Knowledge (XXG)

Auxiliary metabolic genes

Source 📝

524:, and transformation. By enhancing the metabolic capabilities of their hosts, bacteriophages contribute to the recycling of organic matter, influencing the availability of nutrients for other organisms in the ecosystem. Lytic viruses in particular have been shown to increase ammonium oxidation, nitric oxide reduction, nitrification, and denitrification to balance nutrient levels in nitrogen polluted environments. Nutrient-enriched wetlands contain AMGs related to sulfur transport and metabolism. AMG modification of host processes is another means other than the viral shunt by which viruses can directly impact biogeochemical cycles. 378: 105:. Photosynthetic machinery for other reaction centers and electron transport are also found in many viruses infecting phototrophs. Phages encode for nearly all genes involved in carbon metabolism. In particular, viruses redirect host metabolism to increase dNTP biosynthesis for viral genome replication. 134:
Virus survival through inclusion of AMGs is governed by the laws of natural selection and has been made highly selective through co-evolution with their hosts. As such, the AMGs that confer a fitness advantage to the virus's ability to infect a host and reproduce will be more abundant. AMG abundance
213:
A virus's host range determines which host it can acquire AMGs from. Additionally, the abundance of a host surrounding a virus will affect its likelihood to acquire genes from the host. Virus populations increasingly occupy lytic lifestyles as bacterial production increases. The strong evolutionary
284:
Since AMGs originate in hosts, distinguishing host and viral genes is critical for their study. This is not easily achieved as cultivation of viral-host systems in a laboratory setting proves challenging if even possible. Additionally, filtering out cellular sequences before entry in bioinformatic
204:
environments, AMGs can confer fitness advantages for both host and viruses under relatively nutrient-limited conditions compared to sediment and strong ultraviolet stress of water. In sunlit versus dark ocean waters, AMGs in distinct pathways are unequally distributed to reprogram host energy
553:. The ability of viruses to confer new metabolic traits to their hosts enhances the resilience of microbial communities facing shifts in temperature, nutrient availability, or other environmental stressors. AMGs can also serve as a genetic pool in shaping the evolution of their hosts. 2058:
Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ (September 2009). "Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution".
121:
metabolic pathways. This includes genes typically involved in transport and assembly. Major representatives of this class are involved in balancing TCA cycle intermediates. Additionally, the acquisition of biogenic elements outside of carbon like phosphate, governed by
74:(KEGG). AMGs do not encompass metabolic genes involved in typical viral functions, such as nucleotide and protein metabolism since their functions achieve direct viral reproduction, rather than augmenting host function to indirectly enhance it. 309:. ViromeQC can display contamination for the dataset overall and DRAM-v assigns a confidence score for the AMG being on a viral MAG. Viral identification is most popularly performed by VIBRANT, VirSorter2, DeepVirFinder, and CheckV. 536:
capacities of their hosts can influence the abundance and distribution of specific microbial taxa. In turn, this shapes the overall composition of microbial communities, with potential cascading effects on higher
205:
production and viral replication based on available nutrients. In sedimentary environments, carbon and sulfur metabolism AMGs are typically more prevalent to outcompete other organisms for the abundant resources.
297:
due to their many shared properties at this step of analysis. The extent to which they have contaminated existing viral databases is unknown. Some genes have distinctions between host and viral versions such as
329:
g15-g18 has been classified as locales where multiple AMGs have been inserted. Possible AMG contexts can be divided into locally collinear blocks (LCBs), or homologous regions shared by multiple
109:
can induce starvation by converting glucose-6-phosphate to glycogen, forcing the host to compensate by deriving ribulose-5-phosphate from glyceraldehyde-3-phosphate and fructose-6-phosphate.
2202:
Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. (January 2020). "Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems".
305:
easing the task of computational distinction. The most definitive way developed to determine gene origin has been identification of taxonomically informative genes colocalized on assembled
495:
pathways, influencing the transmission of signals related to energy status, nutrient availability, or stress. By modulating these signaling pathways, AMGs can indirectly regulate
352:
occur about twice as frequently as virus to host gene transfers due to a higher number viral recipients than donors. The vast majority of gene transfer occurs in double-stranded
70:
AMGs employ diverse functions including pathways not involved in metabolism despite what the name suggests. They are categorized in two classes based on their presence in the
2151:
Li Y, Xiong L, Yu H, Xiang Y, Wei Y, Zhang Q, Ji X (March 2023). "Biogeochemical sulfur cycling of virus auxiliary metabolic genes involved in Napahai plateau wetland".
333:
without rearrangements. AMGs have been found in just one or up to 14 LCBs. Those found in more diverse contexts have also shown up in variable locales within the LCB.
549:
AMGs play a crucial role in microbial adaptation to environmental changes. In extreme environments, AMGs can encode for alternate energy pathways such as subunits of
50:) carry AMGs that have been acquired from their immediate host as well as more distantly-related bacteria. Cyanophage AMGs support a variety of functions including 269: 399: 1611:"Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation" 1665:"VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences" 200:
Pathways utilizing nutrients found in low concentrations in the local environment are generally found in higher abundance in the virus. In
192:
capacity has also been correlated to AMG diversity. Aphotic viral communities possess greater AMG diversity than those in the photic zone.
62:
synthesis and metabolism. AMGs also have broader ecological impacts beyond their host including their influence on biogeochemical cycling.
1806:
Zolfo M, Pinto F, Asnicar F, Manghi P, Tett A, Bushman FD, Segata N (December 2019). "Detecting contamination in viromes using ViromeQC".
1510:"The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea" 1714:
Forterre P, Soler N, Krupovic M, Marguet E, Ackermann HW (January 2013). "Fake virus particles generated by fluorescence microscopy".
174:
viruses, on the other hand, may employ AMGs to improve host fitness and virulence due to their often longer lifespan in the cell as a
2245:
Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ (May 2014). "Sulfur oxidation genes in diverse deep-sea viruses".
232:, accounting for up to 50% of primary production in the marine environment. As such, many AMGs characterized have been discovered in 154:
viruses tend to use AMGs to repurpose host cell metabolism and steal nutrients when in high cell density. Therefore, AMGs related to
425: 214:
connection between viruses and their hosts makes AMG acquisition mirror the host's own adaptation to its environment over time.
126:, are prevalent for this class. Confidence of AMG identification for Class II AMGs is reduced without a database for reference. 31:
during infection so that the phage can replicate more efficiently. For instance, bacteriophages that infect the abundant marine
550: 403: 451:, which control the rate at which specific genes are transcribed into mRNA, thereby impacting the levels of corresponding 927:
Brum JR, Sullivan MB (March 2015). "Rising to the challenge: accelerated pace of discovery transforms marine virology".
290: 135:
is largely dictated by the lifestyle of the virus, environmental conditions surrounding it, and host characteristics.
388: 1125:"Depth-stratified functional and taxonomic niche specialization in the 'core' and 'flexible' Pacific Ocean Virome" 407: 392: 761:"Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis" 341: 1351:"Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses" 2368: 55: 521: 972:"Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts" 2315: 2254: 2160: 2068: 1762: 1521: 1362: 1305: 1248: 1136: 664: 513: 448: 2373: 1859:
Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. (February 2021).
286: 1560:
Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. (September 2020).
2339: 2288: 2227: 2184: 2040: 1841: 1214: 952: 690: 244:
DRAM-v is the standard for AMG annotation of metagenome assembled genomes (MAGs) identified as
2331: 2280: 2219: 2176: 2133: 2084: 2032: 1990: 1941: 1892: 1861:"VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses" 1833: 1788: 1731: 1696: 1642: 1591: 1537: 1490: 1441: 1390: 1331: 1274: 1206: 1162: 1105: 1054: 1023:"Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism" 1003: 944: 902: 860: 792: 741: 710:"Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism" 682: 629: 571: 517: 456: 229: 1074:"Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations" 325:
that most commonly surround specific AMGs. Hyperplastic regions including the region between
90:
is almost a ubiquitous photosynthetic AMG for the photosystem Il reaction center D1 found in
2323: 2270: 2262: 2211: 2168: 2123: 2115: 2076: 2024: 1980: 1972: 1931: 1923: 1882: 1872: 1823: 1815: 1778: 1770: 1723: 1686: 1676: 1632: 1622: 1581: 1573: 1529: 1480: 1472: 1431: 1421: 1380: 1370: 1321: 1313: 1264: 1256: 1196: 1152: 1144: 1095: 1085: 1044: 1034: 993: 983: 936: 894: 850: 840: 782: 772: 731: 721: 672: 619: 586: 1021:
Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW (September 2011).
708:
Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW (September 2011).
1562:"DRAM for distilling microbial metabolism to automate the curation of microbiome function" 1237:"Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics" 829:"Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts" 444: 224: 183: 171: 167: 147: 98: 42: 1459:
Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. (August 2018).
2319: 2258: 2164: 2072: 2013:"The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses" 1766: 1525: 1366: 1309: 1252: 1140: 885:
Hurwitz BL, U'Ren JM (June 2016). "Viral metabolic reprogramming in marine ecosystems".
668: 608:"The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses" 2363: 1985: 1960: 1936: 1911: 1887: 1860: 1783: 1750: 1691: 1664: 1637: 1610: 1586: 1561: 1485: 1460: 1436: 1409: 1385: 1350: 1326: 1293: 1269: 1236: 1157: 1124: 1100: 1073: 1049: 1022: 998: 971: 855: 828: 787: 760: 736: 709: 492: 364:, and wide host breadth. Additionally, unicellular hosts more commonly transfer genes. 302: 201: 189: 51: 2128: 2103: 1509: 483:
activity, leading to changes in the rate of metabolic flux through specific pathways.
2357: 2231: 2188: 2080: 2044: 1845: 1533: 1218: 648: 538: 233: 218: 92: 36: 32: 20: 1961:"CheckV assesses the quality and completeness of metagenome-assembled viral genomes" 970:
Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW (July 2006).
956: 2343: 1609:
Pratama AA, Bolduc B, Zayed AA, Zhong ZP, Guo J, Vik DR, et al. (2021-06-14).
694: 59: 2292: 1185:"Systematic evaluation of horizontal gene transfer between eukaryotes and viruses" 1959:
Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC (May 2021).
1090: 988: 344:(HGT) from host to virus allows for AMGs to be acquired. Gene transfer from host 2028: 624: 607: 377: 179: 170:
viruses, in part due to their larger host range and higher infection frequency.
163: 159: 151: 143: 102: 86:. In particular, these genes are found in photosynthesis and carbon metabolism. 47: 2172: 1976: 1910:
Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. (March 2020).
1877: 1751:"Membrane vesicles in natural environments: a major challenge in viral ecology" 1681: 1426: 1355:
Proceedings of the National Academy of Sciences of the United States of America
1201: 1184: 1027:
Proceedings of the National Academy of Sciences of the United States of America
845: 714:
Proceedings of the National Academy of Sciences of the United States of America
2306:
Rohwer F, Thurber RV (May 2009). "Viruses manipulate the marine environment".
2215: 1927: 1819: 1727: 1476: 898: 533: 496: 476: 299: 248:. DRAM-v searches the following databases for AMGs that match the input MAGs: 155: 28: 2104:"Mauve: multiple alignment of conserved genomic sequence with rearrangements" 1541: 827:
Luo XQ, Wang P, Li JL, Ahmad M, Duan L, Yin LZ, et al. (November 2022).
186:
viruses allows for more AMG transfer but also lowers overall gene diversity.
2266: 2012: 1375: 1039: 726: 591: 361: 353: 345: 2335: 2284: 2223: 2180: 2137: 2088: 2036: 1994: 1945: 1896: 1837: 1792: 1774: 1735: 1700: 1646: 1595: 1494: 1445: 1394: 1335: 1278: 1260: 1235:
Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB (February 2016).
1210: 1166: 1148: 1109: 1058: 1007: 948: 906: 864: 796: 745: 686: 633: 1577: 1317: 777: 175: 82:
Class I AMGs encode for metabolism pathways in the cell and are found in
24: 2327: 2011:
Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JB (December 2016).
1828: 1627: 1294:"Lysogeny in nature: mechanisms, impact and ecology of temperate phages" 940: 606:
Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JB (December 2016).
2119: 468: 452: 257: 150:
viruses have different lifestyles which impact what AMGs they acquire.
1072:
Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (May 2005).
2275: 480: 472: 357: 318: 306: 265: 1292:
Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (July 2017).
677: 652: 276:
can then be referenced to classify annotated AMGs through VIBRANT.
349: 330: 294: 245: 1461:"Host-linked soil viral ecology along a permafrost thaw gradient" 1410:"Metabolic reprogramming by viruses in the sunlit and dark ocean" 178:. Gene density in these viruses is higher when compared to their 326: 322: 273: 261: 253: 249: 118: 83: 71: 1912:"Identifying viruses from metagenomic data using deep learning" 1183:
Irwin NA, Pittis AA, Richards TA, Keeling PJ (February 2022).
653:"Marine ecosystems: bacterial photosynthesis genes in a virus" 371: 117:
Class II AMGs encode for peripheral functions absent from the
889:. Environmental microbiology * Special Section: Megaviromes. 1349:
Hurwitz BL, Westveld AH, Brum JR, Sullivan MB (July 2014).
2153:
Environmental Science and Pollution Research International
570:
Breitbart MY, Thompson LR, Suttle CA, Sullivan MB (2007).
479:
reactions. This interaction can either enhance or inhibit
1749:
Soler N, Krupovic M, Marguet E, Forterre P (March 2015).
1514:
Deep Sea Research Part I: Oceanographic Research Papers
516:
in multiple environments through nutrient degradation,
166:
viruses also encompass a more diverse set of AMGs than
2102:
Darling AC, Mau B, Blattner FR, Perna NT (July 2004).
1408:
Hurwitz BL, Hallam SJ, Sullivan MB (November 2013).
1123:Hurwitz BL, Brum JR, Sullivan MB (February 2015). 321:. Current research is being done to determine the 759:Enav H, Mandel-Gutfreund Y, BĂŠjĂ  O (March 2014). 2006: 2004: 572:"Exploring the Vast Diversity of Marine Viruses" 1555: 1553: 1551: 880: 878: 876: 874: 1663:Kieft K, Zhou Z, Anantharaman K (June 2020). 1658: 1656: 1178: 1176: 317:AMGs are not randomly distributed throughout 8: 1230: 1228: 922: 920: 918: 916: 406:. Unsourced material may be challenged and 158:and transport are found more abundantly in 822: 820: 818: 816: 814: 812: 810: 808: 806: 2274: 2127: 1984: 1935: 1886: 1876: 1827: 1782: 1690: 1680: 1636: 1626: 1585: 1508:Goericke R, Welschmeyer NA (1993-11-01). 1484: 1435: 1425: 1384: 1374: 1325: 1268: 1200: 1156: 1099: 1089: 1048: 1038: 997: 987: 854: 844: 786: 776: 735: 725: 676: 623: 590: 426:Learn how and when to remove this message 285:pipelines is not possible with cellular 562: 72:Kyoto Encyclopedia of Genes and Genomes 647:Mann NH, Cook A, Millard A, Bailey S, 182:counterparts. Higher rates of HGT in 7: 404:adding citations to reliable sources 532:The ability of AMGs modulating the 356:since they have large and flexible 14: 2081:10.1111/j.1462-2920.2009.01966.x 376: 887:Current Opinion in Microbiology 551:dissimilatory sulfite reductase 293:are unable to distinguish from 27:cells. AMGs modulate host cell 447:by modulating the activity of 1: 2204:Nature Reviews. Microbiology 1534:10.1016/0967-0637(93)90104-B 1091:10.1371/journal.pbio.0030144 989:10.1371/journal.pbio.0040234 929:Nature Reviews. Microbiology 512:AMGs have a large impact on 491:AMGs may be integrated into 471:that directly interact with 2029:10.1016/j.virol.2016.09.016 625:10.1016/j.virol.2016.09.016 2390: 2173:10.1007/s11356-023-25408-8 2061:Environmental Microbiology 1977:10.1038/s41587-020-00774-7 1878:10.1186/s40168-020-00990-y 1682:10.1186/s40168-020-00867-0 1427:10.1186/gb-2013-14-11-r123 1202:10.1038/s41564-021-01026-3 846:10.1186/s40168-022-01384-y 439:Transcriptional regulation 2216:10.1038/s41579-019-0270-x 1928:10.1007/s40484-019-0187-4 1820:10.1038/s41587-019-0334-5 1728:10.1016/j.tim.2012.10.005 1477:10.1038/s41564-018-0190-y 899:10.1016/j.mib.2016.04.002 545:Adaptation to environment 19:(AMGs) are found in many 17:Auxiliary metabolic genes 342:Horizontal gene transfer 196:Environmental conditions 2267:10.1126/science.1252229 1376:10.1073/pnas.1319778111 1040:10.1073/pnas.1102164108 727:10.1073/pnas.1102164108 592:10.5670/oceanog.2007.58 508:Biogeochemicalc cycling 503:Ecological implications 236:of these host systems. 1775:10.1038/ismej.2014.184 1716:Trends in Microbiology 1566:Nucleic Acids Research 1261:10.1038/ismej.2015.125 1149:10.1038/ismej.2014.143 337:Acquisition mechanisms 280:Cellular contamination 228:are the most abundant 1318:10.1038/ismej.2017.16 778:10.1186/2049-2618-2-9 514:biogeochemical cycles 449:transcription factors 1965:Nature Biotechnology 1916:Quantitative Biology 1808:Nature Biotechnology 467:Certain AMGs encode 400:improve this section 368:Mechanisms of action 360:, co-evolution with 287:gene transfer agents 2328:10.1038/nature08060 2320:2009Natur.459..207R 2259:2014Sci...344..757A 2165:2023ESPR...3044430L 2159:(15): 44430–44438. 2073:2009EnvMi..11.2370M 1767:2015ISMEJ...9..793S 1628:10.7717/peerj.11447 1578:10.1093/nar/gkaa621 1526:1993DSRI...40.2283G 1465:Nature Microbiology 1367:2014PNAS..11110714H 1361:(29): 10714–10719. 1310:2017ISMEJ..11.1511H 1253:2016ISMEJ..10..437B 1189:Nature Microbiology 1141:2015ISMEJ...9..472H 941:10.1038/nrmicro3404 669:2003Natur.424..741M 528:Community structure 497:metabolic processes 443:AMGs may influence 2120:10.1101/gr.2289704 520:, transportation, 493:cellular signaling 487:Signaling pathways 457:metabolic pathways 23:but originated in 2314:(7244): 207–212. 2253:(6185): 757–760. 1814:(12): 1408–1412. 1572:(16): 8883–8900. 1520:(11): 2283–2294. 1033:(39): E757–E764. 720:(39): E757–E764. 463:Enzyme modulation 436: 435: 428: 291:membrane vesicles 230:picocyanobacteria 56:carbon metabolism 2381: 2348: 2347: 2303: 2297: 2296: 2278: 2242: 2236: 2235: 2199: 2193: 2192: 2148: 2142: 2141: 2131: 2114:(7): 1394–1403. 2099: 2093: 2092: 2067:(9): 2370–2387. 2055: 2049: 2048: 2008: 1999: 1998: 1988: 1956: 1950: 1949: 1939: 1907: 1901: 1900: 1890: 1880: 1856: 1850: 1849: 1831: 1803: 1797: 1796: 1786: 1755:The ISME Journal 1746: 1740: 1739: 1711: 1705: 1704: 1694: 1684: 1660: 1651: 1650: 1640: 1630: 1606: 1600: 1599: 1589: 1557: 1546: 1545: 1505: 1499: 1498: 1488: 1456: 1450: 1449: 1439: 1429: 1405: 1399: 1398: 1388: 1378: 1346: 1340: 1339: 1329: 1304:(7): 1511–1520. 1298:The ISME Journal 1289: 1283: 1282: 1272: 1241:The ISME Journal 1232: 1223: 1222: 1204: 1180: 1171: 1170: 1160: 1129:The ISME Journal 1120: 1114: 1113: 1103: 1093: 1069: 1063: 1062: 1052: 1042: 1018: 1012: 1011: 1001: 991: 967: 961: 960: 924: 911: 910: 882: 869: 868: 858: 848: 824: 801: 800: 790: 780: 756: 750: 749: 739: 729: 705: 699: 698: 680: 644: 638: 637: 627: 603: 597: 596: 594: 576: 567: 431: 424: 420: 417: 411: 380: 372: 2389: 2388: 2384: 2383: 2382: 2380: 2379: 2378: 2354: 2353: 2352: 2351: 2305: 2304: 2300: 2244: 2243: 2239: 2201: 2200: 2196: 2150: 2149: 2145: 2108:Genome Research 2101: 2100: 2096: 2057: 2056: 2052: 2010: 2009: 2002: 1958: 1957: 1953: 1909: 1908: 1904: 1858: 1857: 1853: 1805: 1804: 1800: 1748: 1747: 1743: 1713: 1712: 1708: 1662: 1661: 1654: 1608: 1607: 1603: 1559: 1558: 1549: 1507: 1506: 1502: 1458: 1457: 1453: 1407: 1406: 1402: 1348: 1347: 1343: 1291: 1290: 1286: 1234: 1233: 1226: 1182: 1181: 1174: 1122: 1121: 1117: 1071: 1070: 1066: 1020: 1019: 1015: 969: 968: 964: 926: 925: 914: 884: 883: 872: 826: 825: 804: 758: 757: 753: 707: 706: 702: 678:10.1038/424741a 651:(August 2003). 646: 645: 641: 605: 604: 600: 574: 569: 568: 564: 559: 547: 530: 510: 505: 489: 465: 445:gene expression 441: 432: 421: 415: 412: 397: 381: 370: 339: 315: 313:Genomic context 282: 242: 225:Prochlorococcus 211: 198: 141: 132: 115: 99:Prochlorococcus 80: 68: 43:Prochlorococcus 12: 11: 5: 2387: 2385: 2377: 2376: 2371: 2369:Bacteriophages 2366: 2356: 2355: 2350: 2349: 2298: 2237: 2194: 2143: 2094: 2050: 2000: 1971:(5): 578–585. 1951: 1902: 1851: 1798: 1761:(4): 793–796. 1741: 1706: 1652: 1601: 1547: 1500: 1471:(8): 870–880. 1451: 1414:Genome Biology 1400: 1341: 1284: 1247:(2): 437–449. 1224: 1195:(2): 327–336. 1172: 1135:(2): 472–484. 1115: 1064: 1013: 962: 935:(3): 147–159. 912: 870: 802: 751: 700: 639: 598: 585:(2): 135–139. 561: 560: 558: 555: 546: 543: 539:trophic levels 529: 526: 518:mineralization 509: 506: 504: 501: 488: 485: 464: 461: 440: 437: 434: 433: 384: 382: 375: 369: 366: 338: 335: 314: 311: 303:photosynthesis 281: 278: 272:Viral RefSeq. 241: 240:Identification 238: 210: 207: 197: 194: 190:Photosynthesis 140: 137: 131: 128: 114: 111: 79: 76: 67: 64: 52:photosynthesis 21:bacteriophages 13: 10: 9: 6: 4: 3: 2: 2386: 2375: 2372: 2370: 2367: 2365: 2362: 2361: 2359: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2302: 2299: 2294: 2290: 2286: 2282: 2277: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2241: 2238: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2198: 2195: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2147: 2144: 2139: 2135: 2130: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2054: 2051: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2007: 2005: 2001: 1996: 1992: 1987: 1982: 1978: 1974: 1970: 1966: 1962: 1955: 1952: 1947: 1943: 1938: 1933: 1929: 1925: 1921: 1917: 1913: 1906: 1903: 1898: 1894: 1889: 1884: 1879: 1874: 1870: 1866: 1862: 1855: 1852: 1847: 1843: 1839: 1835: 1830: 1825: 1821: 1817: 1813: 1809: 1802: 1799: 1794: 1790: 1785: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1745: 1742: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1707: 1702: 1698: 1693: 1688: 1683: 1678: 1674: 1670: 1666: 1659: 1657: 1653: 1648: 1644: 1639: 1634: 1629: 1624: 1620: 1616: 1612: 1605: 1602: 1597: 1593: 1588: 1583: 1579: 1575: 1571: 1567: 1563: 1556: 1554: 1552: 1548: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1504: 1501: 1496: 1492: 1487: 1482: 1478: 1474: 1470: 1466: 1462: 1455: 1452: 1447: 1443: 1438: 1433: 1428: 1423: 1419: 1415: 1411: 1404: 1401: 1396: 1392: 1387: 1382: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1345: 1342: 1337: 1333: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1285: 1280: 1276: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1231: 1229: 1225: 1220: 1216: 1212: 1208: 1203: 1198: 1194: 1190: 1186: 1179: 1177: 1173: 1168: 1164: 1159: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1119: 1116: 1111: 1107: 1102: 1097: 1092: 1087: 1083: 1079: 1075: 1068: 1065: 1060: 1056: 1051: 1046: 1041: 1036: 1032: 1028: 1024: 1017: 1014: 1009: 1005: 1000: 995: 990: 985: 981: 977: 973: 966: 963: 958: 954: 950: 946: 942: 938: 934: 930: 923: 921: 919: 917: 913: 908: 904: 900: 896: 892: 888: 881: 879: 877: 875: 871: 866: 862: 857: 852: 847: 842: 838: 834: 830: 823: 821: 819: 817: 815: 813: 811: 809: 807: 803: 798: 794: 789: 784: 779: 774: 770: 766: 762: 755: 752: 747: 743: 738: 733: 728: 723: 719: 715: 711: 704: 701: 696: 692: 688: 684: 679: 674: 670: 666: 663:(6950): 741. 662: 658: 654: 650: 643: 640: 635: 631: 626: 621: 617: 613: 609: 602: 599: 593: 588: 584: 580: 573: 566: 563: 556: 554: 552: 544: 542: 540: 535: 527: 525: 523: 519: 515: 507: 502: 500: 498: 494: 486: 484: 482: 478: 474: 470: 462: 460: 458: 454: 450: 446: 438: 430: 427: 419: 416:November 2023 409: 405: 401: 395: 394: 390: 385:This section 383: 379: 374: 373: 367: 365: 363: 359: 355: 351: 347: 343: 336: 334: 332: 328: 324: 320: 312: 310: 308: 304: 301: 296: 292: 288: 279: 277: 275: 271: 268:, VOGDB, and 267: 263: 259: 255: 251: 247: 239: 237: 235: 231: 227: 226: 221: 220: 219:Synechococcus 215: 208: 206: 203: 195: 193: 191: 187: 185: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 138: 136: 129: 127: 125: 120: 112: 110: 108: 104: 101: 100: 95: 94: 93:Synechococcus 89: 85: 77: 75: 73: 65: 63: 61: 57: 53: 49: 45: 44: 39: 38: 37:Synechococcus 34: 33:cyanobacteria 30: 26: 22: 18: 2311: 2307: 2301: 2250: 2246: 2240: 2210:(1): 21–34. 2207: 2203: 2197: 2156: 2152: 2146: 2111: 2107: 2097: 2064: 2060: 2053: 2020: 2016: 1968: 1964: 1954: 1922:(1): 64–77. 1919: 1915: 1905: 1868: 1864: 1854: 1829:11572/246053 1811: 1807: 1801: 1758: 1754: 1744: 1719: 1715: 1709: 1672: 1668: 1618: 1614: 1604: 1569: 1565: 1517: 1513: 1503: 1468: 1464: 1454: 1420:(11): R123. 1417: 1413: 1403: 1358: 1354: 1344: 1301: 1297: 1287: 1244: 1240: 1192: 1188: 1132: 1128: 1118: 1081: 1078:PLOS Biology 1077: 1067: 1030: 1026: 1016: 979: 976:PLOS Biology 975: 965: 932: 928: 890: 886: 836: 832: 768: 764: 754: 717: 713: 703: 660: 656: 642: 615: 611: 601: 582: 579:Oceanography 578: 565: 548: 531: 522:assimilation 511: 490: 475:involved in 466: 455:involved in 442: 422: 413: 398:Please help 386: 340: 316: 283: 243: 223: 217: 216: 212: 209:Host factors 199: 188: 142: 133: 123: 116: 106: 97: 91: 87: 81: 69: 60:nucleic acid 41: 35: 16: 15: 2023:: 219–229. 1084:(5): e144. 982:(8): e234. 893:: 161–168. 618:: 219–229. 354:DNA viruses 103:cyanophages 48:cyanophages 2374:Metabolism 2358:Categories 1865:Microbiome 1722:(1): 1–5. 1669:Microbiome 1621:: e11447. 839:(1): 190. 833:Microbiome 765:Microbiome 557:References 362:eukaryotes 346:eukaryotes 300:cyanophage 156:metabolism 29:metabolism 2276:1912/6700 2232:207894289 2189:256192280 2045:205652754 1871:(1): 37. 1846:208191024 1675:(1): 90. 1542:0967-0637 1219:245616252 534:metabolic 477:metabolic 387:does not 184:lysogenic 172:Temperate 168:lysogenic 162:viruses. 148:lysogenic 139:Lifestyle 130:Abundance 25:bacterial 2336:19444207 2285:24789974 2224:31690825 2181:36692711 2138:15231754 2089:19508343 2037:27693926 2017:Virology 1995:33349699 1946:34084563 1897:33522966 1838:31748692 1793:25314322 1736:23140888 1701:32522236 1647:34178438 1596:32766782 1495:30013236 1446:24200126 1395:25002514 1336:28291233 1279:26296067 1211:34972821 1167:25093636 1110:15828858 1059:21844365 1008:16802857 957:32998525 949:25639680 907:27088500 865:36333738 797:24666644 771:(1): 9. 746:21844365 687:12917674 649:Clokie M 634:27693926 612:Virology 469:proteins 453:proteins 176:prophage 113:Class II 2344:4397295 2316:Bibcode 2255:Bibcode 2247:Science 2161:Bibcode 2069:Bibcode 1986:8116208 1937:8172088 1888:7852108 1784:4817693 1763:Bibcode 1692:7288430 1638:8210812 1587:7498326 1522:Bibcode 1486:6786970 1437:4053976 1386:4115555 1363:Bibcode 1327:5520141 1306:Bibcode 1270:4737935 1249:Bibcode 1158:4303639 1137:Bibcode 1101:1079782 1050:3182688 999:1484495 856:9636769 788:4022391 737:3182688 695:4411495 665:Bibcode 473:enzymes 408:removed 393:sources 358:genomes 350:viruses 331:viruses 319:genomes 307:contigs 295:viruses 258:UniProt 246:viruses 78:Class I 66:Classes 2342:  2334:  2308:Nature 2293:692770 2291:  2283:  2230:  2222:  2187:  2179:  2136:  2129:442156 2126:  2087:  2043:  2035:  1993:  1983:  1944:  1934:  1895:  1885:  1844:  1836:  1791:  1781:  1734:  1699:  1689:  1645:  1635:  1594:  1584:  1540:  1493:  1483:  1444:  1434:  1393:  1383:  1334:  1324:  1277:  1267:  1217:  1209:  1165:  1155:  1108:  1098:  1057:  1047:  1006:  996:  955:  947:  905:  863:  853:  795:  785:  744:  734:  693:  685:  657:Nature 632:  481:enzyme 266:MEROPS 234:phages 202:marine 2364:Genes 2340:S2CID 2289:S2CID 2228:S2CID 2185:S2CID 2041:S2CID 1842:S2CID 1615:PeerJ 1215:S2CID 953:S2CID 691:S2CID 575:(PDF) 327:genes 323:genes 180:lytic 164:Lytic 160:lytic 152:Lytic 144:Lytic 2332:PMID 2281:PMID 2220:PMID 2177:PMID 2134:PMID 2085:PMID 2033:PMID 1991:PMID 1942:PMID 1893:PMID 1834:PMID 1789:PMID 1732:PMID 1697:PMID 1643:PMID 1592:PMID 1538:ISSN 1491:PMID 1442:PMID 1391:PMID 1332:PMID 1275:PMID 1207:PMID 1163:PMID 1106:PMID 1055:PMID 1004:PMID 945:PMID 903:PMID 861:PMID 793:PMID 742:PMID 683:PMID 630:PMID 391:any 389:cite 289:and 274:KEGG 270:NCBI 262:CAZy 254:KEGG 250:Pfam 222:and 146:and 124:pstS 119:KEGG 107:glgA 96:and 88:psbA 84:KEGG 40:and 2324:doi 2312:459 2271:hdl 2263:doi 2251:344 2212:doi 2169:doi 2124:PMC 2116:doi 2077:doi 2025:doi 2021:499 1981:PMC 1973:doi 1932:PMC 1924:doi 1883:PMC 1873:doi 1824:hdl 1816:doi 1779:PMC 1771:doi 1724:doi 1687:PMC 1677:doi 1633:PMC 1623:doi 1582:PMC 1574:doi 1530:doi 1481:PMC 1473:doi 1432:PMC 1422:doi 1381:PMC 1371:doi 1359:111 1322:PMC 1314:doi 1265:PMC 1257:doi 1197:doi 1153:PMC 1145:doi 1096:PMC 1086:doi 1045:PMC 1035:doi 1031:108 994:PMC 984:doi 937:doi 895:doi 851:PMC 841:doi 783:PMC 773:doi 732:PMC 722:doi 718:108 673:doi 661:424 620:doi 616:499 587:doi 402:by 348:to 2360:: 2338:. 2330:. 2322:. 2310:. 2287:. 2279:. 2269:. 2261:. 2249:. 2226:. 2218:. 2208:18 2206:. 2183:. 2175:. 2167:. 2157:30 2155:. 2132:. 2122:. 2112:14 2110:. 2106:. 2083:. 2075:. 2065:11 2063:. 2039:. 2031:. 2019:. 2015:. 2003:^ 1989:. 1979:. 1969:39 1967:. 1963:. 1940:. 1930:. 1918:. 1914:. 1891:. 1881:. 1867:. 1863:. 1840:. 1832:. 1822:. 1812:37 1810:. 1787:. 1777:. 1769:. 1757:. 1753:. 1730:. 1720:21 1718:. 1695:. 1685:. 1671:. 1667:. 1655:^ 1641:. 1631:. 1617:. 1613:. 1590:. 1580:. 1570:48 1568:. 1564:. 1550:^ 1536:. 1528:. 1518:40 1516:. 1512:. 1489:. 1479:. 1467:. 1463:. 1440:. 1430:. 1418:14 1416:. 1412:. 1389:. 1379:. 1369:. 1357:. 1353:. 1330:. 1320:. 1312:. 1302:11 1300:. 1296:. 1273:. 1263:. 1255:. 1245:10 1243:. 1239:. 1227:^ 1213:. 1205:. 1191:. 1187:. 1175:^ 1161:. 1151:. 1143:. 1131:. 1127:. 1104:. 1094:. 1080:. 1076:. 1053:. 1043:. 1029:. 1025:. 1002:. 992:. 978:. 974:. 951:. 943:. 933:13 931:. 915:^ 901:. 891:31 873:^ 859:. 849:. 837:10 835:. 831:. 805:^ 791:. 781:. 767:. 763:. 740:. 730:. 716:. 712:. 689:. 681:. 671:. 659:. 655:. 628:. 614:. 610:. 583:20 581:. 577:. 541:. 499:. 459:. 264:, 260:, 256:, 252:, 58:, 54:, 2346:. 2326:: 2318:: 2295:. 2273:: 2265:: 2257:: 2234:. 2214:: 2191:. 2171:: 2163:: 2140:. 2118:: 2091:. 2079:: 2071:: 2047:. 2027:: 1997:. 1975:: 1948:. 1926:: 1920:8 1899:. 1875:: 1869:9 1848:. 1826:: 1818:: 1795:. 1773:: 1765:: 1759:9 1738:. 1726:: 1703:. 1679:: 1673:8 1649:. 1625:: 1619:9 1598:. 1576:: 1544:. 1532:: 1524:: 1497:. 1475:: 1469:3 1448:. 1424:: 1397:. 1373:: 1365:: 1338:. 1316:: 1308:: 1281:. 1259:: 1251:: 1221:. 1199:: 1193:7 1169:. 1147:: 1139:: 1133:9 1112:. 1088:: 1082:3 1061:. 1037:: 1010:. 986:: 980:4 959:. 939:: 909:. 897:: 867:. 843:: 799:. 775:: 769:2 748:. 724:: 697:. 675:: 667:: 636:. 622:: 595:. 589:: 429:) 423:( 418:) 414:( 410:. 396:. 46:(

Index

bacteriophages
bacterial
metabolism
cyanobacteria
Synechococcus
Prochlorococcus
cyanophages
photosynthesis
carbon metabolism
nucleic acid
Kyoto Encyclopedia of Genes and Genomes
KEGG
Synechococcus
Prochlorococcus
cyanophages
KEGG
Lytic
lysogenic
Lytic
metabolism
lytic
Lytic
lysogenic
Temperate
prophage
lytic
lysogenic
Photosynthesis
marine
Synechococcus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑