Knowledge

AWAKE

Source 📝

217: 594: 512: 428: 356: 329: 279: 106: 26: 1236: 137:
position of the electron bunch in the wakefield is thus crucial, since only a fraction (1/4th) of the wakefield is both focused and accelerated, which is needed for the trapping and the acceleration of the electrons. AWAKE is the first plasma wakefield experiment using a bunch of protons as a driver. Protons, as for example the protons that form the CERN
208:≈ 1 mm. The length of currently available proton bunches though exceeds this value significantly. AWAKE profits form the seeded self-modulation (SSM) of the proton bunch travelling through the plasma, which divides the long proton bunch into shorts micro-bunches with the length of the plasma wavelength that can drive the wakefield resonantly. 269:
the Rb vapor. By propagating the laser pulse co-linearly within the proton bunch, the hard edge of the beam/plasma interaction seeds the self-modulation of the proton bunch, enforcing the grow over the 10m long plasma It also allows to create a phase reference for the start of the wakefield, which is
293:
The first run lasted from 2016 to 2018. The ten metre-long vapor source was installed 11 February 2016 and the first proton beam was sent through the beam-line and the empty vapor source on 16 June 2016. The first data with a proton bunch inside the plasma was acquired in December 2016. On 26 May
136:
injected behind the proton can be interpreted as the same as the one between a surfer and a wave. The latter will transfer its energy to the surfer who will thus be accelerated. The wakefield consists of decelerating and accelerating phase, as well as focusing and defocusing phase. The injection
238:
The proton bunches for AWAKE are extracted from the CERN SPS and are transported through an ~800-meter beam-line to the 10-meter long vapor source of AWAKE. The electron witness bunches are injected behind the proton bunch. To detect acceleration of the injected electrons, a
124:
and negatively charged free electrons, while remaining macroscopically neutral. If a strong electric field is applied, ions and electrons can be spatially separated. A local electric field is thereby created, thus a charged particle entering a such plasma can be accelerated.
141:(SPS), can carry a large amount of energy (~ 400 GeV). Therefore, they can produce wakefields in a plasma for much longer distances than a laser pulse or electron bunch as a driver due to energy depletion. 128:
When the driver, the positively charged proton bunch, penetrates the plasma, it attracts the negatively charged plasma electrons, they overshoot and start to oscillate, creating a wakefield. The
301:
is expected to shrink. It is planned to increase the electron energy to 10 GeV. After this phase the goal is to increase the energy to at least 50 GeV and provide beams for first applications.
369:
Joshi, C.; Mori, W. B.; Katsouleas, T.; Dawson, J. M.; Kindel, J. M.; Forslund, D. W. (1984). "Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves".
243:
is installed after the vapor, bending their path. The larger the electron's energy, the smaller curvature of its path. A scintillation screen then detects accelerated electrons.
1169: 231:(CNGS) facility. This site was selected for its underground location, and it was specifically designed for the use of high-energy proton beams without any significant 270:
needed to inject the witness bunch at the right phase for trapping and acceleration. The electrons are produced by sending the laser onto an RF-gun photo-cathode.
924: 779: 681: 1014: 1138: 740: 731: 1270: 79:, use standard or superconductive RF-cavities for acceleration, but they are limited to an acceleration gradient in the order of 100 MV/m. 1201: 1221: 1275: 1216: 294:
2018, AWAKE accelerated an electron beam for the first time. The beam was accelerated from 19 MeV to 2 GeV over a distance of 10 m.
34: 1057: 1062: 1028: 654: 446:
Kumar, Naveen; Pukhov, Alexander; Lotov, Konstantin (2010). "Self-Modulation Instability of a Long Proton Bunch in Plasmas".
93:
AWAKE's high acceleration gradient will allow the construction of a new generation of shorter and less expensive high energy
82:
Circular accelerator machines are not efficient for transporting electrons at high energy due to the large energy loss in
1186: 789: 228: 898: 893: 873: 87: 90:
do not have this issue and are therefore better suited for accelerating and transporting electrons at high energies.
1260: 1122: 980: 975: 863: 1265: 888: 216: 97:, representing a big step in the particle accelerators technology, especially for linear electron accelerators. 1280: 1148: 1009: 770: 138: 1196: 1143: 129: 593: 511: 427: 355: 328: 1004: 970: 960: 17: 696: 672: 83: 76: 965: 548: 465: 378: 94: 632: 1077: 1072: 1067: 994: 868: 53: 1082: 1042: 944: 939: 934: 929: 854: 804: 647: 538: 455: 232: 278: 180:
and e the elementary charge. To excite those oscillators resonantly, the driver must contain a
1097: 1052: 750: 711: 582: 564: 481: 394: 297:
A second run is planned for 2021 to 2024. The acceleration gradient will be increased and the
607: 1191: 1103: 999: 986: 878: 745: 721: 716: 691: 686: 572: 556: 500: 473: 386: 286: 114: 30: 25: 105: 60:
bunch as a driver, a world-wide first. It aims to accelerate a low-energy witness bunch of
1092: 1047: 819: 814: 809: 799: 794: 755: 706: 701: 118: 552: 469: 382: 1206: 1087: 829: 824: 577: 526: 298: 197: 181: 1285: 1254: 1239: 760: 640: 504: 322:
AWAKE Design Report: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN
262:
of the oil, the Rb vapor density can be set and kept uniform along the vapor source.
240: 188:. Moreover, the length of the drive bunch should be close to the plasma wavelength λ 1181: 1175: 1037: 477: 69: 65: 919: 259: 145: 622: 883: 560: 320:
Caldwell, A.; Gschwendtner, E.; Lotov, K.; Muggli, P.; Wing, M., eds. (2013).
266: 568: 398: 149: 586: 485: 1164: 499:
Muggli, P., ed. (2016). Progress toward an experiment at AWAKE (Report).
247: 220: 133: 72: 61: 315: 313: 169: 844: 527:"Acceleration of electrons in the plasma wakefield of a proton bunch" 420: 390: 348: 321: 282: 75:
of several GV/m. Particle accelerators currently in use, like CERN's
57: 627: 543: 460: 277: 255: 251: 215: 104: 24: 52:
is a proof-of-principle experiment, which investigates wakefield
839: 834: 663: 324:(Report). Geneva, Switzerland. CERN-SPSC-2013-013; SPSC-TDR-003. 258:. The vapor source is surrounded by an oil bath. By setting the 177: 68:
to several GeV over a short distance (10 m) by creating a high
49: 636: 608:
Particle physics applications of the AWAKE acceleration scheme
121: 414: 412: 410: 408: 342: 340: 338: 227:
The AWAKE experiment is installed at CERN, in the former
441: 439: 437: 349:
AWAKE: Closer to a breakthrough acceleration technology
1170:
Safety of high-energy particle collision experiments
525:
Adli, E.; et al. (AWAKE collaboration) (2018).
1157: 1131: 1115: 1027: 953: 907: 853: 769: 730: 671: 421:
Awakening acceleration: AWAKE's plasma cell arrives
101:Proton bunch-driven plasma wakefield acceleration 204:≈ 1•10 cm) this corresponds to approximately λ 648: 8: 664:European Organization for Nuclear Research 655: 641: 633: 576: 542: 459: 184:component close to the plasma frequency ω 309: 144:A plasma can be seen as an ensemble of 1139:High Luminosity Large Hadron Collider 7: 132:between the wakefield and a charged 1202:The Globe of Science and Innovation 254:which is ionized by a Ti:Sapphire 14: 1235: 1234: 732:Large Electron–Positron Collider 592: 510: 505:10.18429/JACoW-NAPAC2016-WEPOA02 426: 354: 327: 285:(red dots) interacting with the 35:Max Planck Institute for Physics 478:10.1103/PhysRevLett.104.255003 423:(Report). Geneva, Switzerland. 351:(Report). Geneva, Switzerland. 109:Layout of the AWAKE experiment 1: 1222:Scientific committees of CERN 46:Advanced WAKEfield Experiment 1187:Worldwide LHC Computing Grid 265:AWAKE uses a laser pulse to 229:CERN Neutrinos to Gran Sasso 200:). For AWAKE like density (n 1271:Particle physics facilities 1116:Non-accelerator experiments 899:81 cm Saclay Bubble Chamber 1302: 419:Pandolfi, S., ed. (2016). 246:The vapor source contains 15: 1230: 1217:Directors-general of CERN 561:10.1038/s41586-018-0485-4 347:Raynova, I., ed. (2017). 152:of the plasma frequency ω 1276:Underground laboratories 1149:Future Circular Collider 771:Super Proton Synchrotron 139:Super Proton Synchrotron 1144:Compact Linear Collider 780:List of SPS experiments 741:List of LEP experiments 682:List of LHC experiments 448:Physical Review Letters 117:consists of positively 290: 289:wakefield (blue waves) 224: 110: 37: 33:cell developed by the 29:AWAKE's 10-metre-long 18:Awake (disambiguation) 673:Large Hadron Collider 281: 219: 108: 84:synchrotron radiation 28: 1192:Microcosm exhibition 894:30 cm Bubble Chamber 623:CERN's AWAKE website 168:the plasma electron 16:For other uses, see 908:Linear accelerators 628:UCL's AWAKE website 553:2018Natur.561..363A 470:2010PhRvL.104y5003K 383:1984Natur.311..525J 223:source and beamline 88:Linear accelerators 54:plasma acceleration 1211:(2013 documentary) 954:Other accelerators 889:2 m Bubble Chamber 855:Proton Synchrotron 291: 225: 212:The AWAKE facility 111: 38: 1261:CERN accelerators 1248: 1247: 1000:LPI (LIL and EPA) 537:(7723): 363–367. 377:(5986): 525–529. 1293: 1266:CERN experiments 1238: 1237: 1212: 1158:Related articles 1106: 1018: 989: 966:AC (part of AAC) 961:AA (part of AAC) 657: 650: 643: 634: 611: 606:Anthony Hartin: 604: 598: 597: 596: 590: 580: 546: 522: 516: 515: 514: 508: 496: 490: 489: 463: 443: 432: 431: 430: 424: 416: 403: 402: 391:10.1038/311525a0 366: 360: 359: 358: 352: 344: 333: 332: 331: 325: 317: 1301: 1300: 1296: 1295: 1294: 1292: 1291: 1290: 1281:CERN facilities 1251: 1250: 1249: 1244: 1226: 1210: 1197:Streets in CERN 1153: 1132:Future projects 1127: 1111: 1102: 1023: 1016: 985: 949: 903: 849: 765: 726: 667: 661: 619: 614: 605: 601: 591: 524: 523: 519: 509: 498: 497: 493: 445: 444: 435: 425: 418: 417: 406: 368: 367: 363: 353: 346: 345: 336: 326: 319: 318: 311: 307: 276: 214: 207: 203: 195: 191: 187: 175: 167: 163: 159: 155: 103: 64:from 15 to 20 M 21: 12: 11: 5: 1299: 1297: 1289: 1288: 1283: 1278: 1273: 1268: 1263: 1253: 1252: 1246: 1245: 1243: 1242: 1231: 1228: 1227: 1225: 1224: 1219: 1214: 1208:Particle Fever 1204: 1199: 1194: 1189: 1184: 1179: 1172: 1167: 1161: 1159: 1155: 1154: 1152: 1151: 1146: 1141: 1135: 1133: 1129: 1128: 1126: 1125: 1119: 1117: 1113: 1112: 1110: 1109: 1108: 1107: 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1060: 1055: 1050: 1045: 1040: 1034: 1032: 1025: 1024: 1022: 1021: 1012: 1007: 1002: 997: 992: 991: 990: 978: 973: 968: 963: 957: 955: 951: 950: 948: 947: 942: 937: 932: 927: 922: 917: 911: 909: 905: 904: 902: 901: 896: 891: 886: 881: 876: 871: 866: 860: 858: 851: 850: 848: 847: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 776: 774: 767: 766: 764: 763: 758: 753: 748: 743: 737: 735: 728: 727: 725: 724: 719: 714: 709: 704: 699: 694: 689: 684: 678: 676: 669: 668: 662: 660: 659: 652: 645: 637: 631: 630: 625: 618: 617:External links 615: 613: 612: 599: 517: 491: 454:(25): 255003. 433: 404: 361: 334: 308: 306: 303: 275: 272: 213: 210: 205: 201: 198:speed of light 196:with c is the 193: 189: 185: 173: 165: 161: 157: 153: 102: 99: 48:) facility at 13: 10: 9: 6: 4: 3: 2: 1298: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1258: 1256: 1241: 1233: 1232: 1229: 1223: 1220: 1218: 1215: 1213: 1209: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1177: 1173: 1171: 1168: 1166: 1163: 1162: 1160: 1156: 1150: 1147: 1145: 1142: 1140: 1137: 1136: 1134: 1130: 1124: 1121: 1120: 1118: 1114: 1105: 1101: 1100: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1035: 1033: 1030: 1026: 1020: 1013: 1011: 1008: 1006: 1003: 1001: 998: 996: 993: 988: 984: 983: 982: 979: 977: 974: 972: 969: 967: 964: 962: 959: 958: 956: 952: 946: 943: 941: 938: 936: 933: 931: 928: 926: 923: 921: 918: 916: 913: 912: 910: 906: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 861: 859: 856: 852: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 777: 775: 772: 768: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 738: 736: 733: 729: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 679: 677: 674: 670: 665: 658: 653: 651: 646: 644: 639: 638: 635: 629: 626: 624: 621: 620: 616: 610:, EPS-HEP2019 609: 603: 600: 595: 588: 584: 579: 574: 570: 566: 562: 558: 554: 550: 545: 540: 536: 532: 528: 521: 518: 513: 506: 502: 495: 492: 487: 483: 479: 475: 471: 467: 462: 457: 453: 449: 442: 440: 438: 434: 429: 422: 415: 413: 411: 409: 405: 400: 396: 392: 388: 384: 380: 376: 372: 365: 362: 357: 350: 343: 341: 339: 335: 330: 323: 316: 314: 310: 304: 302: 300: 295: 288: 284: 280: 273: 271: 268: 263: 261: 257: 253: 249: 244: 242: 241:dipole magnet 236: 234: 230: 222: 218: 211: 209: 199: 183: 179: 176:the electron 171: 151: 147: 142: 140: 135: 131: 126: 123: 120: 116: 107: 100: 98: 96: 91: 89: 85: 80: 78: 74: 71: 67: 63: 59: 55: 51: 47: 43: 36: 32: 27: 23: 19: 1207: 1182:CERN openlab 1176:CERN Courier 1174: 1038:CERN-MEDICIS 914: 805:NA58/COMPASS 784: 602: 534: 530: 520: 494: 451: 447: 374: 370: 364: 296: 292: 264: 245: 237: 226: 143: 127: 112: 95:accelerators 92: 81: 70:acceleration 45: 41: 39: 22: 879:PS215/CLOUD 260:temperature 146:oscillators 130:interaction 1255:Categories 884:Gargamelle 815:NA61/SHINE 544:1808.09759 305:References 569:0028-0836 461:1003.5816 399:0028-0836 299:emittance 233:radiation 150:frequency 62:electrons 1240:Category 1165:LHC@home 1078:Miniball 1073:LUCRECIA 1068:ISOLTRAP 1031:facility 587:30188496 486:20867389 274:Timeline 248:Rubidium 221:Electron 164:, with n 134:particle 73:gradient 56:using a 1083:MIRACLS 1043:COLLAPS 940:Linac 3 935:Linac 2 578:6786972 549:Bibcode 466:Bibcode 379:Bibcode 283:Protons 235:issue. 192:(=2πc/ω 182:Fourier 170:density 148:with a 119:charged 1098:WISArD 1053:EC-SLI 1029:ISOLDE 945:Linac4 845:HOLEBC 751:DELPHI 712:MoEDAL 666:(CERN) 585:  575:  567:  531:Nature 484:  397:  371:Nature 287:plasma 267:ionize 115:plasma 58:proton 31:plasma 1104:WITCH 1005:n-TOF 987:PS210 930:Linac 925:CLEAR 915:AWAKE 785:AWAKE 773:(SPS) 746:ALEPH 734:(LEP) 722:FASER 717:TOTEM 692:ATLAS 687:ALICE 675:(LHC) 539:arXiv 456:arXiv 256:laser 252:vapor 250:(Rb) 42:AWAKE 1286:CERN 1123:CAST 1093:VITO 1048:CRIS 995:LEIR 981:LEAR 920:CTF3 874:BEBC 869:LEIR 857:(PS) 840:LEBC 835:BIBC 820:NA62 810:NA60 800:NA49 795:NA48 790:CNGS 756:OPAL 707:LHCf 702:LHCb 583:PMID 565:ISSN 482:PMID 395:ISSN 178:mass 160:e/εm 122:ions 50:CERN 40:The 1088:SEC 1063:ISS 1058:IDS 976:ISR 864:PSB 830:UA2 825:UA1 697:CMS 573:PMC 557:doi 535:561 501:doi 474:doi 452:104 387:doi 375:311 172:, m 156:=4n 77:LHC 1257:: 1015:Sp 1010:SC 971:AD 761:L3 581:. 571:. 563:. 555:. 547:. 533:. 529:. 480:. 472:. 464:. 450:. 436:^ 407:^ 393:. 385:. 373:. 337:^ 312:^ 113:A 86:. 66:eV 1019:S 1017:p 656:e 649:t 642:v 589:. 559:: 551:: 541:: 507:. 503:: 488:. 476:: 468:: 458:: 401:. 389:: 381:: 206:p 202:e 194:p 190:p 186:p 174:e 166:e 162:e 158:e 154:p 44:( 20:.

Index

Awake (disambiguation)

plasma
Max Planck Institute for Physics
CERN
plasma acceleration
proton
electrons
eV
acceleration
gradient
LHC
synchrotron radiation
Linear accelerators
accelerators

plasma
charged
ions
interaction
particle
Super Proton Synchrotron
oscillators
frequency
density
mass
Fourier
speed of light

Electron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.