Knowledge (XXG)

Abrikosov vortex

Source đź“ť

28: 374: 240: 779:. Abrikosov vortices form a lattice, usually triangular, with the average vortex density (flux density) approximately equal to the externally applied magnetic field. As with other lattices, defects may form as dislocations. 601: 192: 497: 649: 369:{\displaystyle B(r)={\frac {\Phi _{0}}{2\pi \lambda ^{2}}}K_{0}\left({\frac {r}{\lambda }}\right)\approx {\sqrt {\frac {\lambda }{r}}}\exp \left(-{\frac {r}{\lambda }}\right),} 523: 752:), the field penetrates into superconductor in terms of Abrikosov vortices. Each vortex obeys London's magnetic flux quantization and carries one quantum of magnetic flux 777: 226: 119: 412: 147: 750: 717: 442: 1459: 684: 1192: 1129: 896: 530: 1095: 1065: 1167: 1551: 1289: 235:
The magnetic field distribution of a single vortex far from its core can be described by the same equation as in the London's fluxoid
1399: 1487: 1208: 122: 1404: 1122: 1187: 1157: 1528: 1380: 1324: 1299: 789: 1430: 1359: 65: 1375: 1294: 1162: 126: 69: 1582: 1482: 1477: 1115: 1182: 794: 159: 1435: 447: 36: 1218: 150: 1269: 616: 1561: 1420: 1352: 154: 1472: 1445: 1425: 1347: 663: 659: 652: 61: 1342: 199: 1546: 1502: 1004: 945: 905: 850: 815:
Wells, Frederick S.; Pan, Alexey V.; Wang, X. Renshaw; Fedoseev, Sergey A.; Hilgenkamp, Hans (2015).
720: 687: 68:
to explain magnetic behavior of type-II superconductors. Abrikosov vortices occur generically in the
502: 1533: 1284: 1244: 1047: 1028: 840: 98:
circulates around the normal (i.e. non-superconducting) core of the vortex. The core has a size
755: 204: 101: 1587: 1309: 1138: 1091: 1061: 1020: 876: 381: 132: 1518: 1492: 1264: 1172: 1053: 1012: 953: 913: 866: 858: 725: 692: 421: 1541: 1274: 415: 1008: 949: 936:
London, F. (1948-09-01). "On the Problem of the Molecular Theory of Superconductivity".
909: 854: 1279: 1223: 1213: 1177: 871: 816: 669: 1057: 1576: 1032: 917: 1314: 1304: 1259: 1254: 195: 95: 85: 81: 57: 17: 1440: 1249: 1152: 1052:, Progress in Low Temperature Physics, vol. 1, Elsevier, pp. 17–53, 992: 894:
Abrikosov, A. A. (1957). "The magnetic properties of superconducting alloys".
596:{\displaystyle B(0)\approx {\frac {\Phi _{0}}{2\pi \lambda ^{2}}}\ln \kappa ,} 1024: 817:"Analysis of low-field isotropic vortex glass containing vortex groups in YBa 957: 880: 27: 1467: 1016: 862: 229: 44: 1107: 845: 1523: 1497: 26: 1556: 32: 1111: 198:
induce magnetic fields with the total flux equal to a single
1049:
Chapter II Application of Quantum Mechanics to Liquid Helium
613:
is known as the Ginzburg–Landau parameter, which must be
84:, combined with a concept of core of quantum vortex by 666:
contains no vortices, and one applies a magnetic field
1090:. Addison Wesley Publishing Company, Inc. p. 59. 758: 728: 695: 672: 619: 533: 505: 450: 424: 384: 243: 207: 162: 135: 104: 80:
The solution is a combination of fluxon solution by
1511: 1458: 1413: 1389: 1368: 1332: 1323: 1232: 1201: 1145: 829:
thin films visualized by scanning SQUID microscopy"
228:. Therefore, an Abrikosov vortex is often called a 771: 744: 711: 678: 643: 595: 517: 491: 436: 406: 368: 220: 186: 141: 113: 499:, i.e. logarithmically diverges. In reality, for 129:). The supercurrents decay on the distance about 418:. Note that, according to the above formula, at 662:by chance, on defects, etc. Even if initially 1123: 8: 187:{\displaystyle \lambda >\xi /{\sqrt {2}}} 492:{\displaystyle B(r)\propto \ln(\lambda /r)} 1329: 1130: 1116: 1108: 897:Journal of Physics and Chemistry of Solids 870: 844: 763: 757: 733: 727: 700: 694: 671: 634: 629: 618: 572: 555: 549: 532: 504: 478: 449: 423: 389: 383: 348: 322: 305: 295: 282: 265: 259: 242: 212: 206: 177: 172: 161: 134: 103: 644:{\displaystyle \kappa >1/{\sqrt {2}}} 807: 658:Abrikosov vortices can be trapped in a 1088:Superconductivity of Metals and Alloys 7: 980:(2nd ed.). New York, NY: Dover. 971: 969: 967: 931: 929: 927: 1086:de Gennes, Pierre-Gilles (2018) . 760: 552: 262: 209: 25: 123:superconducting coherence length 543: 537: 518:{\displaystyle r\lesssim \xi } 486: 472: 460: 454: 428: 401: 395: 253: 247: 153:) from the core. Note that in 1: 1058:10.1016/s0079-6417(08)60077-3 790:Macroscopic quantum phenomena 525:the field is simply given by 918:10.1016/0022-3697(57)90083-5 993:"Statistical hydrodynamics" 31:Vortices in a 200-nm-thick 1604: 1460:Technological applications 991:Onsager, L. (March 1949). 1202:Characteristic parameters 772:{\displaystyle \Phi _{0}} 221:{\displaystyle \Phi _{0}} 114:{\displaystyle \sim \xi } 37:scanning SQUID microscopy 1219:London penetration depth 407:{\displaystyle K_{0}(z)} 151:London penetration depth 142:{\displaystyle \lambda } 42:In superconductivity, a 1512:List of superconductors 1390:By critical temperature 653:type-II superconductors 155:type-II superconductors 1046:Feynman, R.P. (1955), 976:London, Fritz (1961). 958:10.1103/PhysRev.74.562 773: 746: 745:{\displaystyle H_{c2}} 719:(but smaller than the 713: 712:{\displaystyle H_{c1}} 680: 664:type-II superconductor 660:type-II superconductor 645: 597: 519: 493: 438: 437:{\displaystyle r\to 0} 408: 370: 222: 188: 143: 127:Ginzburg–Landau theory 115: 72:of superconductivity. 70:Ginzburg–Landau theory 62:type-II superconductor 39: 1158:Bean's critical state 795:Nielsen–Olesen vortex 774: 747: 714: 681: 646: 598: 520: 494: 439: 409: 371: 223: 189: 144: 116: 91:In the quantum vortex 30: 1333:By magnetic response 756: 726: 721:upper critical field 693: 688:lower critical field 670: 617: 531: 503: 448: 422: 382: 241: 205: 160: 133: 102: 1285:persistent currents 1270:Little–Parks effect 1009:1949NCim....6S.279O 950:1948PhRv...74..562L 910:1957JPCS....2..199A 855:2015NatSR...5E8677W 444:the magnetic field 1245:Andreev reflection 1240:Abrikosov vortices 1017:10.1007/BF02780991 833:Scientific Reports 769: 742: 709: 676: 641: 593: 515: 489: 434: 414:is a zeroth-order 404: 366: 218: 194:. The circulating 184: 139: 111: 40: 18:Abrikosov vortices 1583:Superconductivity 1570: 1569: 1488:quantum computing 1454: 1453: 1310:superdiamagnetism 1139:Superconductivity 1097:978-0-7382-0101-6 1067:978-0-444-53307-4 863:10.1038/srep08677 679:{\displaystyle H} 639: 579: 356: 332: 331: 313: 289: 182: 56:) is a vortex of 16:(Redirected from 1595: 1519:bilayer graphene 1493:Rutherford cable 1405:room temperature 1400:high temperature 1330: 1290:proximity effect 1265:Josephson effect 1209:coherence length 1132: 1125: 1118: 1109: 1102: 1101: 1083: 1077: 1076: 1075: 1074: 1043: 1037: 1036: 997:Il Nuovo Cimento 988: 982: 981: 973: 962: 961: 933: 922: 921: 891: 885: 884: 874: 848: 812: 778: 776: 775: 770: 768: 767: 751: 749: 748: 743: 741: 740: 718: 716: 715: 710: 708: 707: 686:larger than the 685: 683: 682: 677: 650: 648: 647: 642: 640: 635: 633: 602: 600: 599: 594: 580: 578: 577: 576: 560: 559: 550: 524: 522: 521: 516: 498: 496: 495: 490: 482: 443: 441: 440: 435: 413: 411: 410: 405: 394: 393: 375: 373: 372: 367: 362: 358: 357: 349: 333: 324: 323: 318: 314: 306: 300: 299: 290: 288: 287: 286: 270: 269: 260: 227: 225: 224: 219: 217: 216: 193: 191: 190: 185: 183: 178: 176: 148: 146: 145: 140: 125:(parameter of a 120: 118: 117: 112: 66:Alexei Abrikosov 50:Abrikosov vortex 48:(also called an 21: 1603: 1602: 1598: 1597: 1596: 1594: 1593: 1592: 1573: 1572: 1571: 1566: 1537: 1507: 1450: 1409: 1396:low temperature 1385: 1364: 1319: 1275:Meissner effect 1228: 1224:Silsbee current 1197: 1163:Ginzburg–Landau 1141: 1136: 1106: 1105: 1098: 1085: 1084: 1080: 1072: 1070: 1068: 1045: 1044: 1040: 1003:(S2): 279–287. 990: 989: 985: 975: 974: 965: 938:Physical Review 935: 934: 925: 893: 892: 888: 828: 824: 820: 814: 813: 809: 804: 799: 785: 759: 754: 753: 729: 724: 723: 696: 691: 690: 668: 667: 615: 614: 603: 568: 561: 551: 529: 528: 501: 500: 446: 445: 420: 419: 416:Bessel function 385: 380: 379: 376: 344: 340: 301: 291: 278: 271: 261: 239: 238: 208: 203: 202: 158: 157: 131: 130: 100: 99: 94: 78: 35:film imaged by 23: 22: 15: 12: 11: 5: 1601: 1599: 1591: 1590: 1585: 1575: 1574: 1568: 1567: 1565: 1564: 1559: 1554: 1549: 1544: 1539: 1535: 1531: 1526: 1521: 1515: 1513: 1509: 1508: 1506: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1473:electromagnets 1470: 1464: 1462: 1456: 1455: 1452: 1451: 1449: 1448: 1443: 1438: 1433: 1428: 1423: 1417: 1415: 1414:By composition 1411: 1410: 1408: 1407: 1402: 1397: 1393: 1391: 1387: 1386: 1384: 1383: 1381:unconventional 1378: 1372: 1370: 1369:By explanation 1366: 1365: 1363: 1362: 1357: 1356: 1355: 1350: 1345: 1336: 1334: 1327: 1325:Classification 1321: 1320: 1318: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1236: 1234: 1230: 1229: 1227: 1226: 1221: 1216: 1214:critical field 1211: 1205: 1203: 1199: 1198: 1196: 1195: 1190: 1185: 1183:Mattis–Bardeen 1180: 1175: 1170: 1168:Kohn–Luttinger 1165: 1160: 1155: 1149: 1147: 1143: 1142: 1137: 1135: 1134: 1127: 1120: 1112: 1104: 1103: 1096: 1078: 1066: 1038: 983: 963: 944:(5): 562–573. 923: 904:(3): 199–208. 886: 826: 822: 818: 806: 805: 803: 800: 798: 797: 792: 786: 784: 781: 766: 762: 739: 736: 732: 706: 703: 699: 675: 638: 632: 628: 625: 622: 592: 589: 586: 583: 575: 571: 567: 564: 558: 554: 548: 545: 542: 539: 536: 527: 514: 511: 508: 488: 485: 481: 477: 474: 471: 468: 465: 462: 459: 456: 453: 433: 430: 427: 403: 400: 397: 392: 388: 365: 361: 355: 352: 347: 343: 339: 336: 330: 327: 321: 317: 312: 309: 304: 298: 294: 285: 281: 277: 274: 268: 264: 258: 255: 252: 249: 246: 237: 215: 211: 181: 175: 171: 168: 165: 138: 110: 107: 92: 77: 74: 54:quantum vortex 24: 14: 13: 10: 9: 6: 4: 3: 2: 1600: 1589: 1586: 1584: 1581: 1580: 1578: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1516: 1514: 1510: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1465: 1463: 1461: 1457: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1431:heavy fermion 1429: 1427: 1424: 1422: 1419: 1418: 1416: 1412: 1406: 1403: 1401: 1398: 1395: 1394: 1392: 1388: 1382: 1379: 1377: 1374: 1373: 1371: 1367: 1361: 1360:ferromagnetic 1358: 1354: 1351: 1349: 1346: 1344: 1341: 1340: 1338: 1337: 1335: 1331: 1328: 1326: 1322: 1316: 1313: 1311: 1308: 1306: 1305:supercurrents 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1237: 1235: 1231: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1206: 1204: 1200: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1150: 1148: 1144: 1140: 1133: 1128: 1126: 1121: 1119: 1114: 1113: 1110: 1099: 1093: 1089: 1082: 1079: 1069: 1063: 1059: 1055: 1051: 1050: 1042: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 998: 994: 987: 984: 979: 972: 970: 968: 964: 959: 955: 951: 947: 943: 939: 932: 930: 928: 924: 919: 915: 911: 907: 903: 899: 898: 890: 887: 882: 878: 873: 868: 864: 860: 856: 852: 847: 842: 838: 834: 830: 811: 808: 801: 796: 793: 791: 788: 787: 782: 780: 764: 737: 734: 730: 722: 704: 701: 697: 689: 673: 665: 661: 656: 654: 636: 630: 626: 623: 620: 612: 608: 590: 587: 584: 581: 573: 569: 565: 562: 556: 546: 540: 534: 526: 512: 509: 506: 483: 479: 475: 469: 466: 463: 457: 451: 431: 425: 417: 398: 390: 386: 363: 359: 353: 350: 345: 341: 337: 334: 328: 325: 319: 315: 310: 307: 302: 296: 292: 283: 279: 275: 272: 266: 256: 250: 244: 236: 233: 231: 213: 201: 197: 196:supercurrents 179: 173: 169: 166: 163: 156: 152: 136: 128: 124: 108: 105: 97: 89: 87: 83: 75: 73: 71: 67: 63: 59: 55: 51: 47: 46: 38: 34: 29: 19: 1441:oxypnictides 1376:conventional 1315:superstripes 1260:flux pumping 1255:flux pinning 1250:Cooper pairs 1239: 1087: 1081: 1071:, retrieved 1048: 1041: 1000: 996: 986: 977: 941: 937: 901: 895: 889: 836: 832: 810: 657: 610: 606: 604: 377: 234: 200:flux quantum 96:supercurrent 90: 86:Lars Onsager 82:Fritz London 79: 58:supercurrent 53: 49: 43: 41: 1300:SU(2) color 1280:Homes's law 978:Superfluids 64:, used by 1577:Categories 1436:iron-based 1295:reentrance 1073:2021-04-11 846:1807.06746 802:References 1233:Phenomena 1033:186224016 1025:0029-6341 827:7−x 761:Φ 621:κ 588:κ 585:⁡ 570:λ 566:π 553:Φ 547:≈ 513:ξ 510:≲ 476:λ 470:⁡ 464:∝ 429:→ 354:λ 346:− 338:⁡ 326:λ 320:≈ 311:λ 280:λ 276:π 263:Φ 210:Φ 170:ξ 164:λ 137:λ 109:ξ 106:∼ 1588:Vortices 1468:cryotron 1426:cuprates 1421:covalent 1178:Matthias 1146:Theories 881:25728772 839:: 8677. 783:See also 76:Overview 1562:more... 1446:organic 1005:Bibcode 946:Bibcode 906:Bibcode 872:4345321 851:Bibcode 1339:Types 1173:London 1094:  1064:  1031:  1023:  879:  869:  605:where 378:where 230:fluxon 121:— the 45:fluxon 1552:TBCCO 1524:BSCCO 1503:wires 1498:SQUID 1029:S2CID 841:arXiv 60:in a 1557:YBCO 1547:NbTi 1542:NbSn 1529:LBCO 1092:ISBN 1062:ISBN 1021:ISSN 877:PMID 624:> 167:> 33:YBCO 1534:MgB 1483:NMR 1478:MRI 1353:1.5 1193:WHH 1188:RVB 1153:BCS 1054:doi 1013:doi 954:doi 914:doi 867:PMC 859:doi 651:in 611:λ/Îľ 335:exp 52:or 1579:: 1348:II 1060:, 1027:. 1019:. 1011:. 999:. 995:. 966:^ 952:. 942:74 940:. 926:^ 912:. 900:. 875:. 865:. 857:. 849:. 835:. 831:. 821:Cu 655:. 609:= 582:ln 467:ln 232:. 88:. 1536:2 1343:I 1131:e 1124:t 1117:v 1100:. 1056:: 1035:. 1015:: 1007:: 1001:6 960:. 956:: 948:: 920:. 916:: 908:: 902:2 883:. 861:: 853:: 843:: 837:5 825:O 823:3 819:2 765:0 738:2 735:c 731:H 705:1 702:c 698:H 674:H 637:2 631:/ 627:1 607:Îş 591:, 574:2 563:2 557:0 544:) 541:0 538:( 535:B 507:r 487:) 484:r 480:/ 473:( 461:) 458:r 455:( 452:B 432:0 426:r 402:) 399:z 396:( 391:0 387:K 364:, 360:) 351:r 342:( 329:r 316:) 308:r 303:( 297:0 293:K 284:2 273:2 267:0 257:= 254:) 251:r 248:( 245:B 214:0 180:2 174:/ 149:( 93:, 20:)

Index

Abrikosov vortices

YBCO
scanning SQUID microscopy
fluxon
supercurrent
type-II superconductor
Alexei Abrikosov
Ginzburg–Landau theory
Fritz London
Lars Onsager
supercurrent
superconducting coherence length
Ginzburg–Landau theory
London penetration depth
type-II superconductors
supercurrents
flux quantum
fluxon
Bessel function
type-II superconductors
type-II superconductor
type-II superconductor
lower critical field
upper critical field
Macroscopic quantum phenomena
Nielsen–Olesen vortex
"Analysis of low-field isotropic vortex glass containing vortex groups in YBa2Cu3O7−x thin films visualized by scanning SQUID microscopy"
arXiv
1807.06746

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑