Knowledge (XXG)

Organostannane addition

Source đź“ť

244:
The possibility of incorporating oxygen-containing substituents into allyl- and allenylstannanes expands their scope and utility substantially over methods relying on more reactive organometallics. These compounds are usually prepared by enantioselective reduction with a chiral reducing agent such as
224:
Thermal additions of stannanes are limited (because of the high temperatures and pressures required) to only simple aldehyde substrates. Lewis acid promoted and transmetalation reactions are much milder and have achieved synthetic utility. Intramolecular addition gives five- or six-membered rings
146:
In the presence of certain Lewis acids, transmetalation may occur before addition. Complex reaction mixtures may result if transmetalation is not complete or if an equilibrium between allylic isomers exists. Tin(IV) chloride and indium(III) chloride have been employed for useful reactions in this
63:
Three modes allow the addition of allylstannanes to carbonyls: thermal addition, Lewis-acid-promoted addition, and addition involving prior transmetalation. Each of these modes invokes a unique model for stereocontrol, but in all cases, a distinction is made between reagent and substrate control.
83:
With the allylstannane and aldehyde in high-temperature conditions, addition proceeds through a six-membered, cyclic transition state, with the tin center serving as an organizing element. The configuration of the double bond in the allylstannane controls the sense of diastereoselectivity of the
29:
addition to carbonyl groups constitutes one of the most common and efficient methods for the construction of contiguous, oxygen-containing stereocenters in organic molecules. As many molecules containing this motif—polypropionates and polyacetates, for instance—are desired by natural products
49:
Organostannanes are known for their stability, ease of handling, and selective reactivity. Chiral allylstannanes often react with good stereoselectivity to give single diastereomers. Models explaining the sense of selectivity are reliable. In terms of disadvantages, stoichiometric amounts of
287:
Nucleophilic addition to propargyl mesylates or tosylates is used to form allenylstannanes. These compounds react similarly to allylstannanes to afford homopropargyl alcohols, and any of the three reaction modes described above can be used with this class of reagents as well.
362:
Repeated use of the allylic stannane addition in an intramolecular sense was used in the synthesis of hemibrevetoxin B (one example is shown below). The pseudoequatorial positions of both "appendages" in the starting material lead to the observed stereoisomer.
377: 161: 30:
chemists, the title reaction has become important synthetically and has been heavily studied over the years. Substituted allylstannanes may create one or two new stereocenters, often with a very high degree of stereocontrol.
44: 343:
diastereomer as a single stereoisomer. A subsequent sigmatropic rearrangement increased the distance between the stereocenters even further. This step was carried out en route to (±)-patulolide C.
307:
Imines are less reactive than the corresponding aldehydes, but palladium catalysis can be used to facilitate addition into imines. The use of iminium ions as electrophiles has also been reported.
19:
reactions comprise the nucleophilic addition of an allyl-, allenyl-, or propargylstannane to an aldehyde, imine, or, in rare cases, a ketone. The reaction is widely used for
264:
The use of chiral electrophiles is common and can provide "double diastereoselection" if the stannane is also chiral. Chelation control using Lewis acids such as
115:
product predominantly (Type II). The origin of this selectivity has been debated, and depends on the relative energies of a number of acyclic transition states. (
321: 302: 282: 245:
BINAL-H. In the presence of a Lewis acid, isomerization of α-alkoxy allylstannanes to the corresponding γ-alkoxy isomers takes place.
213: 98: 259: 239: 357: 141: 50:
metal-containing byproducts are generated. Additions to sterically encumbered pi bonds, such as those of ketones, are uncommon.
754: 172: 393: 204: 20: 388: 265: 80:' mechanism involving concerted dissociation of tin and C-C bond formation at the Îł position. 425: 64:
Substrate-controlled additions typically involve chiral aldehydes or imines and invoke the
65: 748: 175:, non-racemic Lewis acids are known. The chiral (acyloxy)borane or "CAB" catalyst 429: 413: 103:
This is not the case in Lewis-acid-promoted reactions, in which either the (
26: 320: 301: 281: 258: 238: 212: 97: 376: 268:
can lead to high stereoselectivities for reactions of α-alkoxy aldehydes.
336: 180: 356: 192: 160: 140: 68:. When all reagents are achiral, only simple diastereoselectivity ( 196: 184: 43: 76:, see above) must be considered. Addition takes place via an S 500:
Keck, G. E.; Savin, K. A.; Cressman, E. N. K.; Abbott, D. E.
207:
via the Lewis-acid-promoted mechanism described above.
171:
A wide variety of enantioselective additions employing
576:Marshall, J. A.; Jablonowski, J. A.; Jiang, H. 8: 520:Keck, G. E.; Dougherty, S. M.; Savin, K. A. 460:Keck, G. E.; Dougherty, S. M.; Savin, K. A. 225:under Lewis acidic or thermal conditions. 404: 672:Nakamura, H.; Iwama, H.; Yamamoto, Y. 7: 123:selectivity than the corresponding ( 636:Hara, O.; Hamada, Y.; Shioiri, T. 616:Marshall, J. A.; Yashunsky, D. V. 203:provide addition products in high 14: 375: 355: 319: 300: 280: 257: 237: 211: 159: 139: 96: 42: 556:Marshall, J. A.; Hinkle, K. W. 540:McNeill, A. H.; Thomas, E. J. 1: 596:Marshall, J. A.; Gung, W. Y. 440:Denmark, S. E.; Weber, E. J. 54:Mechanism and stereochemistry 708:Dorling, E.K.; Thomas, E.J. 694:J. Chem. Soc., Chem. Commun. 652:Ruitenberg, K.; Vermeer, P. 331:The chiral allylic stannane 480:Denmark, S.E.; Weber, E.J. 430:10.1002/0471264180.or064.01 119:)-Stannanes exhibit higher 771: 728:Kadota, I.; Yamamoto, Y. 692:Yamamoto, Y.; Schmid, M. 167:Enantioselective variants 111:)-stannane affords the 17:Organostannane addition 327:Synthetic applications 220:Scope and limitations 59:Prevailing mechanism 394:Carbonyl allylation 21:carbonyl allylation 389:Krische allylation 755:Organic reactions 710:Tetrahedron Lett. 674:J. Am. Chem. Soc. 654:Tetrahedron Lett. 598:Tetrahedron Lett. 522:J. Am. Chem. Soc. 462:J. Am. Chem. Soc. 442:J. Am. Chem. Soc. 339:to yield the 1,5- 266:magnesium bromide 762: 740: 726: 720: 706: 700: 690: 684: 670: 664: 650: 644: 634: 628: 614: 608: 594: 588: 574: 568: 554: 548: 538: 532: 518: 512: 498: 492: 482:Helv. Chim. Acta 478: 472: 458: 452: 438: 432: 409: 383:Related articles 379: 372: 359: 352: 323: 316: 304: 297: 284: 277: 261: 254: 241: 234: 215: 163: 156: 143: 136: 100: 93: 66:Felkin-Anh model 46: 39: 770: 769: 765: 764: 763: 761: 760: 759: 745: 744: 743: 727: 723: 707: 703: 691: 687: 671: 667: 651: 647: 635: 631: 615: 611: 595: 591: 575: 571: 555: 551: 539: 535: 519: 515: 499: 495: 479: 475: 459: 455: 439: 435: 410: 406: 402: 385: 380: 366: 360: 346: 329: 324: 310: 305: 291: 285: 271: 262: 248: 242: 228: 222: 169: 164: 150: 144: 130: 101: 87: 79: 61: 56: 47: 33: 12: 11: 5: 768: 766: 758: 757: 747: 746: 742: 741: 721: 701: 685: 665: 645: 629: 609: 589: 569: 549: 533: 513: 493: 473: 453: 433: 403: 401: 398: 397: 396: 391: 384: 381: 374: 354: 328: 325: 318: 299: 279: 256: 236: 221: 218: 217: 216: 168: 165: 158: 138: 95: 77: 60: 57: 55: 52: 41: 27:Organostannane 13: 10: 9: 6: 4: 3: 2: 767: 756: 753: 752: 750: 738: 734: 731: 730:J. Org. Chem. 725: 722: 718: 714: 711: 705: 702: 698: 695: 689: 686: 682: 678: 675: 669: 666: 662: 658: 655: 649: 646: 642: 639: 633: 630: 626: 622: 619: 618:J. Org. Chem. 613: 610: 606: 602: 599: 593: 590: 586: 582: 579: 578:J. Org. Chem. 573: 570: 566: 562: 559: 558:J. Org. Chem. 553: 550: 546: 543: 537: 534: 530: 526: 523: 517: 514: 510: 506: 503: 502:J. Org. Chem. 497: 494: 490: 486: 483: 477: 474: 470: 466: 463: 457: 454: 450: 446: 443: 437: 434: 431: 427: 423: 419: 416: 415: 408: 405: 399: 395: 392: 390: 387: 386: 382: 378: 373: 371: 370: 364: 358: 353: 351: 350: 344: 342: 338: 334: 326: 322: 317: 315: 314: 308: 303: 298: 296: 295: 289: 283: 278: 276: 275: 269: 267: 260: 255: 253: 252: 246: 240: 235: 233: 232: 226: 219: 214: 210: 209: 208: 206: 202: 198: 194: 190: 186: 182: 178: 174: 166: 162: 157: 155: 154: 148: 142: 137: 135: 134: 128: 127:)-stannanes. 126: 122: 118: 114: 110: 106: 99: 94: 92: 91: 85: 81: 75: 71: 67: 58: 53: 51: 45: 40: 38: 37: 31: 28: 24: 22: 18: 736: 732: 729: 724: 716: 712: 709: 704: 696: 693: 688: 680: 676: 673: 668: 660: 656: 653: 648: 640: 637: 632: 624: 620: 617: 612: 604: 600: 597: 592: 584: 580: 577: 572: 564: 560: 557: 552: 544: 541: 536: 528: 524: 521: 516: 508: 504: 501: 496: 488: 484: 481: 476: 468: 464: 461: 456: 448: 444: 441: 436: 421: 417: 412: 411:Gung, B. W. 407: 368: 367: 365: 361: 348: 347: 345: 340: 332: 330: 312: 311: 309: 306: 293: 292: 290: 286: 273: 272: 270: 263: 250: 249: 247: 243: 230: 229: 227: 223: 200: 188: 176: 170: 152: 151: 149: 145: 132: 131: 129: 124: 120: 116: 112: 108: 104: 102: 89: 88: 86: 82: 73: 69: 62: 48: 35: 34: 32: 25: 16: 15: 414:Org. React. 400:References 84:reaction. 542:Synthesis 424:, 1-112. 749:Category 337:acrolein 335:adds to 181:titanium 739:, 6597. 699:, 1310. 683:, 6641. 663:, 3019. 638:Synlett 627:, 5493. 607:, 7349. 587:, 2152. 567:, 1920. 531:, 6210. 511:, 7889. 491:, 1655. 471:, 6210. 451:, 7970. 199:system 187:system 107:)- or ( 72:versus 719:, 471. 643:, 283. 547:, 322. 193:silver 191:, and 173:chiral 147:mode. 197:BINAP 185:BINOL 733:1998 713:1999 697:1989 677:1996 657:1984 641:1991 621:1991 601:1989 581:1999 561:1995 545:1994 525:1995 505:1994 485:1983 465:1995 445:1984 418:2004 369:(12) 349:(11) 313:(10) 74:anti 681:118 529:117 469:117 449:106 426:doi 341:syn 294:(9) 274:(8) 251:(7) 231:(6) 153:(4) 133:(3) 121:syn 113:syn 90:(2) 70:syn 36:(1) 751:: 737:63 735:, 717:40 715:, 679:, 661:25 659:, 625:56 623:, 605:30 603:, 585:64 583:, 565:60 563:, 527:, 509:59 507:, 489:66 487:, 467:, 447:, 422:64 420:, 205:ee 179:, 23:. 428:: 333:1 201:3 195:- 189:2 183:- 177:1 125:Z 117:E 109:E 105:Z 78:E

Index

carbonyl allylation
Organostannane

Felkin-Anh model



chiral
titanium
BINOL
silver
BINAP
ee



magnesium bromide



acrolein


Krische allylation
Carbonyl allylation
Org. React.
doi
10.1002/0471264180.or064.01
Category
Organic reactions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑