Knowledge (XXG)

Orbital integral

Source 📝

611: 320:
is no longer assumed to be compact, but instead is assumed to be only unimodular. Lorentzian symmetric spaces are of this kind. The orbital integrals in this case are also obtained by integrating over a
211: 535: 393: 652: 676: 593: 577: 645: 564: 133: 460: 681: 671: 638: 94: 343: 544:
is compact (but not necessarily symmetric), a similar shortcut works. The problem is more interesting when
584:
Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions
618: 28: 548:
is non-compact. For example, the Radon transform is the orbital integral that results by taking
589: 560: 423: 36: 622: 297: 431: 300:
and the left and right Haar measures coincide and can be normalized so that the mass of
582: 427: 75: 32: 665: 117: 285: 308:
Orbital integrals of suitable functions can also be defined on homogeneous spaces
71: 20: 109: 610: 426:
is to reconstruct a function from knowledge of its orbital integrals. The
124: 120: 40: 450:) is the average value of ƒ over the generalized sphere of radius 44: 559:
Orbital integrals are an important technical tool in the theory of
47:, one integrates over generalized spheres: for a homogeneous space 442:
is a Riemannian symmetric space, the problem is trivial, since
127:
spheres and the spherical averaging operator is defined as
258:
is an arbitrary element of the geodesic sphere of radius
626: 463: 346: 136: 206:{\displaystyle M^{r}f(x)=\int _{K}f(gk\cdot y)\,dk,} 563:, where they enter into the formulation of various 581: 529: 410:is a group element that represents the coset  387: 205: 530:{\displaystyle f(x)=\lim _{r\to 0^{+}}M^{r}f(x).} 480: 646: 284:the integration is taken with respect to the 8: 653: 639: 93:The model case for orbital integrals is a 506: 494: 483: 462: 388:{\displaystyle \int _{K}f(gk\cdot y)\,dk} 378: 351: 345: 193: 166: 141: 135: 220:the dot denotes the action of the group 552:to be the Euclidean isometry group and 123:. Generalized spheres are then actual 16:Integral transform type in mathematics 7: 607: 605: 556:the isotropy group of a hyperplane. 398:is the orbital integral centered at 333:with respect to the Haar measure of 625:. You can help Knowledge (XXG) by 14: 609: 521: 515: 487: 473: 467: 375: 360: 190: 175: 156: 150: 1: 237:is a group element such that 434:are two special cases. When 402:over the orbit through  677:Mathematical analysis stubs 698: 604: 95:Riemannian symmetric space 224:on the homogeneous space 621:–related article is a 531: 389: 207: 619:mathematical analysis 532: 422:A central problem of 390: 208: 31:that generalizes the 461: 344: 134: 63:centered at a point 316:where the subgroup 588:, Academic Press, 578:Helgason, Sigurdur 527: 501: 385: 296:is compact, it is 203: 61:generalized sphere 37:homogeneous spaces 29:integral transform 682:Automorphic forms 672:Harmonic analysis 634: 633: 561:automorphic forms 479: 424:integral geometry 418:Integral geometry 689: 655: 648: 641: 613: 606: 598: 587: 536: 534: 533: 528: 511: 510: 500: 499: 498: 394: 392: 391: 386: 356: 355: 212: 210: 209: 204: 171: 170: 146: 145: 25:orbital integral 697: 696: 692: 691: 690: 688: 687: 686: 662: 661: 660: 659: 602: 596: 576: 573: 502: 490: 459: 458: 432:Radon transform 420: 347: 342: 341: 162: 137: 132: 131: 116:is a symmetric 91: 84: 69: 17: 12: 11: 5: 695: 693: 685: 684: 679: 674: 664: 663: 658: 657: 650: 643: 635: 632: 631: 614: 600: 599: 594: 572: 569: 565:trace formulas 538: 537: 526: 523: 520: 517: 514: 509: 505: 497: 493: 489: 486: 482: 478: 475: 472: 469: 466: 428:Funk transform 419: 416: 396: 395: 384: 381: 377: 374: 371: 368: 365: 362: 359: 354: 350: 306: 305: 282: 278:) =  249: 228: 214: 213: 202: 199: 196: 192: 189: 186: 183: 180: 177: 174: 169: 165: 161: 158: 155: 152: 149: 144: 140: 90: 87: 82: 76:isotropy group 67: 39:. Instead of 33:spherical mean 15: 13: 10: 9: 6: 4: 3: 2: 694: 683: 680: 678: 675: 673: 670: 669: 667: 656: 651: 649: 644: 642: 637: 636: 630: 628: 624: 620: 615: 612: 608: 603: 597: 595:0-12-338301-3 591: 586: 585: 579: 575: 574: 570: 568: 566: 562: 557: 555: 551: 547: 543: 524: 518: 512: 507: 503: 495: 491: 484: 476: 470: 464: 457: 456: 455: 453: 449: 445: 441: 437: 433: 429: 425: 417: 415: 413: 409: 405: 401: 382: 379: 372: 369: 366: 363: 357: 352: 348: 340: 339: 338: 336: 332: 328: 324: 319: 315: 311: 303: 299: 295: 291: 287: 283: 281: 277: 273: 269: 265: 261: 257: 254: ∈  253: 250: 248: 244: 241: =  240: 236: 233: ∈  232: 229: 227: 223: 219: 218: 217: 200: 197: 194: 187: 184: 181: 178: 172: 167: 163: 159: 153: 147: 142: 138: 130: 129: 128: 126: 122: 119: 115: 111: 107: 103: 99: 96: 88: 86: 81: 77: 73: 66: 62: 58: 54: 51: =  50: 46: 42: 38: 34: 30: 26: 22: 627:expanding it 616: 601: 583: 558: 553: 549: 545: 541: 539: 451: 447: 443: 439: 435: 421: 411: 407: 406:. As above, 403: 399: 397: 334: 330: 326: 322: 317: 313: 309: 307: 301: 293: 289: 286:Haar measure 279: 275: 271: 267: 263: 262:centered at 259: 255: 251: 246: 242: 238: 234: 230: 225: 221: 215: 113: 105: 101: 97: 92: 79: 64: 60: 56: 52: 48: 35:operator to 24: 18: 41:integrating 21:mathematics 666:Categories 571:References 325:-orbit in 298:unimodular 89:Definition 488:→ 370:⋅ 349:∫ 185:⋅ 164:∫ 110:Lie group 580:(1984), 337:. Thus 125:geodesic 121:subgroup 104:, where 78:of  446:ƒ( 292:(since 118:compact 74:of the 45:spheres 592:  454:, and 304:is 1). 216:where 70:is an 27:is an 617:This 540:When 108:is a 72:orbit 43:over 23:, an 623:stub 590:ISBN 430:and 112:and 59:, a 481:lim 288:on 266:: 19:In 668:: 567:. 414:. 85:. 654:e 647:t 640:v 629:. 554:K 550:G 546:K 542:K 525:. 522:) 519:x 516:( 513:f 508:r 504:M 496:+ 492:0 485:r 477:= 474:) 471:x 468:( 465:f 452:r 448:x 444:M 440:K 438:/ 436:G 412:x 408:g 404:y 400:x 383:k 380:d 376:) 373:y 367:k 364:g 361:( 358:f 353:K 335:K 331:K 329:/ 327:G 323:K 318:K 314:K 312:/ 310:G 302:K 294:K 290:K 280:r 276:y 274:, 272:x 270:( 268:d 264:x 260:r 256:X 252:y 247:o 245:· 243:g 239:x 235:G 231:g 226:X 222:G 201:, 198:k 195:d 191:) 188:y 182:k 179:g 176:( 173:f 168:K 160:= 157:) 154:x 151:( 148:f 143:r 139:M 114:K 106:G 102:K 100:/ 98:G 83:0 80:x 68:0 65:x 57:H 55:/ 53:G 49:X

Index

mathematics
integral transform
spherical mean
homogeneous spaces
integrating
spheres
orbit
isotropy group
Riemannian symmetric space
Lie group
compact
subgroup
geodesic
Haar measure
unimodular
integral geometry
Funk transform
Radon transform
automorphic forms
trace formulas
Helgason, Sigurdur
Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions
ISBN
0-12-338301-3
Stub icon
mathematical analysis
stub
expanding it
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.