Knowledge (XXG)

Operational transconductance amplifier

Source πŸ“

122: 25: 698:
addition of these diodes increases the linearity of the input stage by a factor of 4. That is, using the diodes, the signal distortion level at 80 mV of differential input is the same as that of the simple differential amplifier at a differential input of 20 mV. Second, the action of the biased diodes offsets much of the temperature sensitivity of the OTA's transconductance.
158:(VCCS). Three types of OTAs are single-input single-output, differential-input single-output, and differential-input differential-output (a.k.a. fully differential), however this article focuses on differential-input single-output. There may be an additional input for a current to control the amplifier's 697:
terminal. These additions make two substantial improvements to the OTA. First, when used with input resistors, the diodes distort the differential input voltage to offset a significant amount of input stage non linearity at higher differential input voltages. According to National Semiconductor, the
701:
A second improvement is the integration of an optional-use output buffer amplifier to the chip on which the OTA resides. This is actually a convenience to a circuit designer rather than an improvement to the OTA itself; dispensing with the need to employ a separate buffer. It also allows the OTA to
688:
terminal (shown in the diagram) nor the diodes (shown adjacent to it). They were all added in later versions. As depicted in the diagram, the anodes of the diodes are attached together and the cathode of one is attached to the non inverting input (Vin+) and the cathode of the other to the inverting
664:
at higher differential input voltages due to the characteristics of the input stage transistors. In the early devices, such as the CA3080, the input stage consisted of two bipolar transistors connected in the differential amplifier configuration. The transfer characteristics of this connection are
639: 203:
The OTA is usually used "open-loop"; without negative feedback in linear applications. This is possible because the magnitude of the resistance attached to its output controls its output voltage. Therefore, a resistance can be chosen that keeps the output from going into
125:
Schematic symbol for an OTA with differential input. Like the standard operational amplifier, it has both inverting (βˆ’) and noninverting (+) inputs; power supply lines (V+ and Vβˆ’); and a single output. Unlike the traditional op-amp, it has two additional biasing inputs,
665:
approximately linear for differential input voltages of 20 mV or less. This is an important limitation when the OTA is being used open loop as there is no negative feedback to linearize the output. One scheme to improve this parameter is mentioned below.
343: 481: 492: 648:("amplifier bias current"). The amplifier's transconductance is directly proportional to this current. This is the feature that makes it useful for electronic control of amplifier gain, etc. 42: 874: 869: 879: 753: 398: 250: 718: 838: 89: 406: 61: 634:{\displaystyle G_{\mathrm {voltage} }={V_{\mathrm {out} } \over V_{\mathrm {in+} }-V_{\mathrm {in-} }}=R_{\mathrm {load} }\cdot g_{\mathrm {m} }} 68: 173:) in the form of the CA3080. Although most units are constructed with bipolar transistors, field effect transistor units are also produced. 899: 75: 213: 108: 57: 671:
Variation of input and output impedance, input bias current and input offset voltage with the transconductance control current I
894: 46: 225: 221: 229: 121: 821:
Data Sheet for LM 13700 – Graph of Distortion v. Differential Input Voltage (National Semiconductor, June 2004) p. 6.
833: 244:
In the ideal OTA, the output current is a linear function of the differential input voltage, calculated as follows:
82: 705:
An example of a chip combining both of these features is the National Semiconductor LM13600 and its successor, the
35: 217: 723: 880:
slew-rate and bandwidth improvement of the CMOS OTA based on the frequency overdrived current mirror (archive)
233: 844: 205: 177: 376: 181: 400:
to ground, the OTA's output voltage is the product of its output current and its load resistance:
656:
As with the standard op-amp, practical OTA's have some non-ideal characteristics. These include:
338:{\displaystyle I_{\mathrm {out} }=(V_{\mathrm {in+} }-V_{\mathrm {in-} })\cdot g_{\mathrm {m} }} 185: 702:
be used as a traditional op-amp, if desired, by converting its output current to a voltage.
367: 170: 159: 151: 785:"LM13700 Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers" 644:
The transconductance of the amplifier is usually controlled by an input current, denoted I
486:
The voltage gain is then the output voltage divided by the differential input voltage:
155: 852: 848: 742: 888: 661: 864: 860: 24: 856: 784: 476:{\displaystyle V_{\mathrm {out} }=I_{\mathrm {out} }\cdot R_{\mathrm {load} }} 147: 165:
The first commercially available integrated circuit units were produced by
706: 689:
input (Vin−). The diodes are biased at the anodes by a current (I
834:
A Short Discussion of the Operational Transconductance Amplifier (OTA)
216:
aren't directly implementable with OTAs. However, OTAs can implement
870:
Discrete OTAs for Synth-DIY & Elektor-Formant-Upgrades (archive)
154:
proportional to its input voltage. Thus, it is a voltage controlled
120: 839:
Comparison of Operational Transconductance Amplifiers (archive)
166: 18: 875:
Reducing voltage offset of the integrated CMOS OTA (archive)
768:(Howard W. Sams -Bobbs-Merrill First Ed. 1974) p. 440 495: 409: 379: 253: 212:
These differences mean the vast majority of standard
743:
https://www.ijsr.net/archive/v2i3/IJSRON2013566.pdf
49:. Unsourced material may be challenged and removed. 633: 475: 392: 337: 196:while a standard operational amplifier outputs a 719:Current differencing transconductance amplifier 184:differential input stage and may be used with 684:Earlier versions of the OTA had neither the I 208:, even with high differential input voltages. 8: 668:Temperature sensitivity of transconductance. 362:is the voltage at the inverting input and g 355:is the voltage at the non-inverting input, 624: 623: 600: 599: 576: 575: 555: 554: 536: 535: 529: 501: 500: 494: 457: 456: 436: 435: 415: 414: 408: 384: 378: 328: 327: 304: 303: 283: 282: 259: 258: 252: 109:Learn how and when to remove this message 58:"Operational transconductance amplifier" 735: 140:operational transconductance amplifier 790:. Texas Instruments. 15 December 2015 7: 779: 777: 373:If the load is just a resistance of 47:adding citations to reliable sources 625: 610: 607: 604: 601: 580: 577: 559: 556: 543: 540: 537: 520: 517: 514: 511: 508: 505: 502: 467: 464: 461: 458: 443: 440: 437: 422: 419: 416: 329: 308: 305: 287: 284: 266: 263: 260: 214:operational amplifier applications 169:in 1969 (before being acquired by 14: 23: 393:{\displaystyle R_{\text{load}}} 188:. But the OTA differs in that: 34:needs additional citations for 317: 275: 226:variable frequency oscillators 222:voltage-controlled oscillators 1: 726:– converts current to voltage 693:) that is injected into the I 230:voltage-controlled resistors 916: 900:Linear integrated circuits 853:MAX 436 (obsolete product) 849:MAX 435 (obsolete product) 218:voltage-controlled filters 180:, the OTA also has a high 845:CA3080 (obsolete product) 652:Non-ideal characteristics 232:, and voltage-controlled 812:(Hayden, 1980) p. 40-41. 724:Transimpedance amplifier 234:variable gain amplifiers 680:Subsequent improvements 635: 477: 394: 339: 135: 895:Electronic amplifiers 636: 478: 395: 340: 178:operational amplifier 124: 493: 407: 377: 251: 43:improve this article 766:IC Op-Amp Cookbook 631: 473: 390: 370:of the amplifier. 335: 192:The OTA outputs a 136: 16:Electrical circuit 810:IC Array Cookbook 590: 387: 186:negative feedback 119: 118: 111: 93: 907: 822: 819: 813: 806: 800: 799: 797: 795: 789: 781: 772: 762: 756: 751: 745: 740: 640: 638: 637: 632: 630: 629: 628: 615: 614: 613: 591: 589: 588: 587: 586: 567: 566: 565: 548: 547: 546: 530: 525: 524: 523: 482: 480: 479: 474: 472: 471: 470: 448: 447: 446: 427: 426: 425: 399: 397: 396: 391: 389: 388: 385: 368:transconductance 344: 342: 341: 336: 334: 333: 332: 316: 315: 314: 295: 294: 293: 271: 270: 269: 176:Like a standard 171:General Electric 160:transconductance 114: 107: 103: 100: 94: 92: 51: 27: 19: 915: 914: 910: 909: 908: 906: 905: 904: 885: 884: 830: 825: 820: 816: 807: 803: 793: 791: 787: 783: 782: 775: 763: 759: 752: 748: 741: 737: 733: 715: 696: 692: 687: 682: 674: 654: 647: 619: 595: 571: 550: 549: 531: 496: 491: 490: 452: 431: 410: 405: 404: 380: 375: 374: 365: 361: 354: 323: 299: 278: 254: 249: 248: 242: 240:Basic operation 150:that outputs a 133: 129: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 913: 911: 903: 902: 897: 887: 886: 883: 882: 877: 872: 867: 841: 836: 829: 828:External links 826: 824: 823: 814: 801: 773: 757: 746: 734: 732: 729: 728: 727: 721: 714: 711: 694: 690: 685: 681: 678: 677: 676: 672: 669: 666: 653: 650: 645: 642: 641: 627: 622: 618: 612: 609: 606: 603: 598: 594: 585: 582: 579: 574: 570: 564: 561: 558: 553: 545: 542: 539: 534: 528: 522: 519: 516: 513: 510: 507: 504: 499: 484: 483: 469: 466: 463: 460: 455: 451: 445: 442: 439: 434: 430: 424: 421: 418: 413: 383: 363: 359: 352: 346: 345: 331: 326: 322: 319: 313: 310: 307: 302: 298: 292: 289: 286: 281: 277: 274: 268: 265: 262: 257: 241: 238: 210: 209: 201: 156:current source 131: 127: 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 912: 901: 898: 896: 893: 892: 890: 881: 878: 876: 873: 871: 868: 866: 862: 858: 854: 850: 846: 842: 840: 837: 835: 832: 831: 827: 818: 815: 811: 805: 802: 786: 780: 778: 774: 771: 767: 761: 758: 755: 750: 747: 744: 739: 736: 730: 725: 722: 720: 717: 716: 712: 710: 708: 703: 699: 679: 670: 667: 663: 662:non-linearity 659: 658: 657: 651: 649: 620: 616: 596: 592: 583: 572: 568: 562: 551: 532: 526: 497: 489: 488: 487: 453: 449: 432: 428: 411: 403: 402: 401: 381: 371: 369: 358: 351: 324: 320: 311: 300: 296: 290: 279: 272: 255: 247: 246: 245: 239: 237: 235: 231: 227: 223: 219: 215: 207: 202: 199: 195: 191: 190: 189: 187: 183: 179: 174: 172: 168: 163: 161: 157: 153: 149: 145: 141: 123: 113: 110: 102: 99:December 2006 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: β€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 817: 809: 808:Jung, W.G., 804: 792:. Retrieved 769: 765: 764:Jung, W.G., 760: 749: 738: 704: 700: 683: 660:Input stage 655: 643: 485: 372: 356: 349: 347: 243: 211: 197: 193: 175: 164: 143: 139: 137: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 889:Categories 843:Examples: 794:26 January 206:saturation 69:newspapers 617:⋅ 584:− 569:− 450:⋅ 321:⋅ 312:− 297:− 182:impedance 148:amplifier 713:See also 146:) is an 857:LM13700 770:et seq. 707:LM13700 366:is the 198:voltage 194:current 152:current 83:scholar 865:OPA861 861:OPA860 754:CA3080 348:where 224:(e.g. 85:  78:  71:  64:  56:  788:(PDF) 731:Notes 130:and I 90:JSTOR 76:books 796:2016 695:bias 691:bias 686:bias 386:load 138:The 132:bias 62:news 673:abc 646:abc 360:inβˆ’ 353:in+ 228:), 167:RCA 162:. 144:OTA 128:abc 45:by 891:: 863:, 859:, 855:, 851:, 847:, 776:^ 709:. 236:. 220:, 798:. 675:. 626:m 621:g 611:d 608:a 605:o 602:l 597:R 593:= 581:n 578:i 573:V 563:+ 560:n 557:i 552:V 544:t 541:u 538:o 533:V 527:= 521:e 518:g 515:a 512:t 509:l 506:o 503:v 498:G 468:d 465:a 462:o 459:l 454:R 444:t 441:u 438:o 433:I 429:= 423:t 420:u 417:o 412:V 382:R 364:m 357:V 350:V 330:m 325:g 318:) 309:n 306:i 301:V 291:+ 288:n 285:i 280:V 276:( 273:= 267:t 264:u 261:o 256:I 200:. 142:( 134:. 126:I 112:) 106:( 101:) 97:( 87:Β· 80:Β· 73:Β· 66:Β· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Operational transconductance amplifier"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

amplifier
current
current source
transconductance
RCA
General Electric
operational amplifier
impedance
negative feedback
saturation
operational amplifier applications
voltage-controlled filters
voltage-controlled oscillators
variable frequency oscillators
voltage-controlled resistors
variable gain amplifiers
transconductance
non-linearity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑