Knowledge (XXG)

Accelerator physics

Source 📝

712: 762: 36: 209: 254:
that follow the beam, it is possible for it to interact with any electrical impedance in the walls of the beam pipe. This may be in the form of a resistive impedance (i.e., the finite resistivity of the beam pipe material) or an inductive/capacitive impedance (due to the geometric changes in the beam
676:
A typical machine may use many different types of measurement device in order to measure different properties. These include (but are not limited to) Beam Position Monitors (BPMs) to measure the position of the bunch, screens (fluorescent screens, Optical Transition Radiation (OTR) devices) to image
680:
While many of these devices rely on well understood technology, designing a device capable of measuring a beam for a particular machine is a complex task requiring much expertise. Not only is a full understanding of the physics of the operation of the device necessary, but it is also necessary to
695:
Engineers will provide the physicists with expected tolerances for the alignment and manufacture of each component to allow full physics simulations of the expected behaviour of the machine under these conditions. In many cases it will be found that the performance is degraded to an unacceptable
664:
There are many different software packages available for modeling the different aspects of accelerator physics. One must model the elements that create the electric and magnetic fields, and then one must model the charged particle evolution within those fields.
262:(a strong warping of the electromagnetic field of the beam) that can interact with later particles. Since this interaction may have negative effects, it is studied to determine its magnitude, and to determine any actions that may be taken to mitigate it. 488: 699:
This may require many simulations of different error conditions in order to determine the relative success of each tuning algorithm, and to allow recommendations for the collection of algorithms to be deployed on the real machine.
238:
operate using time-varying fields. To control this fields using hollow macroscopic structures through which the particles are passing (wavelength restrictions), the frequency of such acceleration fields is located in the
692:
Errors in the alignment of components, field strength, etc., are inevitable in machines of this scale, so it is important to consider the tolerances under which a machine may operate.
162:
The experiments conducted with particle accelerators are not regarded as part of accelerator physics, but belong (according to the objectives of the experiments) to, e.g.,
562: 377: 696:
level, requiring either re-engineering of the components, or the invention of algorithms that allow the machine performance to be 'tuned' back to the design level.
587: 524: 366: 1390: 231:
at high voltages. Furthermore, due to electrostatic fields being conservative, the maximum voltage limits the kinetic energy that is applicable to the particles.
677:
the profile of the bunch, wire-scanners to measure its cross-section, and toroids or ICTs to measure the bunch charge (i.e., the number of particles per bunch).
1160: 610: 1479: 287: 1505: 1358: 711: 1107: 1080: 1053: 1018: 985: 960: 916: 889: 368:
are re-focused to the design orbit. For preliminary calculations, neglecting all fields components higher than quadrupolar, an inhomogenic
783: 57: 624:; e.g., a quadrupolar field is analogous to a lens in geometrical optics, having similar properties regarding beam focusing (but obeying 246:
The space around a particle beam is evacuated to prevent scattering with gas atoms, requiring it to be enclosed in a vacuum chamber (or
224: 312:
with different properties and functions. An important step in the development of these types of accelerators was the understanding of
673:
A vital component of any accelerator are the diagnostic devices that allow various properties of the particle bunches to be measured.
1153: 805: 567: 79: 740: 730: 199: 1306: 745: 203: 1500: 1146: 735: 621: 178:. The types of experiments done at a particular accelerator facility are determined by characteristics of the generated 1443: 235: 776: 770: 50: 44: 1274: 1247: 369: 339:) of the accelerator only experiences dipole field components, while particles with transverse position deviation 835: 655: 149: 787: 61: 1380: 171: 881: 971: 906: 681:
ensure that the device is capable of measuring the expected parameters of the machine under consideration.
1464: 1326: 639: 1469: 1438: 1301: 1222: 831: 635: 617: 251: 121: 111: 107: 625: 1428: 1252: 1212: 940: 850: 725: 684:
Success of the full range of beam diagnostics often underpins the success of the machine as a whole.
642:. Even in the cases of strongly nonlinear magnetic fields, and without the paraxial approximation, a 632: 228: 100: 1403: 1262: 1257: 1242: 1217: 1194: 1170: 329: 300:
fields that deflect particles. In most accelerator concepts (excluding compact structures like the
145: 483:{\displaystyle {\frac {d^{2}}{ds^{2}}}\,x(s)+k(s)\,x(s)={\frac {1}{\rho }}\,{\frac {\Delta p}{p}}} 1459: 1336: 1331: 1284: 1024: 135: 104: 536: 1474: 1423: 1368: 1348: 1234: 1103: 1076: 1049: 1014: 981: 956: 912: 885: 321: 283: 175: 1413: 1353: 1279: 1095: 1068: 1041: 1006: 1002: 977: 948: 858: 325: 216: 191: 163: 572: 223:
While it is possible to accelerate charged particles using electrostatic fields, like in a
1433: 1343: 1289: 1189: 500: 342: 313: 275: 240: 195: 167: 125: 96: 944: 854: 103:. As such, it can be described as the study of motion, manipulation and observation of 1363: 1318: 1296: 1184: 827: 717: 595: 309: 297: 279: 155: 1494: 1028: 934: 527: 317: 293: 271: 179: 139: 27:
Physics related to the study, design, building and operation of particle accelerators
1398: 208: 17: 1133: 296:
for magnetic fields, adjustments to the beam direction are mainly controlled by
1418: 1408: 952: 707: 1269: 1138: 643: 301: 862: 305: 646:
may be used to construct an integrator with a high degree of accuracy.
213: 939:. Graduate Texts in Physics. Cham: Springer International Publishing. 219:
for acceleration of ultrarelativistic particles from the TESLA project
1373: 659: 131: 996: 620:. Beam parameters for the accelerator can then be calculated using 207: 182:
such as average energy, particle type, intensity, and dimensions.
1099: 1072: 1045: 1010: 1142: 755: 29: 292:
Due to the high velocity of the particles, and the resulting
186:
Acceleration and interaction of particles with RF structures
1123: 320:
are used to guide the beam through the structure, while
152:; e.g., for automated manipulation of the particle beam. 1128: 1092:
Reviews of Accelerator Science and Technology Volume 4
1065:
Reviews of Accelerator Science and Technology Volume 5
1038:
Reviews of Accelerator Science and Technology Volume 6
598: 575: 539: 503: 380: 345: 335:
A particle on the exact design trajectory (or design
110:
and their interaction with accelerator structures by
533:
the relative deviation from the design beam impulse
1452: 1389: 1317: 1233: 1205: 1177: 99:, concerned with designing, building and operating 604: 581: 556: 518: 482: 360: 908:Advances of accelerator physics and technologies 836:"Theory of the alternating-gradient synchrotron" 731:Significant publications for accelerator physics 998:Handbook of accelerator physics and engineering 631:The general equations of motion originate from 124:(for acceleration/deflection structures in the 1154: 878:Particle Accelerator Physics: An Introduction 8: 1134:BNL page on The Alternating Gradient Concept 995:Chao, Alex W.; Tigner, Maury, eds. (2013). 1161: 1147: 1139: 1124:United States Particle Accelerator School 806:Learn how and when to remove this message 597: 574: 546: 538: 502: 465: 464: 454: 438: 410: 401: 387: 381: 379: 344: 80:Learn how and when to remove this message 769:This article includes a list of general 288:Collective effects (accelerator physics) 243:region of the electromagnetic spectrum. 43:This article includes a list of general 819: 158:, for the description of intense beams. 1359:Atomic, molecular, and optical physics 493:can be used as an approximation, with 7: 1090:Chao, Alex W.; Chou, Weiren (2012). 1063:Chao, Alex W.; Chou, Weiren (2013). 1036:Chao, Alex W.; Chou, Weiren (2014). 117:It is also related to other fields: 225:Cockcroft-Walton voltage multiplier 775:it lacks sufficient corresponding 540: 468: 308:), these are applied by dedicated 227:, this method has limits given by 49:it lacks sufficient corresponding 25: 616:thus identifying the system as a 760: 710: 638:, in almost all cases using the 526:, including strong focusing and 324:are used for beam focusing, and 138:(beam focusing and bending) and 34: 1480:Timeline of physics discoveries 741:Category:Accelerator physicists 200:Superconducting Radio Frequency 746:Category:Particle accelerators 513: 507: 497:a non-constant focusing force 448: 442: 435: 429: 420: 414: 355: 349: 204:Reciprocity (electromagnetism) 1: 1506:Experimental particle physics 896:(slightly different notation) 258:These impedances will induce 142:(laser-particle interaction). 936:Particle Accelerator Physics 905:Schopper, Herwig F. (1993). 736:Category:Accelerator physics 622:Ray transfer matrix analysis 236:linear particle accelerators 234:To circumvent this problem, 1444:Quantum information science 328:are used for correction of 1522: 1275:Classical electromagnetism 933:Wiedemann, Helmut (2015). 653: 557:{\displaystyle \Delta p/p} 370:Hill differential equation 269: 189: 1129:UCB/LBL Beam Physics site 953:10.1007/978-3-319-18317-6 656:Accelerator Physics Codes 150:digital signal processing 1381:Condensed matter physics 172:condensed matter physics 970:Lee, Shyh-Yuan (2004). 882:Oxford University Press 790:more precise citations. 592:the design path length 255:pipe's cross section). 64:more precise citations. 1465:Nobel Prize in Physics 1327:Relativistic mechanics 863:10.1006/aphy.2000.6012 640:Paraxial approximation 606: 583: 558: 520: 484: 362: 252:electromagnetic fields 220: 112:electromagnetic fields 108:charged particle beams 1470:Philosophy of physics 876:Wille, Klaus (2001). 636:Hamiltonian mechanics 618:parametric oscillator 607: 584: 582:{\displaystyle \rho } 559: 521: 485: 363: 250:). Due to the strong 211: 122:Microwave engineering 101:particle accelerators 1429:Mathematical physics 1094:. World Scientific. 1067:. World Scientific. 1040:. World Scientific. 911:. World Scientific. 726:Particle accelerator 596: 573: 537: 519:{\displaystyle k(s)} 501: 378: 361:{\displaystyle x(s)} 343: 229:electrical breakdown 148:with an emphasis on 134:with an emphasis on 1501:Accelerator physics 1404:Atmospheric physics 1243:Classical mechanics 1171:branches of physics 973:Accelerator physics 945:2015pap..book.....W 855:2000AnPhy.281..360C 568:radius of curvature 146:Computer technology 93:Accelerator physics 18:Accelerator Physics 1460:History of physics 688:Machine tolerances 626:Earnshaw's theorem 602: 579: 554: 516: 480: 358: 322:quadrupole magnets 221: 136:geometrical optics 1488: 1487: 1475:Physics education 1424:Materials science 1391:Interdisciplinary 1349:Quantum mechanics 1109:978-981-438-398-1 1082:978-981-4449-94-6 1055:978-981-4583-24-4 1020:978-981-4417-17-4 987:978-981-256-200-5 962:978-3-319-18316-9 918:978-981-02-0957-5 891:978-0-19-850549-5 843:Annals of Physics 816: 815: 808: 605:{\displaystyle s} 478: 462: 408: 326:sextupole magnets 284:Radiation damping 176:materials physics 90: 89: 82: 16:(Redirected from 1513: 1414:Chemical physics 1354:Particle physics 1280:Classical optics 1163: 1156: 1149: 1140: 1113: 1086: 1059: 1032: 1003:World Scientific 1001:(2nd ed.). 991: 978:World Scientific 976:(2nd ed.). 966: 929: 927: 925: 897: 895: 873: 867: 866: 840: 824: 811: 804: 800: 797: 791: 786:this article by 777:inline citations 764: 763: 756: 720: 715: 714: 669:Beam diagnostics 611: 609: 608: 603: 588: 586: 585: 580: 563: 561: 560: 555: 550: 525: 523: 522: 517: 489: 487: 486: 481: 479: 474: 466: 463: 455: 409: 407: 406: 405: 392: 391: 382: 367: 365: 364: 359: 212:Superconducting 192:Microwave cavity 164:particle physics 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 1521: 1520: 1516: 1515: 1514: 1512: 1511: 1510: 1491: 1490: 1489: 1484: 1448: 1434:Medical physics 1385: 1344:Nuclear physics 1313: 1307:Non-equilibrium 1229: 1201: 1173: 1167: 1120: 1110: 1089: 1083: 1062: 1056: 1035: 1021: 994: 988: 969: 963: 932: 923: 921: 919: 904: 901: 900: 892: 875: 874: 870: 838: 826: 825: 821: 812: 801: 795: 792: 782:Please help to 781: 765: 761: 754: 716: 709: 706: 690: 671: 662: 652: 594: 593: 571: 570: 566:the trajectory 535: 534: 499: 498: 467: 397: 393: 383: 376: 375: 341: 340: 314:strong focusing 290: 276:Strong focusing 268: 241:radio frequency 206: 196:Shunt impedance 188: 168:nuclear physics 126:radio frequency 97:applied physics 95:is a branch of 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1519: 1517: 1509: 1508: 1503: 1493: 1492: 1486: 1485: 1483: 1482: 1477: 1472: 1467: 1462: 1456: 1454: 1450: 1449: 1447: 1446: 1441: 1436: 1431: 1426: 1421: 1416: 1411: 1406: 1401: 1395: 1393: 1387: 1386: 1384: 1383: 1378: 1377: 1376: 1371: 1366: 1356: 1351: 1346: 1341: 1340: 1339: 1334: 1323: 1321: 1315: 1314: 1312: 1311: 1310: 1309: 1304: 1297:Thermodynamics 1294: 1293: 1292: 1287: 1277: 1272: 1267: 1266: 1265: 1260: 1255: 1250: 1239: 1237: 1231: 1230: 1228: 1227: 1226: 1225: 1215: 1209: 1207: 1203: 1202: 1200: 1199: 1198: 1197: 1187: 1181: 1179: 1175: 1174: 1168: 1166: 1165: 1158: 1151: 1143: 1137: 1136: 1131: 1126: 1119: 1118:External links 1116: 1115: 1114: 1108: 1087: 1081: 1060: 1054: 1033: 1019: 992: 986: 967: 961: 930: 917: 899: 898: 890: 868: 849:(1): 360–408. 828:Courant, E. D. 818: 817: 814: 813: 768: 766: 759: 753: 750: 749: 748: 743: 738: 733: 728: 722: 721: 718:Physics portal 705: 702: 689: 686: 670: 667: 651: 650:Modeling Codes 648: 614: 613: 601: 590: 578: 564: 553: 549: 545: 542: 531: 515: 512: 509: 506: 491: 490: 477: 473: 470: 461: 458: 453: 450: 447: 444: 441: 437: 434: 431: 428: 425: 422: 419: 416: 413: 404: 400: 396: 390: 386: 357: 354: 351: 348: 318:Dipole magnets 310:electromagnets 280:Beam emittance 267: 264: 187: 184: 160: 159: 156:Plasma physics 153: 143: 129: 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1518: 1507: 1504: 1502: 1499: 1498: 1496: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1457: 1455: 1451: 1445: 1442: 1440: 1439:Ocean physics 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1396: 1394: 1392: 1388: 1382: 1379: 1375: 1374:Modern optics 1372: 1370: 1367: 1365: 1362: 1361: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1338: 1335: 1333: 1330: 1329: 1328: 1325: 1324: 1322: 1320: 1316: 1308: 1305: 1303: 1300: 1299: 1298: 1295: 1291: 1288: 1286: 1283: 1282: 1281: 1278: 1276: 1273: 1271: 1268: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1245: 1244: 1241: 1240: 1238: 1236: 1232: 1224: 1223:Computational 1221: 1220: 1219: 1216: 1214: 1211: 1210: 1208: 1204: 1196: 1193: 1192: 1191: 1188: 1186: 1183: 1182: 1180: 1176: 1172: 1164: 1159: 1157: 1152: 1150: 1145: 1144: 1141: 1135: 1132: 1130: 1127: 1125: 1122: 1121: 1117: 1111: 1105: 1101: 1097: 1093: 1088: 1084: 1078: 1074: 1070: 1066: 1061: 1057: 1051: 1047: 1043: 1039: 1034: 1030: 1026: 1022: 1016: 1012: 1008: 1004: 1000: 999: 993: 989: 983: 979: 975: 974: 968: 964: 958: 954: 950: 946: 942: 938: 937: 931: 920: 914: 910: 909: 903: 902: 893: 887: 883: 879: 872: 869: 864: 860: 856: 852: 848: 844: 837: 833: 832:Snyder, H. S. 829: 823: 820: 810: 807: 799: 789: 785: 779: 778: 772: 767: 758: 757: 751: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 723: 719: 713: 708: 703: 701: 697: 693: 687: 685: 682: 678: 674: 668: 666: 661: 657: 649: 647: 645: 644:Lie transform 641: 637: 634: 629: 627: 623: 619: 599: 591: 576: 569: 565: 551: 547: 543: 532: 529: 528:weak focusing 510: 504: 496: 495: 494: 475: 471: 459: 456: 451: 445: 439: 432: 426: 423: 417: 411: 402: 398: 394: 388: 384: 374: 373: 372: 371: 352: 346: 338: 333: 331: 327: 323: 319: 315: 311: 307: 303: 299: 298:magnetostatic 295: 294:Lorentz force 289: 285: 281: 277: 273: 272:Particle beam 266:Beam dynamics 265: 263: 261: 256: 253: 249: 244: 242: 237: 232: 230: 226: 218: 215: 210: 205: 201: 197: 193: 185: 183: 181: 180:particle beam 177: 173: 169: 165: 157: 154: 151: 147: 144: 141: 140:laser physics 137: 133: 130: 127: 123: 120: 119: 118: 115: 113: 109: 106: 102: 98: 94: 84: 81: 73: 63: 59: 53: 52: 46: 41: 32: 31: 19: 1399:Astrophysics 1213:Experimental 1100:10.1142/8380 1091: 1073:10.1142/8721 1064: 1046:10.1142/9079 1037: 1011:10.1142/8543 997: 972: 935: 922:. Retrieved 907: 877: 871: 846: 842: 834:(Jan 1958). 822: 802: 793: 774: 698: 694: 691: 683: 679: 675: 672: 663: 633:relativistic 630: 615: 492: 336: 334: 291: 259: 257: 247: 245: 233: 222: 161: 116: 105:relativistic 92: 91: 76: 70:January 2020 67: 48: 1302:Statistical 1218:Theoretical 1195:Engineering 788:introducing 62:introducing 1495:Categories 1419:Geophysics 1409:Biophysics 1253:Analytical 1206:Approaches 796:March 2012 771:references 752:References 654:See also: 330:dispersion 270:See also: 260:wakefields 190:See also: 45:references 1369:Molecular 1270:Acoustics 1263:Continuum 1258:Celestial 1248:Newtonian 1235:Classical 1178:Divisions 1029:108427390 577:ρ 541:Δ 469:Δ 460:ρ 332:effects. 302:cyclotron 248:beam pipe 924:March 9, 704:See also 306:betatron 1453:Related 1337:General 1332:Special 1190:Applied 941:Bibcode 851:Bibcode 784:improve 530:effects 214:niobium 128:range). 58:improve 1364:Atomic 1319:Modern 1169:Major 1106:  1079:  1052:  1027:  1017:  984:  959:  915:  888:  773:, but 660:Geant4 286:, and 217:cavity 202:, and 132:Optics 47:, but 1025:S2CID 839:(PDF) 589:, and 337:orbit 1290:Wave 1185:Pure 1104:ISBN 1077:ISBN 1050:ISBN 1015:ISBN 982:ISBN 957:ISBN 926:2012 913:ISBN 886:ISBN 658:and 1285:Ray 1096:doi 1069:doi 1042:doi 1007:doi 949:doi 859:doi 628:). 316:. 304:or 174:or 1497:: 1102:. 1075:. 1048:. 1023:. 1013:. 1005:. 980:. 955:. 947:. 884:. 880:. 857:. 845:. 841:. 830:; 282:, 278:, 274:, 198:, 194:, 170:, 166:, 114:. 1162:e 1155:t 1148:v 1112:. 1098:: 1085:. 1071:: 1058:. 1044:: 1031:. 1009:: 990:. 965:. 951:: 943:: 928:. 894:. 865:. 861:: 853:: 847:3 809:) 803:( 798:) 794:( 780:. 612:, 600:s 552:p 548:/ 544:p 514:) 511:s 508:( 505:k 476:p 472:p 457:1 452:= 449:) 446:s 443:( 440:x 436:) 433:s 430:( 427:k 424:+ 421:) 418:s 415:( 412:x 403:2 399:s 395:d 389:2 385:d 356:) 353:s 350:( 347:x 83:) 77:( 72:) 68:( 54:. 20:)

Index

Accelerator Physics
references
inline citations
improve
introducing
Learn how and when to remove this message
applied physics
particle accelerators
relativistic
charged particle beams
electromagnetic fields
Microwave engineering
radio frequency
Optics
geometrical optics
laser physics
Computer technology
digital signal processing
Plasma physics
particle physics
nuclear physics
condensed matter physics
materials physics
particle beam
Microwave cavity
Shunt impedance
Superconducting Radio Frequency
Reciprocity (electromagnetism)

niobium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.