Knowledge (XXG)

Auxetics

Source 📝

98:. One of the first artificially produced auxetic materials, the RFS structure (diamond-fold structure), was invented in 1978 by the Berlin researcher K. Pietsch. Although he did not use the term auxetics, he describes for the first time the underlying lever mechanism and its non-linear mechanical reaction so he is therefore considered the inventor of the auxetic net. The earliest published example of a material with negative Poisson's constant is due to A. G. Kolpakov in 1985, "Determination of the average characteristics of elastic frameworks"; the next synthetic auxetic material was described in 154: 121:
publications were released, so the number of publications has exploded - a 165-fold increase in just 25 years - clearly showing that the topic of Auxetics is drawing considerable attention. However, although Auxetics are promising structures and have a lot of potential in science and engineering, their widespread application in multiple fields is still a challenge. Therefore, additional research related to Auxetics is required for widespread applications.
22: 236: 49:
Auxetic materials are used in protective equipment such as body armor, helmets, and knee pads, as they absorb energy more effectively than traditional materials. They are also used in devices such as medical stents or implants. Auxetic fabrics can be used to create comfortable and flexible clothing,
140:
string wound around an elastic cord. When the ends of the structure are pulled apart, the inelastic string straightens while the elastic cord stretches and winds around it, increasing the structure's effective volume. Auxetic behaviour at the macroscale can also be employed for the development of
120:
For these reasons, gradually, many researchers have become interested in the unique properties of Auxetics. This phenomenon is visible in the number of publications (Scopus search engine), as shown in the following figure. In 1991, there was only one publication. However, in 2016, around 165
1492: 144:
Auxetic materials also occur organically, although they are structurally different from man-made metamaterials. For example, the nuclei of mouse embryonic stem cells in a transition state display auxetic behavior.
1028:
Grima, J. N.; Winczewski, S.; Mizzi, L.; Grech, M. C.; Cauchi, R.; Gatt, R.; Attard, D.; Wojciechowski, K.W.; Rybicki, J. (2014). "Tailoring Graphene to Achieve Negative Poisson's Ratio Properties".
141:
products with enhanced characteristics such as footwear based on the auxetic rotating triangles structures developed by Grima and Evans and prosthetic feet with human-like toe joint properties.
1591:
Grima‐Cornish, James N.; Grima, Joseph N.; Evans, Kenneth E. (2017). "On the Structural and Mechanical Properties of Poly(Phenylacetylene) Truss-Like Hexagonal Hierarchical Nanonetworks".
1791:
Kaminakis, N; Stavroulakis, G (2012). "Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials".
39:, so that axial elongation causes transversal elongation (in contrast to an ordinary material, where stretching in one direction causes compression in the other direction). 760:
Li, Yan; Zeng, Changchun (2016). "On the successful fabrication of auxetic polyurethane foams: Materials requirement, processing strategy and conversion mechanism".
1192:
Bryukhanov, I.A.; Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Chiral Fe nanotubes with both negative Poisson's ratio and Poynting's effect. Atomistic simulation".
787:
Li, Yan; Zeng, Changchun (2016). "Room‐Temperature, Near‐Instantaneous Fabrication of Auxetic Materials with Constant Poisson's Ratio over Large Deformation".
830:
Yeganeh-Haeri, Amir; Weidner, Donald J.; Parise, John B. (31 July 1992). "Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio".
114:
to refer to this property probably began in 1991. Recently, cells were shown to display a biological version of auxeticity under certain conditions.
1122:
Rysaeva, L.Kh.; Baimova, J.A.; Lisovenko, D.S.; Gorodtsov, V.A.; Dmitriev, S.V. (2019). "Elastic properties of fullerites and diamond-like phases".
1071:
Grima, Joseph N.; Grech, Michael C.; Grima‐Cornish, James N.; Gatt, Ruben; Attard, Daphne (2018). "Giant Auxetic Behaviour in Engineered Graphene".
1243:
Gatt R, Vella Wood M, Gatt A, Zarb F, Formosa C, Azzopardi KM, Casha A, Agius TP, Schembri-Wismayer P, Attard L, Chockalingam N, Grima JN (2015).
117:
Designs of composites with inverted hexagonal periodicity cell (auxetic hexagon), possessing negative Poisson ratios, were published in 1985.
1157:
Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S.; Volkov, M.A. (2014). "Negative Poisson's ratio for cubic crystals and nano/microtubes".
1548:
Tiemo Bückmann; et al. (May 2012). "Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography".
50:
as well as technical fabrics for applications such as aerospace and sports equipment. Auxetic materials can also be used to create
107: 1711:
Carta, Giorgio; Brun, Michele; Baldi, Antonio (2016). "Design of a porous material with isotropic negative Poisson's ratio".
1006: 959:
Grima-Cornish, JN; Vella-Zarb, L; Grima, JN (2020). "Negative Linear Compressibility and Auxeticity in Boron Arsenate".
924:
Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals".
565: 157:
In footwear, auxetic design allows the sole to expand in size while walking or running, thereby increasing flexibility.
1820:"Determining the elastic constants of hydrocarbons of heavy oil products using molecular dynamics simulation approach" 556:
Ren, Xin, et al. "Auxetic metamaterials and structures: a review." Smart materials and structures 27.2 (2018): 023001.
669:
Hong, Woolim; Kumar, Namita Anil; Patrick, Shawanee; Um, Hui-Jin; Kim, Heon-Su; Kim, Hak-Sung; Hur, Pilwon (2022).
1884: 1303: 270: 239:
Production of auxetic metamaterials through the introduction of patterned microstructural cuts using direct
1244: 181:
Certain states of crystalline materials: Li, Na, K, Cu, Rb, Ag, Fe, Ni, Co, Cs, Au, Be, Ca, Zn, Sr, Sb, MoS
214: 265: 153: 51: 1864: 1757: 1675: 1600: 1394: 1201: 1131: 1080: 968: 839: 621: 531: 318: 95: 1493:"Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting" 224: 137: 1879: 1773: 1747: 1665: 1634: 1573: 1530: 1491:
Mizzi, Luke; Salvati, Enrico; Spaggiari, Andrea; Tan, Jin-Chong; Korsunsky, Alexander M. (2020).
1473: 1455: 1384: 1225: 1174: 1104: 1053: 984: 941: 906: 871: 812: 742: 698: 637: 594: 342: 36: 1693: 1626: 1565: 1522: 1428: 1410: 1353: 1267: 1217: 1096: 1045: 889:
Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. (2013). "Classification of cubic auxetics".
863: 855: 804: 690: 504: 413: 391: 334: 21: 671:"Empirical Validation of an Auxetic Structured Foot With the Powered Transfemoral Prosthesis" 522:
Kolpakov, A.G. (1985). "Determination of the average characteristics of elastic frameworks".
1831: 1800: 1765: 1720: 1683: 1616: 1608: 1557: 1512: 1504: 1465: 1418: 1402: 1343: 1335: 1259: 1209: 1166: 1139: 1088: 1037: 976: 933: 898: 847: 796: 769: 732: 682: 655: 629: 586: 539: 494: 484: 457: 403: 372: 326: 432: 243:. The thin rubber surface with perforated architecture covers a spherical surface (orange) 1322:
Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing (2015).
1761: 1679: 1604: 1398: 1205: 1135: 1084: 972: 843: 625: 535: 322: 94:), meaning 'increase' (noun). This terminology was coined by Professor Ken Evans of the 1423: 1372: 1348: 1323: 499: 67: 1804: 1738:
Cabras, Luigi; Brun, Michele (2016). "A class of auxetic three-dimensional lattices".
390:
Liu, Yangzuo; Zhao, Changfang; Xu, Cheng; Ren, Jie; Zhong, Jianlin (1 December 2023).
1873: 1638: 1577: 1534: 1477: 1446:
Eidini, Maryam (2016). "Zigzag-base folded sheet cellular mechanical metamaterials".
1229: 1178: 1108: 988: 945: 910: 875: 746: 720: 702: 641: 598: 543: 461: 376: 240: 1777: 1057: 346: 133:, which is what allows the hinge-like areas of the auxetic microstructures to flex. 1658:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
1508: 816: 309:
Lakes, R.S. (27 February 1987), "Foam structures with a negative Poisson's ratio",
280: 275: 175: 166: 32: 1854: 1724: 937: 773: 330: 1836: 1263: 851: 251:
Chain organic molecules. Recent researches revealed that organic crystals like n-
1285: 1769: 1654:"Auxetic two-dimensional lattices with Poisson's ratio arbitrarily close to −1" 1213: 670: 408: 1859: 1469: 1170: 737: 721:"Chromatin Compaction, Auxeticity, and the Epigenetic Landscape of Stem Cells" 633: 590: 235: 228: 1697: 1630: 1526: 1414: 1100: 859: 694: 686: 489: 417: 223:
Several types of origami folds like the Diamond-Folding-Structure (RFS), the
1688: 1653: 1612: 1569: 1561: 1432: 1406: 1357: 1271: 1221: 1143: 1092: 1049: 1041: 980: 902: 867: 808: 800: 508: 475:
Morrish, RB (2019), "Single Cell Imaging of Nuclear Architecture Changes",
338: 248:
Tailored structures designed to exhibit special designed Poisson's ratios.
82:) which means 'that which tends to increase' and has its root in the word 1517: 1245:"Negative Poisson's ratios in tendons: An unexpected mechanical response" 612:
Grima, JN; Evans, KE (2006). "Auxetic behavior from rotating triangles".
218: 195: 43: 1621: 577:
Grima, JN; Evans, KE (2000). "Auxetic behavior from rotating squares".
198:, which can be made auxetic through the introduction of vacancy defects 130: 1339: 392:"Auxetic meta-materials and their engineering applications: a review" 252: 1819: 1752: 1460: 1389: 106:
structures with a Negative Poisson's Ratio" by R.S. Lakes from the
1670: 363:
Evans, Ken (1991), "Auxetic polymers: a new range of materials.",
285: 234: 172:
Nuclei of mouse embryonic stem cells in exiting pluripotent state
152: 1373:"Unraveling metamaterial properties in zigzag-base folded sheets" 448:
Evans, Ken (1991), "Auxetic polymers: a new range of materials",
566:
A stretch of the imagination – 7 June 1997 – New Scientist Space
136:
At the macroscale, auxetic behaviour can be illustrated with an
103: 46:, crystals, or a particular structure of macroscopic matter. 255:
and similar to them may demonstrate an auxetic behavior.
288:, a type of commercially manufactured auxetic material 719:
Tripathi, Kamal; Menon, Gautam I. (28 October 2019).
207:
Living bone tissue (although this is only suspected)
83: 71: 1740:Journal of the Mechanics and Physics of Solids 231:, and other periodic patterns derived from it. 16:Materials that have a negative Poisson's ratio 8: 1824:Journal of Petroleum Science and Engineering 1497:International Journal of Mechanical Sciences 1371:Eidini, Maryam; Paulino, Glaucio H. (2015). 524:Journal of Applied Mathematics and Mechanics 210:Tendons within their normal range of motion. 1865:General Information about Auxetic Materials 89: 77: 1835: 1751: 1687: 1669: 1620: 1516: 1459: 1422: 1388: 1347: 1311:. University of Cambridge, Clare College. 736: 498: 488: 407: 1324:"Origami based Mechanical Metamaterials" 1000: 998: 20: 1855:Materials with negative Poisson's ratio 358: 356: 304: 302: 298: 161:Examples of auxetic materials include: 656:"Nike Free 2016 product press release" 129:Typically, auxetic materials have low 1652:Cabras, Luigi; Brun, Michele (2014). 714: 712: 54:for controlling sound and vibration. 7: 1194:Journal of Physics: Condensed Matter 675:IEEE Robotics and Automation Letters 579:Journal of Materials Science Letters 431:Quinion, Michael (9 November 1996), 1305:Folded Shell Structures, PhD Thesis 14: 1805:10.1016/j.compositesb.2012.03.018 108:University of Wisconsin Madison 1509:10.1016/j.ijmecsci.2019.105242 1007:"A stretch of the imagination" 1: 1793:Composites Part B Engineering 1725:10.1016/j.mechmat.2016.02.012 938:10.1016/j.mechmat.2019.03.017 774:10.1016/j.polymer.2016.01.076 331:10.1126/science.235.4792.1038 227:-fold-structure (FFS) or the 1837:10.1016/j.petrol.2014.12.021 1264:10.1016/j.actbio.2015.06.018 1005:Burke, Maria (7 June 1997), 852:10.1126/science.257.5070.650 614:Journal of Materials Science 544:10.1016/0021-8928(85)90011-5 462:10.1016/0160-9327(91)90123-S 396:Engineering Research Express 377:10.1016/0160-9327(91)90123-S 84: 72: 1901: 1770:10.1016/j.jmps.2016.02.010 201:Carbon diamond-like phases 192:Certain rocks and minerals 1470:10.1016/j.eml.2015.12.006 1448:Extreme Mechanics Letters 1171:10.1134/S1029959914020027 738:10.1103/PhysRevX.9.041020 634:10.1007/s10853-006-6339-8 90: 78: 1214:10.1088/1361-648X/ab3a04 687:10.1109/LRA.2022.3194673 490:10.3389/fcell.2019.00141 409:10.1088/2631-8695/ad0eb1 1860:Auxetic foam in youtube 1593:Physica Status Solidi B 1124:Physica Status Solidi B 891:Physica Status Solidi B 591:10.1023/A:1006781224002 271:Mechanical metamaterial 42:Auxetics can be single 1713:Mechanics of Materials 1689:10.1098/rspa.2014.0538 1613:10.1002/pssb.201700190 1562:10.1002/adma.201200584 1407:10.1126/sciadv.1500224 1159:Physical Mesomechanics 1144:10.1002/pssb.201800049 1093:10.1002/andp.201700330 1042:10.1002/adma.201404106 981:10.1002/andp.201900550 926:Mechanics of Materials 903:10.1002/pssb.201384233 801:10.1002/adma.201505650 477:Front. Cell Dev. Biol. 244: 215:polytetrafluorethylene 158: 110:. The use of the word 52:acoustic metamaterials 25: 1818:Stetsenko, M (2015). 1302:Mark, Schenk (2011). 266:Acoustic metamaterial 238: 213:Specific variants of 156: 29:Auxetic metamaterials 24: 96:University of Exeter 1762:2016JMPSo..91...56C 1680:2014RSPSA.47040538C 1605:2017PSSBR.25400190G 1399:2015SciA....1E0224E 1206:2019JPCM...31U5304B 1136:2019PSSBR.25600049R 1085:2018AnP...53000330G 973:2020AnP...53200550G 844:1992Sci...257..650Y 626:2006JMatS..41.3193G 536:1985JApMM..49..739K 323:1987Sci...235.1038L 204:Noncarbon nanotubes 102:in 1987, entitled " 1664:(2172): 20140538. 1550:Advanced Materials 1328:Scientific Reports 1073:Annalen der Physik 1030:Advanced Materials 961:Annalen der Physik 789:Advanced Materials 681:(4): 11228–11235. 245: 159: 26: 1556:(20): 2710–2714. 1340:10.1038/srep05979 1287:Auxetic materials 897:(10): 2038–2043. 838:(5070): 650–652. 795:(14): 2822–2826. 725:Physical Review X 620:(10): 3193–3196. 585:(17): 1563–1565. 317:(4792): 1038–40, 217:polymers such as 66:derives from the 1892: 1885:Geometric shapes 1842: 1841: 1839: 1815: 1809: 1808: 1799:(6): 2655–2668. 1788: 1782: 1781: 1755: 1735: 1729: 1728: 1708: 1702: 1701: 1691: 1673: 1649: 1643: 1642: 1624: 1588: 1582: 1581: 1545: 1539: 1538: 1520: 1488: 1482: 1481: 1463: 1443: 1437: 1436: 1426: 1392: 1377:Science Advances 1368: 1362: 1361: 1351: 1319: 1313: 1312: 1310: 1299: 1293: 1291: 1282: 1276: 1275: 1249: 1240: 1234: 1233: 1189: 1183: 1182: 1154: 1148: 1147: 1119: 1113: 1112: 1068: 1062: 1061: 1036:(8): 1455–1459. 1025: 1019: 1018: 1002: 993: 992: 956: 950: 949: 921: 915: 914: 886: 880: 879: 827: 821: 820: 784: 778: 777: 757: 751: 750: 740: 716: 707: 706: 666: 660: 659: 652: 646: 645: 609: 603: 602: 574: 568: 563: 557: 554: 548: 547: 519: 513: 511: 502: 492: 472: 466: 464: 445: 439: 437: 428: 422: 421: 411: 387: 381: 379: 360: 351: 350: 306: 93: 92: 87: 81: 80: 75: 35:with a negative 1900: 1899: 1895: 1894: 1893: 1891: 1890: 1889: 1870: 1869: 1851: 1846: 1845: 1817: 1816: 1812: 1790: 1789: 1785: 1737: 1736: 1732: 1710: 1709: 1705: 1651: 1650: 1646: 1599:(12): 1700190. 1590: 1589: 1585: 1547: 1546: 1542: 1490: 1489: 1485: 1445: 1444: 1440: 1383:(8): e1500224. 1370: 1369: 1365: 1321: 1320: 1316: 1308: 1301: 1300: 1296: 1284: 1283: 1279: 1247: 1242: 1241: 1237: 1191: 1190: 1186: 1156: 1155: 1151: 1121: 1120: 1116: 1070: 1069: 1065: 1027: 1026: 1022: 1004: 1003: 996: 958: 957: 953: 923: 922: 918: 888: 887: 883: 829: 828: 824: 786: 785: 781: 759: 758: 754: 718: 717: 710: 668: 667: 663: 654: 653: 649: 611: 610: 606: 576: 575: 571: 564: 560: 555: 551: 521: 520: 516: 474: 473: 469: 447: 446: 442: 430: 429: 425: 389: 388: 384: 362: 361: 354: 308: 307: 300: 295: 262: 188: 184: 151: 127: 60: 37:Poisson's ratio 17: 12: 11: 5: 1898: 1896: 1888: 1887: 1882: 1872: 1871: 1868: 1867: 1862: 1857: 1850: 1849:External links 1847: 1844: 1843: 1810: 1783: 1730: 1703: 1644: 1583: 1540: 1483: 1438: 1363: 1314: 1294: 1290:, 9 March 2001 1277: 1235: 1200:(47): 475304. 1184: 1149: 1130:(1): 1800049. 1114: 1079:(6): 1700330. 1063: 1020: 994: 967:(5): 1900550. 951: 916: 881: 822: 779: 752: 708: 661: 647: 604: 569: 558: 549: 530:(6): 739–745. 514: 467: 456:(4): 170–174, 440: 423: 382: 371:(4): 170–174, 352: 297: 296: 294: 291: 290: 289: 283: 278: 273: 268: 261: 258: 257: 256: 249: 233: 232: 221: 211: 208: 205: 202: 199: 193: 190: 186: 182: 179: 176:α-Cristobalite 173: 170: 150: 147: 126: 123: 59: 56: 31:are a type of 15: 13: 10: 9: 6: 4: 3: 2: 1897: 1886: 1883: 1881: 1878: 1877: 1875: 1866: 1863: 1861: 1858: 1856: 1853: 1852: 1848: 1838: 1833: 1829: 1825: 1821: 1814: 1811: 1806: 1802: 1798: 1794: 1787: 1784: 1779: 1775: 1771: 1767: 1763: 1759: 1754: 1749: 1745: 1741: 1734: 1731: 1726: 1722: 1718: 1714: 1707: 1704: 1699: 1695: 1690: 1685: 1681: 1677: 1672: 1667: 1663: 1659: 1655: 1648: 1645: 1640: 1636: 1632: 1628: 1623: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1587: 1584: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1544: 1541: 1536: 1532: 1528: 1524: 1519: 1518:11380/1185053 1514: 1510: 1506: 1502: 1498: 1494: 1487: 1484: 1479: 1475: 1471: 1467: 1462: 1457: 1453: 1449: 1442: 1439: 1434: 1430: 1425: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1391: 1386: 1382: 1378: 1374: 1367: 1364: 1359: 1355: 1350: 1345: 1341: 1337: 1333: 1329: 1325: 1318: 1315: 1307: 1306: 1298: 1295: 1289: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1252:Acta Biomater 1246: 1239: 1236: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1188: 1185: 1180: 1176: 1172: 1168: 1165:(2): 97–115. 1164: 1160: 1153: 1150: 1145: 1141: 1137: 1133: 1129: 1125: 1118: 1115: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1067: 1064: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1024: 1021: 1016: 1012: 1011:New Scientist 1008: 1001: 999: 995: 990: 986: 982: 978: 974: 970: 966: 962: 955: 952: 947: 943: 939: 935: 931: 927: 920: 917: 912: 908: 904: 900: 896: 892: 885: 882: 877: 873: 869: 865: 861: 857: 853: 849: 845: 841: 837: 833: 826: 823: 818: 814: 810: 806: 802: 798: 794: 790: 783: 780: 775: 771: 767: 763: 756: 753: 748: 744: 739: 734: 731:(4): 041020. 730: 726: 722: 715: 713: 709: 704: 700: 696: 692: 688: 684: 680: 676: 672: 665: 662: 657: 651: 648: 643: 639: 635: 631: 627: 623: 619: 615: 608: 605: 600: 596: 592: 588: 584: 580: 573: 570: 567: 562: 559: 553: 550: 545: 541: 537: 533: 529: 525: 518: 515: 510: 506: 501: 496: 491: 486: 482: 478: 471: 468: 463: 459: 455: 451: 444: 441: 436: 435: 427: 424: 419: 415: 410: 405: 402:(4): 042003. 401: 397: 393: 386: 383: 378: 374: 370: 366: 359: 357: 353: 348: 344: 340: 336: 332: 328: 324: 320: 316: 312: 305: 303: 299: 292: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 263: 259: 254: 250: 247: 246: 242: 241:laser cutting 237: 230: 226: 222: 220: 216: 212: 209: 206: 203: 200: 197: 194: 191: 189:, and others. 180: 177: 174: 171: 168: 164: 163: 162: 155: 148: 146: 142: 139: 134: 132: 124: 122: 118: 115: 113: 109: 105: 101: 97: 86: 74: 69: 65: 57: 55: 53: 47: 45: 40: 38: 34: 30: 23: 19: 1827: 1823: 1813: 1796: 1792: 1786: 1743: 1739: 1733: 1716: 1712: 1706: 1661: 1657: 1647: 1596: 1592: 1586: 1553: 1549: 1543: 1500: 1496: 1486: 1451: 1447: 1441: 1380: 1376: 1366: 1331: 1327: 1317: 1304: 1297: 1286: 1280: 1255: 1251: 1238: 1197: 1193: 1187: 1162: 1158: 1152: 1127: 1123: 1117: 1076: 1072: 1066: 1033: 1029: 1023: 1014: 1010: 964: 960: 954: 929: 925: 919: 894: 890: 884: 835: 831: 825: 792: 788: 782: 765: 761: 755: 728: 724: 678: 674: 664: 650: 617: 613: 607: 582: 578: 572: 561: 552: 527: 523: 517: 480: 476: 470: 453: 449: 443: 433: 426: 399: 395: 385: 368: 364: 314: 310: 281:Parallelogon 276:Metamaterial 167:polyurethane 160: 143: 135: 128: 119: 116: 111: 99: 63: 61: 48: 41: 33:metamaterial 28: 27: 18: 1830:: 124–130. 1622:10871/31485 1258:: 201–208. 225:herringbone 1874:Categories 1753:1506.04919 1503:: 105242. 1461:1509.08104 1454:: 96–102. 1390:1502.05977 1017:(2085): 36 768:: 98–107. 293:References 229:miura fold 125:Properties 1880:Materials 1746:: 56–72. 1719:: 67–75. 1698:1364-5021 1671:1407.5679 1639:126184802 1631:1521-3951 1578:205244958 1535:210231091 1527:0020-7403 1478:118424595 1415:2375-2548 1230:199519252 1179:137267947 1109:125889091 1101:1521-3889 989:216414513 946:140493258 911:117802510 876:137416819 860:0036-8075 747:209958957 703:251170703 695:2377-3766 642:137547536 599:138455050 450:Endeavour 418:2631-8695 365:Endeavour 253:paraffins 138:inelastic 79:αὐξητικός 73:auxetikos 62:The term 44:molecules 1778:85547530 1570:22495906 1433:26601253 1358:25099402 1334:: 5979. 1272:26102335 1222:31398716 1058:19738771 1050:25504060 868:17740733 809:26861805 509:31396512 347:21386778 339:17782252 260:See also 219:Gore-Tex 196:Graphene 165:Auxetic 149:Examples 1758:Bibcode 1676:Bibcode 1601:Bibcode 1424:4643767 1395:Bibcode 1349:4124469 1202:Bibcode 1132:Bibcode 1081:Bibcode 969:Bibcode 932:: 1–8. 840:Bibcode 832:Science 817:5260896 762:Polymer 622:Bibcode 532:Bibcode 500:6668442 483:: 141, 434:Auxetic 319:Bibcode 311:Science 131:density 112:auxetic 100:Science 91:αὔξησις 85:auxesis 64:auxetic 58:History 1776:  1696:  1637:  1629:  1576:  1568:  1533:  1525:  1476:  1431:  1421:  1413:  1356:  1346:  1270:  1228:  1220:  1177:  1107:  1099:  1056:  1048:  987:  944:  909:  874:  866:  858:  815:  807:  745:  701:  693:  640:  597:  507:  497:  416:  345:  337:  185:, BAsO 1774:S2CID 1748:arXiv 1666:arXiv 1635:S2CID 1574:S2CID 1531:S2CID 1474:S2CID 1456:arXiv 1385:arXiv 1309:(PDF) 1248:(PDF) 1226:S2CID 1175:S2CID 1105:S2CID 1054:S2CID 985:S2CID 942:S2CID 907:S2CID 872:S2CID 813:S2CID 743:S2CID 699:S2CID 638:S2CID 595:S2CID 343:S2CID 286:Zetix 70:word 68:Greek 1694:ISSN 1627:ISSN 1566:PMID 1523:ISSN 1429:PMID 1411:ISSN 1354:PMID 1268:PMID 1218:PMID 1097:ISSN 1046:PMID 864:PMID 856:ISSN 805:PMID 691:ISSN 505:PMID 414:ISSN 335:PMID 169:foam 104:Foam 1832:doi 1828:126 1801:doi 1766:doi 1721:doi 1684:doi 1662:470 1617:hdl 1609:doi 1597:254 1558:doi 1513:hdl 1505:doi 1501:167 1466:doi 1419:PMC 1403:doi 1344:PMC 1336:doi 1260:doi 1210:doi 1167:doi 1140:doi 1128:256 1089:doi 1077:530 1038:doi 1015:154 977:doi 965:532 934:doi 930:134 899:doi 895:250 848:doi 836:257 797:doi 770:doi 733:doi 683:doi 630:doi 587:doi 540:doi 495:PMC 485:doi 458:doi 404:doi 373:doi 327:doi 315:235 1876:: 1826:. 1822:. 1797:43 1795:. 1772:. 1764:. 1756:. 1744:91 1742:. 1717:97 1715:. 1692:. 1682:. 1674:. 1660:. 1656:. 1633:. 1625:. 1615:. 1607:. 1595:. 1572:. 1564:. 1554:24 1552:. 1529:. 1521:. 1511:. 1499:. 1495:. 1472:. 1464:. 1450:. 1427:. 1417:. 1409:. 1401:. 1393:. 1379:. 1375:. 1352:. 1342:. 1330:. 1326:. 1266:. 1256:24 1254:. 1250:. 1224:. 1216:. 1208:. 1198:31 1196:. 1173:. 1163:17 1161:. 1138:. 1126:. 1103:. 1095:. 1087:. 1075:. 1052:. 1044:. 1034:27 1032:. 1013:, 1009:, 997:^ 983:. 975:. 963:. 940:. 928:. 905:. 893:. 870:. 862:. 854:. 846:. 834:. 811:. 803:. 793:28 791:. 766:87 764:. 741:. 727:. 723:. 711:^ 697:. 689:. 677:. 673:. 636:. 628:. 618:41 616:. 593:. 583:19 581:. 538:. 528:49 526:. 503:, 493:, 479:, 454:15 452:, 412:. 398:. 394:. 369:15 367:, 355:^ 341:, 333:, 325:, 313:, 301:^ 1840:. 1834:: 1807:. 1803:: 1780:. 1768:: 1760:: 1750:: 1727:. 1723:: 1700:. 1686:: 1678:: 1668:: 1641:. 1619:: 1611:: 1603:: 1580:. 1560:: 1537:. 1515:: 1507:: 1480:. 1468:: 1458:: 1452:6 1435:. 1405:: 1397:: 1387:: 1381:1 1360:. 1338:: 1332:4 1292:. 1274:. 1262:: 1232:. 1212:: 1204:: 1181:. 1169:: 1146:. 1142:: 1134:: 1111:. 1091:: 1083:: 1060:. 1040:: 991:. 979:: 971:: 948:. 936:: 913:. 901:: 878:. 850:: 842:: 819:. 799:: 776:. 772:: 749:. 735:: 729:9 705:. 685:: 679:7 658:. 644:. 632:: 624:: 601:. 589:: 546:. 542:: 534:: 512:. 487:: 481:7 465:. 460:: 438:. 420:. 406:: 400:5 380:. 375:: 349:. 329:: 321:: 187:4 183:2 178:. 88:( 76:(

Index


metamaterial
Poisson's ratio
molecules
acoustic metamaterials
Greek
University of Exeter
Foam
University of Wisconsin Madison
density
inelastic

polyurethane
α-Cristobalite
Graphene
polytetrafluorethylene
Gore-Tex
herringbone
miura fold

laser cutting
paraffins
Acoustic metamaterial
Mechanical metamaterial
Metamaterial
Parallelogon
Zetix


Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.