Knowledge (XXG)

Orbital-free density functional theory

Source đź“ť

608: 530:
and, thus, is not very accurate for most physical systems. Finding more accurate and transferable kinetic-energy density functionals is the focus of ongoing research. By formulating Kohn–Sham kinetic energy in terms of electron density, one avoids diagonalizing the Kohn–Sham Hamiltonian for solving
229:
guarantee that, for a system of atoms, there exists a functional of the electron density that yields the total energy. Minimization of this functional with respect to the density gives the ground-state density from which all of the system's properties can be obtained. Although the Hohenberg–Kohn
241:
In general, there is no known form for the interacting kinetic energy in terms of electron density. In practice, instead of deriving approximations for interacting kinetic energy, much effort was devoted to deriving approximations for non-interacting
521: 349: 531:
for the Kohn–Sham orbitals, therefore saving the computational cost. Since no Kohn–Sham orbital is involved in orbital-free density functional theory, one only needs to minimize the system's energy with respect to the electron density.
230:
theorems tell us that such a functional exists, they do not give us guidance on how to find it. In practice, the density functional is known exactly except for two terms. These are the electronic kinetic energy and the
393:-th Kohn–Sham orbital. The summation is performed over all the occupied Kohn–Sham orbitals. One of the first attempts to do this (even before the formulation of the Hohenberg–Kohn theorem) was the 176: 238:
energy. The lack of the true exchange–correlation functional is a well known problem in DFT, and there exists a huge variety of approaches to approximate this crucial component.
387: 403: 649: 252: 76: 169: 64: 98: 60: 152: 110: 162: 642: 80: 668: 678: 673: 588:
Ligneres, Vincent L.; Emily A. Carter (2005). "An Introduction to Orbital Free Density Functional Theory". In Syndey Yip (ed.).
635: 114: 144: 34: 140: 128: 42: 226: 121: 91: 68: 202: 136: 49: 38: 243: 214: 56: 190: 394: 210: 102: 357: 560: 235: 231: 198: 19: 516:{\displaystyle E_{\text{TF}}={\frac {3}{10}}(3\pi ^{2})^{\frac {2}{3}}\int ^{\frac {5}{3}}\,d^{3}r.} 84: 27: 206: 615: 344:{\displaystyle T_{s}=\sum _{i}-{\frac {1}{2}}\langle \phi _{i}|\nabla ^{2}|\phi _{i}\rangle ,} 619: 568: 148: 72: 217:
models, but has the advantage of being fast, so that it can be applied to large systems.
564: 662: 132: 573: 548: 213:. Orbital-free density functional theory is, at present, less accurate than 527: 607: 246:) kinetic energy, which is defined as (in atomic units) 623: 406: 360: 255: 515: 381: 343: 643: 170: 8: 376: 335: 292: 77:Multi-configurational self-consistent field 650: 636: 177: 163: 15: 592:. Springer Netherlands. pp. 137–148. 572: 501: 496: 485: 473: 450: 440: 420: 411: 405: 370: 361: 359: 329: 320: 314: 305: 299: 282: 273: 260: 254: 99:Time-dependent density functional theory 61:Semi-empirical quantum chemistry methods 539: 120: 90: 48: 26: 18: 195:orbital-free density functional theory 111:Linearized augmented-plane-wave method 107:Orbital-free density functional theory 7: 604: 602: 397:, which wrote the kinetic energy as 209:. It is most closely related to the 197:is a quantum mechanical approach to 215:Kohn–Sham density functional theory 81:Quantum chemistry composite methods 622:. You can help Knowledge (XXG) by 382:{\displaystyle |\phi _{i}\rangle } 311: 65:Møller–Plesset perturbation theory 14: 606: 547:Hohenberg, P.; Kohn, W. (1964). 526:This expression is based on the 474: 201:determination which is based on 115:Projector augmented wave method 590:Handbook of Materials Modeling 482: 478: 470: 464: 447: 430: 362: 321: 306: 1: 153:Korringa–Kohn–Rostoker method 549:"Inhomogeneous Electron Gas" 221:Kinetic energy of electrons 145:Empty lattice approximation 695: 601: 129:Nearly free electron model 43:Modern valence bond theory 669:Density functional theory 122:Electronic band structure 92:Density functional theory 69:Configuration interaction 574:10.1103/PhysRev.136.B864 528:homogeneous electron gas 137:Muffin-tin approximation 50:Molecular orbital theory 39:Generalized valence bond 679:Quantum chemistry stubs 674:Computational chemistry 227:Hohenberg–Kohn theorems 191:computational chemistry 141:k·p perturbation theory 618:-related article is a 517: 383: 345: 35:Coulson–Fischer theory 518: 384: 346: 404: 358: 253: 199:electronic structure 20:Electronic structure 565:1964PhRv..136..864H 85:Quantum Monte Carlo 57:Hartree–Fock method 28:Valence bond theory 513: 395:Thomas–Fermi model 379: 341: 278: 211:Thomas–Fermi model 207:electronic density 103:Thomas–Fermi model 631: 630: 616:quantum chemistry 559:(3B): B864–B871. 493: 458: 428: 414: 290: 269: 187: 186: 686: 652: 645: 638: 610: 603: 594: 593: 585: 579: 578: 576: 544: 522: 520: 519: 514: 506: 505: 495: 494: 486: 477: 460: 459: 451: 445: 444: 429: 421: 416: 415: 412: 388: 386: 385: 380: 375: 374: 365: 350: 348: 347: 342: 334: 333: 324: 319: 318: 309: 304: 303: 291: 283: 277: 265: 264: 179: 172: 165: 149:GW approximation 16: 694: 693: 689: 688: 687: 685: 684: 683: 659: 658: 657: 656: 599: 597: 587: 586: 582: 553:Physical Review 546: 545: 541: 537: 497: 481: 446: 436: 407: 402: 401: 366: 356: 355: 325: 310: 295: 256: 251: 250: 223: 183: 151: 147: 143: 139: 135: 131: 113: 109: 105: 101: 83: 79: 75: 73:Coupled cluster 71: 67: 63: 59: 41: 37: 12: 11: 5: 692: 690: 682: 681: 676: 671: 661: 660: 655: 654: 647: 640: 632: 629: 628: 611: 596: 595: 580: 538: 536: 533: 524: 523: 512: 509: 504: 500: 492: 489: 484: 480: 476: 472: 469: 466: 463: 457: 454: 449: 443: 439: 435: 432: 427: 424: 419: 410: 378: 373: 369: 364: 352: 351: 340: 337: 332: 328: 323: 317: 313: 308: 302: 298: 294: 289: 286: 281: 276: 272: 268: 263: 259: 222: 219: 185: 184: 182: 181: 174: 167: 159: 156: 155: 125: 124: 118: 117: 95: 94: 88: 87: 53: 52: 46: 45: 31: 30: 24: 23: 13: 10: 9: 6: 4: 3: 2: 691: 680: 677: 675: 672: 670: 667: 666: 664: 653: 648: 646: 641: 639: 634: 633: 627: 625: 621: 617: 612: 609: 605: 600: 591: 584: 581: 575: 570: 566: 562: 558: 554: 550: 543: 540: 534: 532: 529: 510: 507: 502: 498: 490: 487: 467: 461: 455: 452: 441: 437: 433: 425: 422: 417: 408: 400: 399: 398: 396: 392: 371: 367: 338: 330: 326: 315: 300: 296: 287: 284: 279: 274: 270: 266: 261: 257: 249: 248: 247: 245: 239: 237: 233: 228: 220: 218: 216: 212: 208: 204: 200: 196: 192: 180: 175: 173: 168: 166: 161: 160: 158: 157: 154: 150: 146: 142: 138: 134: 133:Tight binding 130: 127: 126: 123: 119: 116: 112: 108: 104: 100: 97: 96: 93: 89: 86: 82: 78: 74: 70: 66: 62: 58: 55: 54: 51: 47: 44: 40: 36: 33: 32: 29: 25: 21: 17: 624:expanding it 613: 598: 589: 583: 556: 552: 542: 525: 390: 353: 240: 224: 194: 188: 106: 236:correlation 203:functionals 663:Categories 535:References 462:∫ 438:π 377:⟩ 368:ϕ 336:⟩ 327:ϕ 312:∇ 297:ϕ 293:⟨ 280:− 271:∑ 244:Kohn–Sham 232:exchange 561:Bibcode 389:is the 205:of the 22:methods 354:where 614:This 620:stub 225:The 569:doi 557:136 189:In 665:: 567:. 555:. 551:. 426:10 413:TF 193:, 651:e 644:t 637:v 626:. 577:. 571:: 563:: 511:. 508:r 503:3 499:d 491:3 488:5 483:] 479:) 475:r 471:( 468:n 465:[ 456:3 453:2 448:) 442:2 434:3 431:( 423:3 418:= 409:E 391:i 372:i 363:| 339:, 331:i 322:| 316:2 307:| 301:i 288:2 285:1 275:i 267:= 262:s 258:T 242:( 234:– 178:e 171:t 164:v

Index

Electronic structure
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Møller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation
Korringa–Kohn–Rostoker method
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑