Knowledge (XXG)

Semi-empirical quantum chemistry method

Source đź“ť

399:
The NOTCH method includes many new, physically-motivated terms compared to the NDDO family of methods, is much less empirical than the other semi-empirical methods (almost all of its parameters are determined non-empirically), provides robust accuracy for bonds between uncommon element combinations,
211:
Within the framework of Hartree–Fock calculations, some pieces of information (such as two-electron integrals) are sometimes approximated or completely omitted. In order to correct for this loss, semi-empirical methods are parametrized, that is their results are fitted by a set of parameters,
390:, are sometimes classified as semiempirical methods as well. More recent examples include the semiempirical quantum mechanical methods GFNn-xTB (n=0,1,2), which are particularly suited for the geometry, vibrational frequencies, and non-covalent interactions of large molecules. 896:
Michael J. S. Dewar; Eve G. Zoebisch; Eamonn F. Healy; James J. P. Stewart (1985). "Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions".
353:. Here the objective is to use parameters to fit experimental heats of formation, dipole moments, ionization potentials, and geometries. This is by far the largest group of semiempirical methods. 412: 304:. The implementations aimed to fit, not experiment, but ab initio minimum basis set results. These methods are now rarely used but the methodology is often the basis of later methods. 176: 370:. The OMx (x=1,2,3) methods can also be viewed as belonging to this class, although they are also suitable for ground-state applications; in particular, the combination of OM2 and 1246:"GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions" 274:(PPP), can provide good estimates of the π-electronic excited states, when parameterized well. For many years, the PPP method outperformed ab initio excited state calculations. 204:
for treating large molecules where the full Hartree–Fock method without the approximations is too expensive. The use of empirical parameters appears to allow some inclusion of
257:
approximation. Their results, however, can be very wrong if the molecule being computed is not similar enough to the molecules in the database used to parametrize the method.
1364: 739:
Pariser, Rudolph; Parr, Robert G. (1953). "A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II".
696:
Pariser, Rudolph; Parr, Robert G. (1953). "A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I.".
76: 1072:
Nanda, D. N.; Jug, Karl (1980). "SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization".
169: 64: 371: 98: 152: 110: 106: 162: 1010:"Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters" 270:
These methods exist for the calculation of electronically excited states of polyenes, both cyclic and linear. These methods, such as the
213: 80: 271: 1115:
Dral, Pavlo O.; Wu, Xin; Spörkel, Lasse; Koslowski, Axel; Weber, Wolfgang; Steiger, Rainer; Scholten, Mirjam; Thiel, Walter (2016).
869:
Michael J. S. Dewar & Walter Thiel (1977). "Ground states of molecules. 38. The MNDO method. Approximations and parameters".
227: 114: 961:"Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements" 1058: 856: 322: 526:
Hückel, Erich (1932). "Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III".
144: 34: 200:
formalism, but make many approximations and obtain some parameters from empirical data. They are very important in
140: 128: 42: 1166:"Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States" 254: 239: 212:
normally in such a way as to produce results that best agree with experimental data, but sometimes to agree with
121: 91: 68: 136: 49: 38: 56: 362:
Methods whose primary aim is to calculate excited states and hence predict electronic spectra. These include
1303:"Development of NOTCH, an all-electron, beyond-NDDO semiempirical method: Application to diatomic molecules" 1117:"Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters" 201: 102: 226:
Semi-empirical methods follow what are often called empirical methods where the two-electron part of the
1314: 748: 705: 662: 586: 535: 492: 441: 205: 19: 640: 330: 84: 27: 1340: 1283: 1226: 1097: 941: 628: 610: 559: 465: 1332: 1275: 1267: 1187: 1146: 1089: 1039: 990: 924:
James J. P. Stewart (1989). "Optimization of parameters for semiempirical methods I. Method".
799: 764: 721: 678: 602: 551: 508: 457: 191: 197: 1322: 1257: 1218: 1177: 1136: 1128: 1081: 1029: 1021: 980: 972: 933: 906: 878: 791: 756: 713: 670: 594: 543: 500: 449: 231: 148: 346: 72: 235: 1318: 752: 709: 666: 590: 539: 496: 445: 1141: 1034: 985: 342: 243: 1358: 1344: 1230: 614: 563: 469: 383: 132: 1287: 1101: 945: 1207:"Density-functional tight binding—an approximate density-functional theory method" 1025: 976: 301: 1271: 1262: 1245: 1182: 1165: 1132: 1093: 803: 768: 725: 682: 606: 555: 512: 461: 1009: 960: 653:
Hoffmann, Roald (1963-09-15). "An Extended HĂĽckel Theory. I. Hydrocarbons".
483:
Hückel, Erich (1931). "Quanstentheoretische Beiträge zum Benzolproblem II".
1336: 1279: 1191: 1150: 1116: 1062:, Volume 2, Eds. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 313, (1991) 1043: 994: 937: 859:, Volume 1, Eds. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 45, (1990) 432:
Hückel, Erich (1931). "Quantentheoretische Beiträge zum Benzolproblem I".
795: 782:
Pople, J. A. (1953). "Electron interaction in unsaturated hydrocarbons".
910: 882: 643:, Molecular Orbital Theory for Organic Chemists, Wiley, New York, (1961) 1085: 598: 577:
HĂĽckel, Erich (1933). "Die freien Radikale der organischen Chemie IV".
547: 504: 453: 1327: 1302: 1244:
Bannwarth, Christoph; Ehlert, Sebastian; Grimme, Stefan (2019-03-12).
1222: 760: 717: 674: 289: 1206: 367: 363: 334: 318: 314: 230:
is not explicitly included. For π-electron systems, this was the
387: 350: 338: 326: 297: 293: 1164:
Tuna, Deniz; Lu, You; Koslowski, Axel; Thiel, Walter (2016).
585:(9–10). Springer Science and Business Media LLC: 632–668. 534:(9–10). Springer Science and Business Media LLC: 628–648. 413:
List of quantum chemistry and solid-state physics software
374:
is an important tool for excited state molecular dynamics.
491:(5–6). Springer Science and Business Media LLC: 310–337. 440:(3–4). Springer Science and Business Media LLC: 204–286. 249:
Semi-empirical calculations are much faster than their
1080:(2). Springer Science and Business Media LLC: 95–106. 631:, B. O'Leary and R. B. Mallion, Academic Press, 1978. 282:These methods can be grouped into several groups: 833:, Prentice Hall, 4th edition, (1991), pg 579–580 400:and is applicable to ground and excited states. 329:computer programs originally from the group of 170: 8: 278:Methods restricted to all valence electrons. 1205:Seifert, Gotthard; Joswig, Jan-Ole (2012). 253:counterparts, mostly due to the use of the 77:Multi-configurational self-consistent field 1250:Journal of Chemical Theory and Computation 1170:Journal of Chemical Theory and Computation 1121:Journal of Chemical Theory and Computation 790:. Royal Society of Chemistry (RSC): 1375. 386:, e.g. a large family of methods known as 177: 163: 15: 1326: 1261: 1181: 1140: 1033: 984: 899:Journal of the American Chemical Society 871:Journal of the American Chemical Society 238:. For all valence electron systems, the 99:Time-dependent density functional theory 61:Semi-empirical quantum chemistry methods 1365:Semiempirical quantum chemistry methods 846:, Wiley, Chichester, (2002), pg 126–131 424: 120: 90: 48: 26: 18: 926:The Journal of Computational Chemistry 111:Linearized augmented-plane-wave method 107:Orbital-free density functional theory 1211:WIREs Computational Molecular Science 844:Essentials of Computational Chemistry 7: 818:Approximate Molecular Orbital Theory 627:HĂĽckel Theory for Organic Chemists, 1301:Wang, Zikuan; Neese, Frank (2023). 784:Transactions of the Faraday Society 81:Quantum chemistry composite methods 1059:Reviews in Computational Chemistry 857:Reviews in Computational Chemistry 65:Møller–Plesset perturbation theory 14: 266:Methods restricted to Ď€-electrons 661:(6). AIP Publishing: 1397–1412. 1307:The Journal of Chemical Physics 741:The Journal of Chemical Physics 698:The Journal of Chemical Physics 655:The Journal of Chemical Physics 115:Projector augmented wave method 747:(5). AIP Publishing: 767–776. 704:(3). AIP Publishing: 466–471. 1: 1014:Journal of Molecular Modeling 1008:Stewart, James J. P. (2013). 965:Journal of Molecular Modeling 959:Stewart, James J. P. (2007). 261:Preferred application domains 153:Korringa–Kohn–Rostoker method 222:Type of simplifications used 816:J. Pople and D. Beveridge, 145:Empty lattice approximation 1381: 208:effects into the methods. 129:Nearly free electron model 43:Modern valence bond theory 1026:10.1007/s00894-012-1667-x 977:10.1007/s00894-007-0233-4 272:Pariser–Parr–Pople method 255:zero differential overlap 122:Electronic band structure 92:Density functional theory 69:Configuration interaction 1263:10.1021/acs.jctc.8b01176 1183:10.1021/acs.jctc.6b00403 1133:10.1021/acs.jctc.5b01046 313:Methods that are in the 300:that were introduced by 137:Muffin-tin approximation 50:Molecular orbital theory 39:Generalized valence bond 1074:Theoretica Chimica Acta 202:computational chemistry 141:k·p perturbation theory 579:Zeitschrift fĂĽr Physik 528:Zeitschrift fĂĽr Physik 485:Zeitschrift fĂĽr Physik 434:Zeitschrift fĂĽr Physik 240:extended HĂĽckel method 35:Coulson–Fischer theory 938:10.1002/jcc.540100208 384:Tight-binding methods 820:, McGraw–Hill, 1970. 796:10.1039/tf9534901375 206:electron correlation 20:Electronic structure 1319:2023JChPh.158r4102W 911:10.1021/ja00299a024 883:10.1021/ja00457a004 753:1953JChPh..21..767P 710:1953JChPh..21..466P 667:1963JChPh..39.1397H 641:Andrew Streitwieser 591:1933ZPhy...83..632H 540:1932ZPhy...76..628H 497:1931ZPhy...72..310H 446:1931ZPhy...70..204H 85:Quantum Monte Carlo 57:Hartree–Fock method 28:Valence bond theory 1086:10.1007/bf00574898 855:J. J. P. Stewart, 599:10.1007/bf01330865 548:10.1007/bf01341936 505:10.1007/bf01341953 454:10.1007/bf01339530 103:Thomas–Fermi model 1328:10.1063/5.0141686 1223:10.1002/wcms.1094 971:(12): 1173–1213. 905:(13): 3902–3909. 877:(15): 4899–4907. 831:Quantum Chemistry 761:10.1063/1.1699030 718:10.1063/1.1698929 675:10.1063/1.1734456 196:are based on the 192:quantum chemistry 187: 186: 1372: 1349: 1348: 1330: 1298: 1292: 1291: 1265: 1256:(3): 1652–1671. 1241: 1235: 1234: 1202: 1196: 1195: 1185: 1176:(9): 4400–4422. 1161: 1155: 1154: 1144: 1127:(3): 1082–1096. 1112: 1106: 1105: 1069: 1063: 1054: 1048: 1047: 1037: 1005: 999: 998: 988: 956: 950: 949: 921: 915: 914: 893: 887: 886: 866: 860: 853: 847: 840: 834: 827: 821: 814: 808: 807: 779: 773: 772: 736: 730: 729: 693: 687: 686: 650: 644: 638: 632: 625: 619: 618: 574: 568: 567: 523: 517: 516: 480: 474: 473: 429: 288:Methods such as 242:was proposed by 179: 172: 165: 149:GW approximation 16: 1380: 1379: 1375: 1374: 1373: 1371: 1370: 1369: 1355: 1354: 1353: 1352: 1300: 1299: 1295: 1243: 1242: 1238: 1204: 1203: 1199: 1163: 1162: 1158: 1114: 1113: 1109: 1071: 1070: 1066: 1055: 1051: 1007: 1006: 1002: 958: 957: 953: 923: 922: 918: 895: 894: 890: 868: 867: 863: 854: 850: 841: 837: 828: 824: 815: 811: 781: 780: 776: 738: 737: 733: 695: 694: 690: 652: 651: 647: 639: 635: 626: 622: 576: 575: 571: 525: 524: 520: 482: 481: 477: 431: 430: 426: 421: 409: 349:, PM6, PM7 and 280: 268: 263: 224: 190:Semi-empirical 183: 151: 147: 143: 139: 135: 131: 113: 109: 105: 101: 83: 79: 75: 73:Coupled cluster 71: 67: 63: 59: 41: 37: 12: 11: 5: 1378: 1376: 1368: 1367: 1357: 1356: 1351: 1350: 1313:(18): 184102. 1293: 1236: 1217:(3): 456–465. 1197: 1156: 1107: 1064: 1049: 1000: 951: 932:(2): 209–220. 916: 888: 861: 848: 842:C. J. Cramer, 835: 822: 809: 774: 731: 688: 645: 633: 620: 569: 518: 475: 423: 422: 420: 417: 416: 415: 408: 405: 404: 403: 402: 401: 394: 393: 392: 391: 378: 377: 376: 375: 357: 356: 355: 354: 308: 307: 306: 305: 279: 276: 267: 264: 262: 259: 244:Roald Hoffmann 223: 220: 185: 184: 182: 181: 174: 167: 159: 156: 155: 125: 124: 118: 117: 95: 94: 88: 87: 53: 52: 46: 45: 31: 30: 24: 23: 13: 10: 9: 6: 4: 3: 2: 1377: 1366: 1363: 1362: 1360: 1346: 1342: 1338: 1334: 1329: 1324: 1320: 1316: 1312: 1308: 1304: 1297: 1294: 1289: 1285: 1281: 1277: 1273: 1269: 1264: 1259: 1255: 1251: 1247: 1240: 1237: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1201: 1198: 1193: 1189: 1184: 1179: 1175: 1171: 1167: 1160: 1157: 1152: 1148: 1143: 1138: 1134: 1130: 1126: 1122: 1118: 1111: 1108: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1068: 1065: 1061: 1060: 1053: 1050: 1045: 1041: 1036: 1031: 1027: 1023: 1019: 1015: 1011: 1004: 1001: 996: 992: 987: 982: 978: 974: 970: 966: 962: 955: 952: 947: 943: 939: 935: 931: 927: 920: 917: 912: 908: 904: 900: 892: 889: 884: 880: 876: 872: 865: 862: 858: 852: 849: 845: 839: 836: 832: 826: 823: 819: 813: 810: 805: 801: 797: 793: 789: 785: 778: 775: 770: 766: 762: 758: 754: 750: 746: 742: 735: 732: 727: 723: 719: 715: 711: 707: 703: 699: 692: 689: 684: 680: 676: 672: 668: 664: 660: 656: 649: 646: 642: 637: 634: 630: 629:C. A. Coulson 624: 621: 616: 612: 608: 604: 600: 596: 592: 588: 584: 581:(in German). 580: 573: 570: 565: 561: 557: 553: 549: 545: 541: 537: 533: 530:(in German). 529: 522: 519: 514: 510: 506: 502: 498: 494: 490: 487:(in German). 486: 479: 476: 471: 467: 463: 459: 455: 451: 447: 443: 439: 436:(in German). 435: 428: 425: 418: 414: 411: 410: 406: 398: 397: 396: 395: 389: 385: 382: 381: 380: 379: 373: 369: 365: 361: 360: 359: 358: 352: 348: 344: 340: 336: 332: 331:Michael Dewar 328: 324: 320: 316: 312: 311: 310: 309: 303: 299: 295: 291: 287: 286: 285: 284: 283: 277: 275: 273: 265: 260: 258: 256: 252: 247: 245: 241: 237: 233: 232:HĂĽckel method 229: 221: 219: 217: 216: 209: 207: 203: 199: 195: 193: 180: 175: 173: 168: 166: 161: 160: 158: 157: 154: 150: 146: 142: 138: 134: 133:Tight binding 130: 127: 126: 123: 119: 116: 112: 108: 104: 100: 97: 96: 93: 89: 86: 82: 78: 74: 70: 66: 62: 58: 55: 54: 51: 47: 44: 40: 36: 33: 32: 29: 25: 21: 17: 1310: 1306: 1296: 1253: 1249: 1239: 1214: 1210: 1200: 1173: 1169: 1159: 1124: 1120: 1110: 1077: 1073: 1067: 1057: 1052: 1017: 1013: 1003: 968: 964: 954: 929: 925: 919: 902: 898: 891: 874: 870: 864: 851: 843: 838: 830: 829:Ira Levine, 825: 817: 812: 787: 783: 777: 744: 740: 734: 701: 697: 691: 658: 654: 648: 636: 623: 582: 578: 572: 531: 527: 521: 488: 484: 478: 437: 433: 427: 333:. These are 281: 269: 250: 248: 236:Erich HĂĽckel 234:proposed by 225: 214: 210: 198:Hartree–Fock 189: 188: 60: 1056:M. Zerner, 1020:(1): 1–32. 228:Hamiltonian 419:References 302:John Pople 1345:258565304 1272:1549-9618 1231:121521740 1094:0040-5744 804:0014-7672 769:0021-9606 726:0021-9606 683:0021-9606 615:121710615 607:1434-6001 564:121787219 556:1434-6001 513:1434-6001 470:186218131 462:1434-6001 251:ab initio 218:results. 215:ab initio 1359:Category 1337:37154284 1288:73419235 1280:30741547 1192:27380455 1151:26771204 1102:98468383 1044:23187683 995:17828561 946:36907984 407:See also 1315:Bibcode 1142:4785507 1035:3536963 986:2039871 749:Bibcode 706:Bibcode 663:Bibcode 587:Bibcode 536:Bibcode 493:Bibcode 442:Bibcode 325:and/or 323:SPARTAN 194:methods 22:methods 1343:  1335:  1286:  1278:  1270:  1229:  1190:  1149:  1139:  1100:  1092:  1042:  1032:  993:  983:  944:  802:  767:  724:  681:  613:  605:  562:  554:  511:  468:  460:  290:CNDO/2 1341:S2CID 1284:S2CID 1227:S2CID 1098:S2CID 942:S2CID 611:S2CID 560:S2CID 466:S2CID 368:SINDO 364:ZINDO 335:MINDO 319:AMPAC 315:MOPAC 1333:PMID 1276:PMID 1268:ISSN 1188:PMID 1147:PMID 1090:ISSN 1040:PMID 991:PMID 800:ISSN 765:ISSN 722:ISSN 679:ISSN 603:ISSN 552:ISSN 509:ISSN 458:ISSN 388:DFTB 372:MRCI 366:and 351:SAM1 339:MNDO 327:CP2K 298:NDDO 296:and 294:INDO 1323:doi 1311:158 1258:doi 1219:doi 1178:doi 1137:PMC 1129:doi 1082:doi 1030:PMC 1022:doi 981:PMC 973:doi 934:doi 907:doi 903:107 879:doi 792:doi 757:doi 714:doi 671:doi 595:doi 544:doi 501:doi 450:doi 347:PM3 343:AM1 1361:: 1339:. 1331:. 1321:. 1309:. 1305:. 1282:. 1274:. 1266:. 1254:15 1252:. 1248:. 1225:. 1213:. 1209:. 1186:. 1174:12 1172:. 1168:. 1145:. 1135:. 1125:12 1123:. 1119:. 1096:. 1088:. 1078:57 1076:. 1038:. 1028:. 1018:19 1016:. 1012:. 989:. 979:. 969:13 967:. 963:. 940:. 930:10 928:. 901:. 875:99 873:. 798:. 788:49 786:. 763:. 755:. 745:21 743:. 720:. 712:. 702:21 700:. 677:. 669:. 659:39 657:. 609:. 601:. 593:. 583:83 558:. 550:. 542:. 532:76 507:. 499:. 489:72 464:. 456:. 448:. 438:70 345:, 341:, 337:, 321:, 317:, 292:, 246:. 1347:. 1325:: 1317:: 1290:. 1260:: 1233:. 1221:: 1215:2 1194:. 1180:: 1153:. 1131:: 1104:. 1084:: 1046:. 1024:: 997:. 975:: 948:. 936:: 913:. 909:: 885:. 881:: 806:. 794:: 771:. 759:: 751:: 728:. 716:: 708:: 685:. 673:: 665:: 617:. 597:: 589:: 566:. 546:: 538:: 515:. 503:: 495:: 472:. 452:: 444:: 178:e 171:t 164:v

Index

Electronic structure
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Møller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation
Korringa–Kohn–Rostoker method
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑