 520:10.1093/database/bau103 473:10.1021/acs.joc.8b01553 375:5-methoxysalicylic acid 144:2'-deoxyribonucleotides 2179:Artificial chromosomes 1967:Small nucleolar 1642:Nucleic Acids Research 1607:10.1038/nprot.2007.535 1467:10.1515/chem-2015-0141 1362:Nucleic Acids Research 1308:Crooke, S. T. (2017). 1192:Nucleic Acids Research 1026:10.1006/dbio.2000.9720 902:Frontiers in Chemistry 850:Nucleic Acids Research 334:N-acetyl galactosamine 213:2' sugar modifications 190:Backbone modifications 181:Chemical modifications 1972:Small Cajal Body RNAs 1654:10.1093/nar/30.11.e51 1013:Developmental Biology 976:10.1089/nat.2016.0656 862:10.1093/nar/16.8.3209 709:Toxicologic Pathology 632:10.1007/s000180050296 574:10.1534/g3.117.044024 348:Analytical techniques 270:developmental biology 2025:Subgenomic messenger 1940:Small interfering 1912:Transfer-messenger 1687:Analytical Chemistry 314:Cell internalisation 296:Huntington's disease 1556:2001JASMS..12..456D 914:2020FrCh....8..112M 467:(19): 11577–11585. 304:Parkinson's disease 300:Alzheimer's disease 239:protein translation 196:organothiophosphate 2054:Chloroplast 1897:modified Messenger 1860:Ribonucleic acids 1427:10.1007/BF02274494 1374:10.1093/nar/gku531 1204:10.1093/nar/gkq534 2227: 2226: 2104:Xeno 2066:Complementary 2039:Deoxyribonucleic 2033: 2032: 2010:Small hairpin 1699:10.1021/ac051812m 1368:(13): 8796–8807. 1198:(19): 6567–6576. 763:Neurotherapeutics 369:Mass spectrometry 229:Antisense therapy 148:antisense therapy 75:molecular cloning 16:(Redirected from 2254: 2217: 2216: 2194:Yeast 2015:Small temporal 1945:Piwi-interacting 1873: 1869: 1850:Deoxynucleotides 1813: 1806: 1799: 1790: 1766: 1760: 1756: 1754: 1746: 1711: 1710: 1682: 1676: 1675: 1665: 1633: 1627: 1626: 1595:Nature Protocols 1590: 1584: 1583: 1539: 1533: 1532: 1526: 1518: 1493:(1–2): 167–182. 1478: 1472: 1471: 1469: 1445: 1439: 1438: 1410: 1404: 1403: 1393: 1352: 1346: 1345: 1326:10.1038/nbt.3779 1305: 1296: 1295: 1285: 1267: 1243: 1234: 1233: 1223: 1183: 1177: 1176: 1166: 1156: 1154:10.1172/JCI25424 1132: 1126: 1125: 1088: 1082: 1081: 1045: 1039: 1038: 1028: 1004: 998: 997: 987: 955: 946: 945: 935: 925: 893: 884: 883: 873: 841: 835: 834: 806: 797: 796: 786: 754: 741: 740: 704: 698: 697: 673: 662: 661: 643: 611: 605: 602: 596: 595: 585: 568:(9): 2931–2943. 551: 542: 541: 531: 499: 493: 492: 456: 395:cDNA microarrays 166:phosphoramidites 79:molecular probes 31:Oligonucleotides 21: 18:Oligonucleotides 2262: 2261: 2257: 2256: 2255: 2253: 2252: 2251: 2237: 2236: 2228: 2223: 2205: 2146:Cloning vectors 2140: 2126:Locked 2090: 2040: 2029: 1988: 1916: 1863: 1862: 1854: 1823: 1817: 1774: 1769: 1757: 1747: 1724: 1720: 1718:Further reading 1715: 1714: 1684: 1683: 1679: 1635: 1634: 1630: 1592: 1591: 1587: 1541: 1540: 1536: 1519: 1480: 1479: 1475: 1447: 1446: 1442: 1421:(3–4): 155–61. 1415:Chromatographia 1412: 1411: 1407: 1354: 1353: 1349: 1314:Nat. Biotechnol 1307: 1306: 1299: 1245: 1244: 1237: 1185: 1184: 1180: 1134: 1133: 1129: 1090: 1089: 1085: 1047: 1046: 1042: 1006: 1005: 1001: 957: 956: 949: 895: 894: 887: 843: 842: 838: 808: 807: 800: 756: 755: 744: 706: 705: 701: 675: 674: 665: 613: 612: 608: 603: 599: 553: 552: 545: 501: 500: 496: 458: 457: 453: 448: 411: 391: 371: 362:chromatographic 360:can be used as 355: 350: 316: 274:gene expression 231: 225: 209: 192: 183: 162: 156: 121:DNA microarrays 47:genetic testing 28: 23: 22: 15: 12: 11: 5: 2260: 2258: 2250: 2249: 2239: 2238: 2235: 2234: 2225: 2224: 2222: 2221: 2210: 2207: 2206: 2204: 2203: 2202: 2201: 2196: 2191: 2186: 2176: 2171: 2166: 2161: 2156: 2150: 2148: 2142: 2141: 2139: 2138: 2133: 2131:Peptide 2128: 2123: 2122: 2121: 2116: 2111: 2109:Glycol 2100: 2098: 2092: 2091: 2089: 2088: 2083: 2078: 2073: 2068: 2063: 2062: 2061: 2056: 2045: 2043: 2035: 2034: 2031: 2030: 2028: 2027: 2022: 2017: 2012: 2007: 2002: 1996: 1994: 1990: 1989: 1987: 1986: 1981: 1980: 1979: 1974: 1969: 1964: 1954: 1949: 1948: 1947: 1942: 1937: 1926: 1924: 1918: 1917: 1915: 1914: 1909: 1904: 1899: 1894: 1893: 1892: 1881: 1879: 1870: 1856: 1855: 1853: 1852: 1847: 1842: 1837: 1831: 1829: 1825: 1824: 1821:nucleic acids 1818: 1816: 1815: 1808: 1801: 1793: 1787: 1786: 1781: 1773: 1772:External links 1770: 1768: 1767: 1759:|journal= 1721: 1719: 1716: 1713: 1712: 1693:(7): 2342–51. 1677: 1648:(11): 51e–51. 1628: 1585: 1534: 1473: 1454:Open Chemistry 1440: 1405: 1347: 1320:(3): 230–237. 1297: 1235: 1178: 1127: 1083: 1040: 999: 947: 885: 856:(8): 3209–21. 836: 798: 742: 699: 663: 606: 597: 543: 494: 450: 449: 447: 444: 443: 442: 436: 430: 424: 418: 410: 407: 399:polyadenylated 390: 389:DNA microarray 387: 370: 367: 354: 353:Chromatography 351: 349: 346: 315: 312: 227:Main article: 224: 221: 208: 205: 191: 188: 182: 179: 158:Main article: 155: 152: 125:Southern blots 71:DNA sequencing 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2259: 2248: 2247:Nucleic acids 2245: 2244: 2242: 2233: 2230: 2229: 2220: 2212: 2211: 2208: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2181: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2151: 2149: 2147: 2143: 2137: 2134: 2132: 2129: 2127: 2124: 2120: 2117: 2115: 2114:Threose 2112: 2110: 2107: 2106: 2105: 2102: 2101: 2099: 2097: 2093: 2087: 2084: 2082: 2079: 2077: 2074: 2072: 2071:Deoxyribozyme 2069: 2067: 2064: 2060: 2059:Mitochondrial 2057: 2055: 2052: 2051: 2050: 2047: 2046: 2044: 2042: 2036: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1997: 1995: 1991: 1985: 1982: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1959: 1958: 1955: 1953: 1950: 1946: 1943: 1941: 1938: 1936: 1933: 1932: 1931: 1928: 1927: 1925: 1923: 1919: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1891: 1888: 1887: 1886: 1883: 1882: 1880: 1878: 1877:Translational 1874: 1871: 1867: 1861: 1857: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1832: 1830: 1826: 1822: 1814: 1809: 1807: 1802: 1800: 1795: 1794: 1791: 1785: 1782: 1779: 1776: 1775: 1771: 1764: 1752: 1744: 1740: 1736: 1732: 1728: 1723: 1722: 1717: 1708: 1704: 1700: 1696: 1692: 1688: 1681: 1678: 1673: 1669: 1664: 1659: 1655: 1651: 1647: 1643: 1639: 1632: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1589: 1586: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1550:(4): 456–62. 1549: 1545: 1538: 1535: 1530: 1524: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1477: 1474: 1468: 1463: 1459: 1455: 1451: 1444: 1441: 1436: 1432: 1428: 1424: 1420: 1416: 1409: 1406: 1401: 1397: 1392: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1351: 1348: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1304: 1302: 1298: 1293: 1289: 1284: 1279: 1275: 1271: 1266: 1261: 1257: 1253: 1249: 1242: 1240: 1236: 1231: 1227: 1222: 1217: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1182: 1179: 1174: 1170: 1165: 1160: 1155: 1150: 1147:(8): 2290–6. 1146: 1142: 1138: 1131: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1087: 1084: 1079: 1075: 1071: 1067: 1063: 1059: 1056:(3): 203–11. 1055: 1051: 1044: 1041: 1036: 1032: 1027: 1022: 1019:(1): 124–34. 1018: 1014: 1010: 1003: 1000: 995: 991: 986: 981: 977: 973: 969: 965: 961: 954: 952: 948: 943: 939: 934: 929: 924: 919: 915: 911: 907: 903: 899: 892: 890: 886: 881: 877: 872: 867: 863: 859: 855: 851: 847: 840: 837: 832: 828: 824: 820: 817:(2): 117–21. 816: 812: 805: 803: 799: 794: 790: 785: 780: 776: 772: 769:(3): 486–97. 768: 764: 760: 753: 751: 749: 747: 743: 738: 734: 730: 726: 722: 718: 714: 710: 703: 700: 695: 691: 688:(5): 347–55. 687: 683: 679: 672: 670: 668: 664: 659: 655: 651: 647: 642: 637: 633: 629: 626:(3): 334–58. 625: 621: 617: 610: 607: 601: 598: 593: 589: 584: 579: 575: 571: 567: 563: 562: 557: 550: 548: 544: 539: 535: 530: 525: 521: 517: 513: 509: 505: 498: 495: 490: 486: 482: 478: 474: 470: 466: 462: 455: 452: 445: 440: 437: 434: 431: 428: 425: 422: 419: 416: 413: 412: 408: 406: 404: 400: 396: 388: 386: 384: 380: 376: 373:A mixture of 368: 366: 363: 359: 352: 347: 345: 343: 339: 335: 329: 326: 322: 313: 311: 309: 305: 301: 297: 291: 289: 285: 281: 280: 275: 271: 267: 263: 258: 256: 252: 248: 247:hybridization 244: 243:messenger RNA 240: 237:they prevent 236: 235:antisense RNA 230: 222: 220: 218: 214: 206: 204: 201: 197: 189: 187: 180: 178: 176: 171: 167: 161: 153: 151: 149: 145: 140: 138: 134: 130: 126: 122: 118: 114: 110: 109:complementary 106: 103: 99: 95: 91: 86: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 2189:Bacterial 2164:Lambda phage 1828:Constituents 1726: 1690: 1686: 1680: 1645: 1641: 1631: 1601:(3): 351–6. 1598: 1594: 1588: 1547: 1543: 1537: 1523:cite journal 1490: 1486: 1476: 1457: 1453: 1443: 1418: 1414: 1408: 1365: 1361: 1350: 1317: 1313: 1258:(24): 5963. 1255: 1251: 1195: 1191: 1181: 1144: 1140: 1130: 1100:(1): 27–36. 1097: 1093: 1086: 1053: 1049: 1043: 1016: 1012: 1002: 970:(2): 70–77. 967: 963: 905: 901: 853: 849: 839: 814: 810: 766: 762: 715:(1): 78–89. 712: 708: 702: 685: 681: 623: 619: 609: 600: 565: 559: 511: 507: 497: 464: 460: 454: 427:Polymorphism 392: 372: 356: 330: 317: 292: 277: 259: 232: 210: 200:diastereomer 193: 184: 163: 141: 129:ASO analysis 104: 87: 30: 29: 2184:P1-derived 1952:Antisense 1845:Nucleotides 1840:Nucleosides 1835:Nucleobases 421:Morpholinos 358:Alkylamides 338:hepatocytes 266:vertebrates 260:The use of 241:of certain 194:Nucleoside 170:nucleosides 41:molecules, 2136:Morpholino 2049:Organellar 1957:Processual 1922:Regulatory 1866:non-coding 1778:RNAi Atlas 514:: bau103. 446:References 342:antibodies 288:golodirsen 284:eteplirsen 262:Morpholino 251:non-coding 94:nucleotide 33:are short 2096:Analogues 2081:Hachimoji 1864:(coding, 1819:Types of 1761:ignored ( 1751:cite book 1507:0021-9673 1382:1362-4962 1274:1420-3049 1252:Molecules 1212:1362-4962 325:lysosomes 321:endosomes 154:Synthesis 55:forensics 43:oligomers 2241:Category 2219:Category 2154:Phagemid 2005:Ribozyme 1743:22210336 1707:16579618 1672:12034852 1615:18323805 1580:18280663 1572:11322192 1515:12134814 1435:97825477 1400:24992960 1334:28244996 1292:33339365 1230:20551131 1173:16878173 1122:45686564 1114:21744034 1078:24496875 1070:23729285 1035:10885751 994:28080221 942:32181238 831:10805163 793:23686823 737:37981276 729:25385330 694:12489851 650:10228554 641:11146801 592:28696921 538:25380780 508:Database 489:52157806 481:30179468 415:Aptamers 409:See also 379:spermine 135:(FISH), 113:duplexes 100:" (from 90:sequence 83:microRNA 51:research 2159:Plasmid 1623:2093309 1552:Bibcode 1391:4117763 1342:1049452 1283:7766908 1221:2965246 1164:1518790 985:5372764 933:7059644 910:Bibcode 908:: 112. 880:2836790 784:3701770 658:9448271 583:5592921 529:4224276 279:Xenopus 255:RNase H 77:and as 69:(PCR), 2174:Fosmid 2169:Cosmid 2119:Hexose 2041:acids 1993:Others 1741:  1705:  1670:  1663:117213 1660:  1621:  1613:  1578:  1570:  1513:  1505:  1433:  1398:  1388:  1380:  1340:  1332:  1290:  1280:  1272:  1228:  1218:  1210:  1171:  1161:  1120:  1112:  1076:  1068:  1033:  992:  982:  940:  930:  878:  871:336489 868:  829:  791:  781:  735:  727:  692:  656:  648:  638:  590:  580:  536:  526:  487:  479:  306:, and 117:probes 53:, and 2199:Human 1977:Y RNA 1619:S2CID 1576:S2CID 1460:(1). 1431:S2CID 1338:S2CID 1118:S2CID 1074:S2CID 733:S2CID 654:S2CID 485:S2CID 383:MALDI 105:meros 102:Greek 1763:help 1739:PMID 1703:PMID 1668:PMID 1611:PMID 1568:PMID 1529:link 1511:PMID 1503:ISSN 1396:PMID 1378:ISSN 1330:PMID 1288:PMID 1270:ISSN 1226:PMID 1208:ISSN 1169:PMID 1110:PMID 1066:PMID 1031:PMID 990:PMID 938:PMID 876:PMID 827:PMID 789:PMID 725:PMID 690:PMID 646:PMID 588:PMID 534:PMID 512:2014 477:PMID 377:and 286:and 175:HPLC 98:-mer 1731:doi 1695:doi 1658:PMC 1650:doi 1603:doi 1560:doi 1495:doi 1491:958 1462:doi 1423:doi 1386:PMC 1370:doi 1322:doi 1278:PMC 1260:doi 1216:PMC 1200:doi 1159:PMC 1149:doi 1145:116 1102:doi 1058:doi 1021:doi 1017:222 980:PMC 972:doi 928:PMC 918:doi 866:PMC 858:doi 819:doi 779:PMC 771:doi 717:doi 636:PMC 628:doi 578:PMC 570:doi 524:PMC 516:doi 469:doi 137:PCR 92:of 39:RNA 37:or 35:DNA 2243:: 1755:: 1753:}} 1749:{{ 1737:. 1701:. 1691:78 1689:. 1666:. 1656:. 1646:30 1644:. 1640:. 1617:. 1609:. 1597:. 1574:. 1566:. 1558:. 1548:12 1546:. 1525:}} 1521:{{ 1509:. 1501:. 1489:. 1485:. 1458:13 1456:. 1452:. 1429:. 1419:39 1417:. 1394:. 1384:. 1376:. 1366:42 1364:. 1360:. 1336:. 1328:. 1318:35 1316:. 1312:. 1300:^ 1286:. 1276:. 1268:. 1256:25 1254:. 1250:. 1238:^ 1224:. 1214:. 1206:. 1196:38 1194:. 1190:. 1167:. 1157:. 1143:. 1139:. 1116:. 1108:. 1098:51 1096:. 1072:. 1064:. 1054:55 1052:. 1029:. 1015:. 1011:. 988:. 978:. 968:27 966:. 962:. 950:^ 936:. 926:. 916:. 904:. 900:. 888:^ 874:. 864:. 854:16 852:. 848:. 825:. 815:10 813:. 801:^ 787:. 777:. 767:10 765:. 761:. 745:^ 731:. 723:. 713:43 711:. 684:. 680:. 666:^ 652:. 644:. 634:. 624:55 622:. 618:. 586:. 576:. 564:. 558:. 546:^ 532:. 522:. 510:. 506:. 483:. 475:. 465:83 463:. 344:. 302:, 298:, 150:. 131:, 127:, 123:, 73:, 65:, 49:, 1868:) 1812:e 1805:t 1798:v 1765:) 1745:. 1733:: 1709:. 1697:: 1674:. 1652:: 1625:. 1605:: 1599:3 1582:. 1562:: 1554:: 1531:) 1517:. 1497:: 1470:. 1464:: 1437:. 1425:: 1402:. 1372:: 1344:. 1324:: 1294:. 1262:: 1232:. 1202:: 1175:. 1151:: 1124:. 1104:: 1080:. 1060:: 1037:. 1023:: 996:. 974:: 944:. 920:: 912:: 906:8 882:. 860:: 833:. 821:: 795:. 773:: 739:. 719:: 696:. 686:1 660:. 630:: 594:. 572:: 566:7 540:. 518:: 491:. 471:: 20:)

Index

Oligonucleotides
DNA
RNA
oligomers
genetic testing
research
forensics
solid-phase chemical synthesis
artificial gene synthesis
polymerase chain reaction
DNA sequencing
molecular cloning
molecular probes
microRNA
sequence
nucleotide
-mer
Greek
complementary
duplexes
probes
DNA microarrays
Southern blots
ASO analysis
fluorescent in situ hybridization
PCR
2'-deoxyribonucleotides
antisense therapy
oligonucleotide synthesis
phosphoramidites

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑