Knowledge (XXG)

Abnormal grain growth

Source πŸ“

101:
grain in an otherwise inactive microstructure and allowing the grain to rotate and coalesce with a neighbor grain. However, due to competition with the surrounding grains, rotation may proceed erratically. Coupled with spontaneous activation, this makes abnormal grain growth a largely erratic process. While the activation of grain boundaries (leading to rotation and growth) can occur at temperatures well below the temperatures required for partial melting of the grain boundaries, the effect is emphasized when melting occurs.
17: 138: 100:
Abnormal grain growth occurs due to very high local rates of interface migration and is enhanced by the localized formation of liquid at grain boundaries. In 2023, Liss et al. have shown that the spontaneous activation of a grain boundary opens diffusion pathways, leading to the activation of one
252:
has been shown to exhibit improved fracture toughness as the result of AGG processes yielding elongated crack-tip/wake-bridging grains, with consequences for applications in ballistic armor. This enhancement of fracture toughness in ceramic materials via crack-bridging resulting from AGG is
70:, this phenomenon can result in the formation of elongated prismatic, acicular (needle-like) grains in a densified matrix. This microstructure has the potential to improve fracture toughness by impeding the propagation of cracks. 109:
In the sintering of ceramic materials, abnormal grain growth is often viewed as an undesirable phenomenon because rapidly growing grains may lower the hardness of the bulk material through
584:
Dressler, W.; Kleebe, H.-J.; Hoffmann, M. J.; RΓΌhle, M.; Petzow, G. (1996). "Model experiments concerning abnormal grain growth in silicon nitride".
389: 260:
and dielectric applications, is known to exhibit AGG with significant consequences on the electronic performance of the material
483: 78:
Abnormal grain growth (AGG) is encountered in metallic or ceramic systems exhibiting one or more of several characteristics:
274:
have been observed to exhibit AGG without the formation of liquid as the result of polytype interfaces between solid phases
224:
has been reported to exhibit AGG of faceted grains in the presence of a liquid cobalt-containing phase at grain boundaries
725: 110: 182:
parent-phase in the form of abnormally large grains existing in a matrix of finer, equiaxed anatase or rutile grains.
715: 540:
Park, Y. J.; Hwang, N. M.; Yoon, D. Y. (1996). "Abnormal growth of faceted (WC) grains in a (Co) liquid matrix".
424: 126: 720: 305: 82:
Systems with secondary phase inclusions, precipitates or impurities above a certain threshold concentration.
122: 542: 381: 638: 550: 443: 93: 60: 246:
precursor. This type of grain growth is of importance in the toughening of silicon nitride materials
16: 666: 586: 137: 218:
is known to exhibit abnormal grain growth with profound consequences on piezoelectric performance.
566: 514: 459: 433: 411: 350: 346:"Toughness properties of a silicon carbide with an in situ induced heterogeneous grain structure" 700: 385: 67: 674: 646: 594: 558: 522: 492: 451: 358: 263: 221: 145: 56: 695: 477:
Liss, K.-D.; Xu, P.G.; Shiro, A.; Zhang, S.Y.; Yukutake, E.; Shobu, T.; Akita, K. (2023).
249: 227: 211: 642: 554: 447: 630: 526: 362: 315: 295: 257: 86: 21: 678: 709: 598: 570: 168: 463: 455: 290: 285: 271: 238:) may exhibit AGG depending on the size distribution of Ξ²-phase material in an Ξ±-Si 48: 25: 52: 253:
consistent with reported morphological effects on crack propagation in ceramics
310: 300: 118: 479:"Abnormal Grain Growth: A Spontaneous Activation of Competing Grain Rotation" 664:
Recnik, A. (2001). "Polytype induced exaggerated grain growth in ceramics".
320: 612:
Lee, H.-Y.; Freer, R. (1997). "The mechanism of abnormal grain growth in Sr
497: 478: 562: 185: 179: 650: 201: 197: 172: 160: 152: 142: 114: 345: 438: 15: 512:
Bae, I.-J.; Baik, S. (1997). "Abnormal grain growth of alumina".
20:
Abnormal or discontinuous grain growth leads to a heterogeneous
204:
dopants/impurities has been reported to exhibit undesirable AGG.
410:
Hanaor, D. A. H.; Xu, W.; Ferry, M.; Sorrell, C. C. (2012).
51:
phenomenon in which certain energetically favorable grains (
378:
Sintering: Densification, Grain Growth, and Microstructure
121:
in ceramic materials. Additionally, AGG is undesirable in
178:
dopant, rutile has been observed to crystallise from an
171:. In the presence of alkali dopants or a solid-state 117:
to bring about controlled AGG may be used to impart
696:Abnormal Grain Growth by Cyclic Heat Treatment 167:) frequently exhibits a prismatic or acicular 8: 113:. However, the controlled introduction of 496: 437: 136: 45:secondary recrystallisation grain growth 333: 701:University of Virginia, Surface Energy 405: 403: 401: 339: 337: 7: 412:"Abnormal grain growth of rutile TiO 344:Padture, N. P.; Lawn, B. R. (1994). 256:Strontium barium niobate, used for 527:10.1111/j.1151-2916.1997.tb02957.x 363:10.1111/j.1151-2916.1994.tb04637.x 141:Abnormal grain growth observed in 85:Systems with a highly anisotropic 14: 270:, perovskite) systems doped with 59:of finer grains, resulting in a 151:, induced by the presence of a 28:grow much faster than the rest. 484:Advanced Engineering Materials 456:10.1016/j.jcrysgro.2012.08.015 382:Elsevier Butterworth-Heinemann 1: 679:10.1016/s0955-2219(01)00184-4 599:10.1016/0955-2219(95)00175-1 742: 37:discontinuous grain growth 24:where a limited number of 425:Journal of Crystal Growth 63:grain-size distribution. 125:, as it may degrade the 376:Kang, S.-J. L. (2005). 111:Hall-Petch-type effects 498:10.1002/adem.202300470 156: 123:piezoelectric ceramics 39:, also referred to as 29: 543:Metall. Mater. Trans. 214:with an excess of TiO 140: 19: 127:piezoelectric effect 94:chemical equilibrium 55:) grow rapidly in a 726:Mineralogy concepts 667:J. Eur. Ceram. Soc. 643:1997JAP....81..376L 587:J. Eur. Ceram. Soc. 555:1996MMTA...27.2809P 448:2012JCrGr.359...83H 563:10.1007/bf02652373 515:J. Am. Ceram. Soc. 351:J. Am. Ceram. Soc. 157: 30: 716:Materials science 673:(10): 2117–2121. 357:(10): 2518–2522. 92:Systems far from 68:ceramic materials 733: 683: 682: 661: 655: 654: 651:10.1063/1.364122 609: 603: 602: 581: 575: 574: 549:(9): 2809–2819. 537: 531: 530: 521:(5): 1149–1156. 509: 503: 502: 500: 474: 468: 467: 441: 416:induced by ZrSiO 407: 396: 395: 373: 367: 366: 341: 264:Calcium titanate 222:Tungsten carbide 155:secondary phase. 119:fibre-toughening 741: 740: 736: 735: 734: 732: 731: 730: 721:Crystallography 706: 705: 692: 687: 686: 663: 662: 658: 627: 623: 619: 615: 611: 610: 606: 583: 582: 578: 539: 538: 534: 511: 510: 506: 476: 475: 471: 419: 415: 409: 408: 399: 392: 375: 374: 370: 343: 342: 335: 330: 325: 281: 269: 250:Silicon carbide 245: 241: 237: 233: 228:Silicon nitride 217: 212:barium titanate 210: 195: 191: 176: 166: 149: 135: 133:Example systems 107: 76: 12: 11: 5: 739: 737: 729: 728: 723: 718: 708: 707: 704: 703: 698: 691: 690:External links 688: 685: 684: 656: 637:(1): 376–382. 631:J. Appl. Phys. 625: 621: 617: 613: 604: 576: 532: 504: 491:(4): 2300470. 469: 417: 413: 397: 390: 368: 332: 331: 329: 326: 324: 323: 318: 316:Microstructure 313: 308: 303: 298: 296:Grain boundary 293: 288: 282: 280: 277: 276: 275: 267: 261: 258:electro-optics 254: 247: 243: 239: 235: 231: 225: 219: 215: 208: 205: 193: 189: 183: 174: 164: 147: 134: 131: 106: 103: 98: 97: 90: 87:surface energy 83: 75: 72: 22:microstructure 13: 10: 9: 6: 4: 3: 2: 738: 727: 724: 722: 719: 717: 714: 713: 711: 702: 699: 697: 694: 693: 689: 680: 676: 672: 669: 668: 660: 657: 652: 648: 644: 640: 636: 633: 632: 608: 605: 600: 596: 592: 589: 588: 580: 577: 572: 568: 564: 560: 556: 552: 548: 545: 544: 536: 533: 528: 524: 520: 517: 516: 508: 505: 499: 494: 490: 486: 485: 480: 473: 470: 465: 461: 457: 453: 449: 445: 440: 435: 431: 427: 426: 421: 406: 404: 402: 398: 393: 391:9780080493077 387: 383: 379: 372: 369: 364: 360: 356: 353: 352: 347: 340: 338: 334: 327: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 287: 284: 283: 278: 273: 265: 262: 259: 255: 251: 248: 229: 226: 223: 220: 213: 206: 203: 199: 187: 184: 181: 177: 170: 162: 159: 158: 154: 150: 144: 139: 132: 130: 128: 124: 120: 116: 112: 104: 102: 95: 91: 88: 84: 81: 80: 79: 73: 71: 69: 64: 62: 58: 54: 50: 46: 42: 38: 34: 27: 23: 18: 670: 665: 659: 634: 629: 607: 590: 585: 579: 546: 541: 535: 518: 513: 507: 488: 482: 472: 429: 423: 377: 371: 354: 349: 291:Fractography 286:Crystallites 169:growth habit 108: 105:Significance 99: 77: 65: 53:crystallites 49:grain growth 44: 40: 36: 32: 31: 628:ceramics". 593:(1): 3–14. 306:Micrography 41:exaggerated 710:Categories 328:References 311:Micrograph 301:Metallurgy 74:Mechanisms 571:137080942 439:1303.2761 432:: 83–91. 321:Sintering 464:94096447 279:See also 33:Abnormal 639:Bibcode 551:Bibcode 444:Bibcode 200:and/or 186:Alumina 180:anatase 115:dopants 61:bimodal 47:, is a 569:  462:  388:  266:(CaTiO 202:yttria 198:silica 161:Rutile 153:zircon 143:Rutile 57:matrix 26:grains 567:S2CID 460:S2CID 434:arXiv 207:BaTiO 196:with 173:ZrSiO 386:ISBN 188:, Al 163:(TiO 675:doi 647:doi 618:0.4 614:0.6 595:doi 559:doi 523:doi 493:doi 452:doi 430:359 359:doi 272:BaO 230:(Si 146:TiO 66:In 43:or 35:or 712:: 671:21 645:. 635:81 620:Nb 616:Ba 591:16 565:. 557:. 547:27 519:80 489:26 487:. 481:. 458:. 450:. 442:. 428:. 422:. 400:^ 384:. 380:. 355:77 348:. 336:^ 129:. 681:. 677:: 653:. 649:: 641:: 626:6 624:O 622:2 601:. 597:: 573:. 561:: 553:: 529:. 525:: 501:. 495:: 466:. 454:: 446:: 436:: 420:" 418:4 414:2 394:. 365:. 361:: 268:3 244:4 242:N 240:3 236:4 234:N 232:3 216:2 209:3 194:3 192:O 190:2 175:4 165:2 148:2 96:. 89:.

Index


microstructure
grains
grain growth
crystallites
matrix
bimodal
ceramic materials
surface energy
chemical equilibrium
Hall-Petch-type effects
dopants
fibre-toughening
piezoelectric ceramics
piezoelectric effect

Rutile
TiO2
zircon
Rutile
growth habit
ZrSiO4
anatase
Alumina
silica
yttria
barium titanate
Tungsten carbide
Silicon nitride
Silicon carbide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑