Knowledge (XXG)

CO-methylating acetyl-CoA synthase

Source đź“ť

959:. The "closed" position opens up the channel between CODH and ACS to allow for the transfer of CO. These two configurations are opposite one another in that access to CO blocks off interaction with CFeSP, and when methylation occurs, the active site is buried and does not allow CO transfer. A second "closed" position is needed to block off water from the reaction. Finally, the A-cluster must be rotated once more to allow for the binding of CoA and release of the product. The exact trigger of these structural changes and the mechanistic details have yet to be resolved. 648: 973: 910: 2390: 40: 816: 743:
was presented in 2002 by Drennan and colleagues. In this paper they constructed a heterotetramer, with the active site "A-cluster" residing in the ACS subunit and the active site "C-cluster" in CODH subunit. Furthermore, they resolved the structure of the A-cluster active site and found an -X-Cu-X-Ni
1043:
to produce the metal-acetyl complex, CoA attacks to produce the final product. The order in which the carbon monoxide molecule and the methyl group bind to the nickel centre has been highly debated, but no solid evidence has demonstrated preference for one over the other. Although this mechanism is
874:
in the surrounding area in the cell. Although the proximal nickel is labile and can be replaced with a Cu of Zn centre, experimental evidence suggests that activity of ACS is limited to the presence of nickel only. In addition, some studies have shown that copper can even inhibit the enzyme under
954:
Studies in literature have been able to isolate the CODH/ACS enzyme in an "open" and "closed" configuration. This has led to the hypothesis that it undergoes four conformational changes depending on its activity. With the "open" position, the active site rotates itself to interact with the CFeSP
771:
The debate towards the absolute structure and identity of the metals in the A-cluster active site of ACS continued, with a competing model presented. The authors suggested two different forms of the ACS enzyme, an "Open" form and a "Closed" form, with different metals occupying the
945:
channel connecting the two domains to allow for the transfer of carbon monoxide from CODH to ACS. This channel is most likely to protect the carbon monoxide molecules from the outside environment of the enzyme and to increase efficiency of acetyl-CoA production.
882:
at the centre with two ACS subunits on each side. The CODH core is made up of two Ni-Fe-S clusters (C-cluster), two clusters (B-cluster) and one D-cluster. The D-cluster bridges the two subunits with one C and one B cluster in each monomer, allowing rapid
665:. Since the above two reactions are reversible, it opens up a diverse range of reactions in the carbon cycle. In addition to acetyl-CoA production, the reverse can occur with ACS producing CO and returning the methyl piece back to the corrinoid protein. 1027:
to form an intermediate complex. CoA then binds to the metal and the final product, acetyl-CoA, is formed. Some criticisms of this mechanism are that it is unbalanced in terms of electron count and the activated Ni intermediate cannot be detected with
917:
The ACS enzyme contains three main subunits. The first is the active site itself with the NiFeS centre. The second is the portion that directly interacts with CODH in the Wood–Ljungdahl pathway. This part is made up of
598: 887:. The A-cluster of ACS is in constant communication with the C-cluster in CODH. This active site is also responsible for the C-C and C-S bond formations in the product acetyl-CoA (and its reverse reaction). 465: 1486:"Gas channel rerouting in a primordial enzyme: Structural insights of the carbon-monoxide dehydrogenase/acetyl-CoA synthase complex from the acetogen Clostridium autoethanogenum" 1636:"Pulse-chase studies of the synthesis of acetyl-CoA by carbon monoxide dehydrogenase/acetyl-CoA synthase: evidence for a random mechanism of methyl and carbonyl addition" 1039:
The second proposed mechanism, the diamagnetic mechanism, involves a Ni intermediate instead of a Ni. After addition of the methyl group and carbon monoxide, followed by
193: 1312:
Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (October 2002). "A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase".
212: 1926: 1921: 744:
centre which is highly unusual in biology. This structural representation consisted of a unit bridged to a binuclear centre, where Ni(II) resided in the
1727: 1044:
electronically balanced, the idea of a Ni species is highly unprecedented in biology. There has also been no solid evidence supporting the presence of a
672:, organisms can subsequently convert the acetate to methane. Furthermore, the Wood-Ljungdahl pathway allows for the anaerobic oxidation of acetate where 1909: 1228:
Riordan CG (July 2004). "Synthetic chemistry and chemical precedents for understanding the structure and function of acetyl coenzyme A synthase".
1366:
Drennan CL, Doukov TI, Ragsdale SW (July 2004). "The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures".
488: 1916: 2415: 1694: 676:
is used to convert acetate into acetyl-CoA, which is then broken down by ACS to produce carbon dioxide that is released into the atmosphere.
930:
compound which may activate the subunit during the CO transferring process from CODH to ACS. The final domain binds CoA and consists of six
1904: 2076: 2044: 780:) for each form. The general scheme of the enzyme followed closely with the first study's findings, but this new structure proposed a 2109: 1860: 1798: 336: 205: 1855: 1850: 1793: 1029: 156: 1808: 1720: 132: 2265: 1973: 1953: 1867: 325: 296:
as a result. Because of this, the exact activity of these molecules has come under intense scrutiny over the past decade.
289: 241: 2380: 1894: 1788: 1783: 826:
It is now generally accepted that the ACS active site (A-cluster) is a Ni-Ni metal centre with both nickels having a +2
795:
and stated that this proximal position in the active site of ACS was prone to substitution and could contain any one of
2056: 1830: 1032:. Furthermore, there is evidence of the ACS catalytic cycle without any external reducing complex, which refutes the 956: 305: 285: 257: 647: 2066: 1899: 1773: 2250: 972: 2366: 2353: 2340: 2327: 2314: 2301: 2288: 2014: 1990: 1941: 1825: 1778: 1753: 1713: 150: 2260: 807:. The three forms of this A-cluster most likely hold a small amount of Ni and a relatively larger amount of Cu. 2214: 2157: 2019: 1744: 866:
is in a T-shaped environment bound to three sulfur atoms, with an unknown ligand possibly creating a distorted
308:
consists of two different reactions that break down carbon dioxide. The first pathway involves CODH converting
244:(CODH), it forms the bifunctional enzyme Acetyl-CoA Synthase/Carbon Monoxide Dehydrogenase (ACS/CODH) found in 55: 137: 2162: 2061: 1968: 1274:
Ragsdale SW, Kumar M (January 1996). "Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase".
1143:"Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase" 1071:
Lindahl PA (July 2004). "Acetyl-coenzyme A synthase: the case for a Ni(p)(0)-based mechanism of catalysis".
988:
mechanism". Both are similar in terms of the binding of substrates and the general steps, but differ in the
2029: 2024: 1889: 673: 217: 898:
have been solved. While the latter shows a more extended arrangement of the ACS subunits, the complex of
125: 2183: 2102: 2009: 2004: 233: 2255: 1023:
from CODH or the methyl group donated by the CFeSP protein in no particular order. This is followed by
1528: 2071: 1958: 1945: 1845: 1321: 153: 2219: 1803: 1040: 1024: 1001: 831: 77: 1443:
Ruickoldt, Jakob; Basak, Yudhajeet; Domnik, Lilith; Jeoung, Jae-Hun; Dobbek, Holger (2022-10-21).
2152: 1485: 1391: 1345: 1253: 1096: 245: 1193:
Hegg EL (October 2004). "Unraveling the structure and mechanism of acetyl-coenzyme A synthase".
1529:"A role for nickel-iron cofactors in biological carbon monoxide and carbon dioxide utilization" 739:
The first, and one of the most comprehensive, crystal structures of ACS/CODH from the bacteria
640:
convert the acetyl-CoA into acetate and use it as an alternative source of carbon instead of CO
620:
produced can be used in a variety of ways depending on the needs of the organism. For example,
2410: 2034: 1763: 1690: 1667: 1613: 1561: 1466: 1383: 1337: 1291: 1245: 1210: 1172: 1088: 976:
Proposed diamagnetic (top) and paramagnetic (bottom) mechanisms. Adapted from Seravalli et al.
884: 879: 144: 2198: 2193: 2167: 2095: 1999: 1963: 1657: 1647: 1603: 1595: 1551: 1543: 1507: 1497: 1456: 1425: 1375: 1329: 1283: 1237: 1202: 1162: 1154: 1080: 113: 1048:
Ni species. However, similar nickel species to ACS with a Ni centre have been made, so the
909: 2245: 2229: 2142: 2039: 1740: 1705: 1020: 827: 709: 321: 313: 89: 292:(CODH) are integral enzymes in this one pathway and can perform diverse reactions in the 60: 1325: 2394: 2283: 2224: 1662: 1635: 1608: 1583: 1556: 1167: 1142: 701: 669: 633: 309: 261: 188: 168: 2404: 2188: 2147: 1512: 1008: 923: 862:
coordination. The space next to the metal can accommodate substrates and products. Ni
859: 753: 697: 163: 1444: 1395: 1349: 1100: 2137: 1257: 1049: 981: 871: 621: 316:
through a two-electron transfer, and the second reaction involves ACS synthesizing
293: 17: 980:
Two competing mechanisms have been proposed for the formation of acetyl-CoA, the "
941:
Experiments between the C-cluster of CODH and the A-cluster of ACS reveal a long,
1502: 2361: 2296: 2132: 1978: 1736: 985: 942: 919: 867: 761: 717: 662: 172: 2389: 1547: 288:
is the predominant sink in anaerobic conditions. Acetyl-CoA Synthase (ACS) and
240:-containing enzyme involved in the metabolic processes of cells. Together with 1599: 1429: 1379: 1241: 1084: 1045: 1033: 1012: 935: 927: 878:
The overall structure of the CODH/ACS enzyme consists of the CODH enzyme as a
723: 689: 658: 651: 625: 617: 317: 265: 1470: 1461: 791:
A later review article attempted to reconcile the different observations of M
2335: 2309: 1333: 989: 870:
environment. This ligand has been hypothesized to be a water molecule or an
713: 705: 629: 593:{\displaystyle {\ce {{CO}+ {CH3-CFeSP}+ CoA <=> {acetyl-CoA}+ CFeSP}}} 1671: 1652: 1617: 1565: 1387: 1341: 1295: 1249: 1214: 1176: 1092: 1416:
Evans DJ (2005). "Chemistry relating to the nickel enzymes CODH and ACS".
39: 1768: 931: 851: 839: 773: 757: 253: 101: 249: 120: 1206: 1158: 2348: 2118: 2049: 1877: 1872: 1813: 1287: 804: 796: 781: 765: 745: 237: 200: 96: 84: 72: 815: 1629: 1627: 654:
growth via the Wood–Ljungdahl pathway. Adapted from Ragsdale et al.
324:
from CODH together with coenzyme-A (CoA) and a methyl group from a
2322: 1931: 1818: 997: 971: 908: 855: 814: 646: 1019:
atom, reducing it from Ni to Ni. The nickel then binds to either
1835: 1136: 1134: 1132: 1130: 1128: 1126: 1124: 800: 785: 684:
It has been discovered that the CODH/ACS enzyme in the bacteria
108: 2091: 1709: 1445:"On the Kinetics of CO 2 Reduction by Ni, Fe-CO Dehydrogenases" 996:
is believed to be the substrate binding centre which undergoes
890:
Furthermore, the crystal structures of the CODH/ACS complex of
460:{\displaystyle {\ce {{CO2}+ {2H+}+ 2e^- <=> {CO}+ H2O}}} 1689:. Chichester, West Sussex, England: Wiley. pp. 377–380. 1361: 1359: 2087: 1307: 1305: 512: 450: 352: 1577: 1575: 1269: 1267: 328:, CFeSP. The two main overall reactions are as follows: 551: 413: 2378: 1582:
Boer JL, Mulrooney SB, Hausinger RP (February 2014).
1484:
Lemaire, Olivier N.; Wagner, Tristan (January 2021).
491: 339: 1188: 1186: 280:
In nature, there are six different pathways where CO
2274: 2238: 2207: 2176: 2125: 1989: 1940: 1752: 1490:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
211: 199: 187: 182: 162: 143: 131: 119: 107: 95: 83: 71: 66: 54: 49: 32: 592: 459: 256:. The ACS/CODH enzyme works primarily through the 661:bacteria use this method to generate acetate and 559: 558: 541: 540: 421: 420: 403: 402: 1411: 1409: 1407: 1405: 1141:Can M, Armstrong FA, Ragsdale SW (April 2014). 1004:are not thought to be involved in the process. 1066: 1064: 2103: 1721: 8: 1927:2-acylglycerol-3-phosphate O-acyltransferase 1922:1-acylglycerol-3-phosphate O-acyltransferase 1052:mechanism is not an implausible hypothesis. 756:conformation and a Cu(I) ion resided in the 955:protein in the methyl transfer step of the 2110: 2096: 2088: 1728: 1714: 1706: 1687:Nickel and its surprising impact in nature 268:. The recommended name for this enzyme is 236:or acetate-CoA ligase (ADP forming), is a 179: 38: 1661: 1651: 1607: 1555: 1511: 1501: 1460: 1368:Journal of Biological Inorganic Chemistry 1230:Journal of Biological Inorganic Chemistry 1166: 1073:Journal of Biological Inorganic Chemistry 913:Acetyl-CoA Synthase active site structure 574: 570: 560: 553: 552: 550: 542: 535: 533: 532: 530: 515: 511: 506: 501: 493: 492: 490: 449: 444: 432: 422: 415: 414: 412: 404: 397: 395: 394: 392: 386: 381: 368: 363: 359: 351: 346: 341: 340: 338: 2385: 1634:Seravalli J, Ragsdale SW (March 2008). 1588:Archives of Biochemistry and Biophysics 1060: 534: 396: 1917:Glycerol-3-phosphate O-acyltransferase 29: 1910:Lecithin—cholesterol acyltransferase 1000:. The farther nickel centre and the 926:. It also appears to interact with a 7: 1905:Glyceronephosphate O-acyltransferase 482: 330: 2077:Sulfoacetaldehyde acetyltransferase 1769:Acetyl-Coenzyme A acetyltransferase 1685:Sigel A, Sigel H, Sigel RK (2006). 1640:The Journal of Biological Chemistry 1536:Current Opinion in Chemical Biology 1993:: converted into alkyl on transfer 834:is bridged to the closer nickel, N 270:CO-methylating acetyl-CoA synthase 33:CO-methylating acetyl-CoA synthase 25: 1799:Chloramphenicol acetyltransferase 1584:"Nickel-dependent metalloenzymes" 1527:Kung Y, Drennan CL (April 2011). 1117:. Vol. 30. pp. 459–466. 1011:mechanism, some type of complex ( 892:Carboxydothermus hydrogenoformans 2388: 1851:Carnitine O-palmitoyltransferase 842:bridge to the farther nickel, Ni 1794:Beta-galactoside transacetylase 1030:electron paramagnetic resonance 1015:, for example) activates the Ni 232:(ACS), not to be confused with 1809:Serotonin N-acetyl transferase 1756:: other than amino-acyl groups 1418:Coordination Chemistry Reviews 819:Bifunctional CODH/ACS unit in 561: 536: 423: 398: 1: 1974:Keratinocyte transglutaminase 1954:Gamma-glutamyl transpeptidase 1868:Serine C-palmitoyltransferase 1195:Accounts of Chemical Research 992:state of the metal centre. Ni 784:ion in the "open" form and a 326:corrinoid iron-sulfur protein 290:carbon monoxide dehydrogenase 242:carbon monoxide dehydrogenase 44:Monomeric Acetyl-CoA synthase 2416:Enzymes of unknown structure 1895:Aminolevulinic acid synthase 1789:Acetyl-CoA C-acyltransferase 1784:Dihydrolipoyl transacetylase 1503:10.1016/j.bbabio.2020.148330 1115:Springer handbook of enzymes 2057:2-hydroxyglutarate synthase 902:is very similar to that of 896:Clostridium autoethanogenum 854:molecules and two backbone 704:. It can also catalyze the 2432: 2067:2-isopropylmalate synthase 1900:Beta-ketoacyl-ACP synthase 1774:N-Acetylglutamate synthase 1548:10.1016/j.cbpa.2010.11.005 788:ion in the "closed" form. 668:Along with the process of 2266:Michaelis–Menten kinetics 2015:Decylhomocitrate synthase 1826:Histone acetyltransferase 1779:Choline acetyltransferase 1600:10.1016/j.abb.2013.09.002 1513:21.11116/0000-0007-F1AD-6 1430:10.1016/j.ccr.2004.09.012 1380:10.1007/s00775-004-0563-y 1242:10.1007/s00775-004-0567-7 1085:10.1007/s00775-004-0564-x 838:which is connected via a 702:electron-donating species 178: 37: 2158:Diffusion-limited enzyme 2020:2-methylcitrate synthase 1462:10.1021/acscatal.2c02221 776:metal site (denoted as M 760:position in a distorted 622:acetate-forming bacteria 284:is fixed. Of these, the 246:anaerobic microorganisms 2062:3-propylmalate synthase 1969:Tissue transglutaminase 1334:10.1126/science.1075843 858:compounds, and is in a 748:position (denoted as Ni 712:(TNT) and catalyze the 2030:3-ethylmalate synthase 2025:2-ethylmalate synthase 1890:Acyltransferase like 2 1653:10.1074/jbc.M709470200 977: 957:Wood–Ljungdahl pathway 950:Conformational changes 914: 850:is coordinated to two 823: 811:Present (2014 onwards) 700:in the presence of an 655: 638:Methanocarcina barkeri 632:growth processes, and 594: 461: 306:Wood–Ljungdahl pathway 300:Wood–Ljungdahl pathway 286:Wood–Ljungdahl pathway 258:Wood–Ljungdahl pathway 2251:Eadie–Hofstee diagram 2184:Allosteric regulation 2010:Citrate (Re)-synthase 2005:Decylcitrate synthase 1946:Aminoacyltransferases 1846:palmitoyltransferases 975: 912: 818: 768:of unknown identity. 710:2,4,6-trinitrotoluene 650: 595: 462: 234:acetyl-CoA synthetase 2261:Lineweaver–Burk plot 2072:Homocitrate synthase 1959:Peptidyl transferase 1424:(15–16): 1582–1595. 984:mechanism" and the " 875:certain conditions. 489: 337: 1804:N-acetyltransferase 1455:(20): 13131–13142. 1326:2002Sci...298..567D 1025:migratory insertion 900:C. hydrogenoformans 547: 514: 452: 409: 354: 230:Acetyl-CoA synthase 18:Acetyl-CoA synthase 2220:Enzyme superfamily 2153:Enzyme promiscuity 1764:acetyltransferases 978: 915: 824: 708:of the pollutant, 656: 590: 566: 502: 457: 440: 428: 342: 2376: 2375: 2085: 2084: 2035:ATP citrate lyase 1696:978-0-470-01671-8 1207:10.1021/ar040002e 1159:10.1021/cr400461p 1036:activation step. 885:electron transfer 614: 613: 588: 581: 573: 568: 529: 522: 505: 496: 481: 480: 455: 443: 435: 430: 385: 367: 345: 227: 226: 223: 222: 126:metabolic pathway 16:(Redirected from 2423: 2393: 2392: 2384: 2256:Hanes–Woolf plot 2199:Enzyme activator 2194:Enzyme inhibitor 2168:Enzyme catalysis 2112: 2105: 2098: 2089: 2045:HMG-CoA synthase 2000:Citrate synthase 1964:Transglutaminase 1741:acyltransferases 1730: 1723: 1716: 1707: 1701: 1700: 1682: 1676: 1675: 1665: 1655: 1631: 1622: 1621: 1611: 1579: 1570: 1569: 1559: 1533: 1524: 1518: 1517: 1515: 1505: 1481: 1475: 1474: 1464: 1440: 1434: 1433: 1413: 1400: 1399: 1363: 1354: 1353: 1320:(5593): 567–72. 1309: 1300: 1299: 1288:10.1021/cr950058 1282:(7): 2515–2540. 1276:Chemical Reviews 1271: 1262: 1261: 1225: 1219: 1218: 1190: 1181: 1180: 1170: 1147:Chemical Reviews 1138: 1119: 1118: 1111: 1105: 1104: 1068: 934:residues with a 904:M. thermoacetica 741:M. thermoacetica 686:M. theroaceticum 608: 599: 597: 596: 591: 589: 586: 582: 579: 578: 571: 569: 567: 565: 564: 557: 549: 548: 546: 539: 531: 527: 523: 520: 519: 513: 510: 503: 497: 494: 483: 475: 466: 464: 463: 458: 456: 453: 451: 448: 441: 436: 433: 431: 429: 427: 426: 419: 411: 410: 408: 401: 393: 391: 390: 383: 374: 373: 372: 365: 355: 353: 350: 343: 331: 180: 42: 30: 21: 2431: 2430: 2426: 2425: 2424: 2422: 2421: 2420: 2401: 2400: 2399: 2387: 2379: 2377: 2372: 2284:Oxidoreductases 2270: 2246:Enzyme kinetics 2234: 2230:List of enzymes 2203: 2172: 2143:Catalytic triad 2121: 2116: 2086: 2081: 2040:Malate synthase 1985: 1936: 1748: 1734: 1704: 1697: 1684: 1683: 1679: 1646:(13): 8384–94. 1633: 1632: 1625: 1581: 1580: 1573: 1531: 1526: 1525: 1521: 1483: 1482: 1478: 1442: 1441: 1437: 1415: 1414: 1403: 1365: 1364: 1357: 1311: 1310: 1303: 1273: 1272: 1265: 1227: 1226: 1222: 1192: 1191: 1184: 1140: 1139: 1122: 1113: 1112: 1108: 1070: 1069: 1062: 1058: 1021:carbon monoxide 1018: 995: 970: 965: 952: 922:that go into a 865: 849: 845: 837: 828:oxidation state 821:M.thermoacetica 813: 794: 779: 751: 737: 732: 695: 682: 680:Other reactions 643: 636:archae such as 606: 487: 486: 473: 382: 364: 335: 334: 322:carbon monoxide 314:carbon monoxide 302: 283: 278: 260:which converts 45: 28: 23: 22: 15: 12: 11: 5: 2429: 2427: 2419: 2418: 2413: 2403: 2402: 2398: 2397: 2374: 2373: 2371: 2370: 2357: 2344: 2331: 2318: 2305: 2292: 2278: 2276: 2272: 2271: 2269: 2268: 2263: 2258: 2253: 2248: 2242: 2240: 2236: 2235: 2233: 2232: 2227: 2222: 2217: 2211: 2209: 2208:Classification 2205: 2204: 2202: 2201: 2196: 2191: 2186: 2180: 2178: 2174: 2173: 2171: 2170: 2165: 2160: 2155: 2150: 2145: 2140: 2135: 2129: 2127: 2123: 2122: 2117: 2115: 2114: 2107: 2100: 2092: 2083: 2082: 2080: 2079: 2074: 2069: 2064: 2059: 2054: 2053: 2052: 2042: 2037: 2032: 2027: 2022: 2017: 2012: 2007: 2002: 1996: 1994: 1987: 1986: 1984: 1983: 1982: 1981: 1976: 1971: 1961: 1956: 1950: 1948: 1938: 1937: 1935: 1934: 1929: 1924: 1919: 1913: 1912: 1907: 1902: 1897: 1892: 1883: 1882: 1881: 1880: 1875: 1865: 1864: 1863: 1858: 1841: 1840: 1839: 1838: 1833: 1823: 1822: 1821: 1816: 1811: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1759: 1757: 1750: 1749: 1735: 1733: 1732: 1725: 1718: 1710: 1703: 1702: 1695: 1677: 1623: 1571: 1519: 1476: 1435: 1401: 1355: 1301: 1263: 1220: 1201:(10): 775–83. 1182: 1153:(8): 4149–74. 1120: 1106: 1059: 1057: 1054: 1016: 993: 969: 966: 964: 961: 951: 948: 863: 847: 843: 835: 812: 809: 792: 777: 764:position with 749: 736: 733: 731: 728: 693: 681: 678: 670:methanogenesis 641: 612: 611: 602: 600: 585: 577: 563: 556: 545: 538: 526: 518: 509: 500: 479: 478: 469: 467: 447: 439: 425: 418: 407: 400: 389: 380: 377: 371: 362: 358: 349: 310:carbon dioxide 301: 298: 281: 277: 274: 262:carbon dioxide 225: 224: 221: 220: 215: 209: 208: 203: 197: 196: 191: 185: 184: 176: 175: 166: 160: 159: 148: 141: 140: 135: 129: 128: 123: 117: 116: 111: 105: 104: 99: 93: 92: 87: 81: 80: 75: 69: 68: 64: 63: 58: 52: 51: 47: 46: 43: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2428: 2417: 2414: 2412: 2409: 2408: 2406: 2396: 2391: 2386: 2382: 2368: 2364: 2363: 2358: 2355: 2351: 2350: 2345: 2342: 2338: 2337: 2332: 2329: 2325: 2324: 2319: 2316: 2312: 2311: 2306: 2303: 2299: 2298: 2293: 2290: 2286: 2285: 2280: 2279: 2277: 2273: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2243: 2241: 2237: 2231: 2228: 2226: 2225:Enzyme family 2223: 2221: 2218: 2216: 2213: 2212: 2210: 2206: 2200: 2197: 2195: 2192: 2190: 2189:Cooperativity 2187: 2185: 2182: 2181: 2179: 2175: 2169: 2166: 2164: 2161: 2159: 2156: 2154: 2151: 2149: 2148:Oxyanion hole 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2130: 2128: 2124: 2120: 2113: 2108: 2106: 2101: 2099: 2094: 2093: 2090: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2051: 2048: 2047: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1997: 1995: 1992: 1988: 1980: 1977: 1975: 1972: 1970: 1967: 1966: 1965: 1962: 1960: 1957: 1955: 1952: 1951: 1949: 1947: 1943: 1939: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1914: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1885: 1884: 1879: 1876: 1874: 1871: 1870: 1869: 1866: 1862: 1859: 1857: 1854: 1853: 1852: 1849: 1847: 1843: 1842: 1837: 1834: 1832: 1829: 1828: 1827: 1824: 1820: 1817: 1815: 1812: 1810: 1807: 1806: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1761: 1760: 1758: 1755: 1751: 1746: 1742: 1738: 1731: 1726: 1724: 1719: 1717: 1712: 1711: 1708: 1698: 1692: 1688: 1681: 1678: 1673: 1669: 1664: 1659: 1654: 1649: 1645: 1641: 1637: 1630: 1628: 1624: 1619: 1615: 1610: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1576: 1572: 1567: 1563: 1558: 1553: 1549: 1545: 1542:(2): 276–83. 1541: 1537: 1530: 1523: 1520: 1514: 1509: 1504: 1499: 1496:(1): 148330. 1495: 1491: 1487: 1480: 1477: 1472: 1468: 1463: 1458: 1454: 1450: 1449:ACS Catalysis 1446: 1439: 1436: 1431: 1427: 1423: 1419: 1412: 1410: 1408: 1406: 1402: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1360: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1308: 1306: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1270: 1268: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1224: 1221: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1187: 1183: 1178: 1174: 1169: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1135: 1133: 1131: 1129: 1127: 1125: 1121: 1116: 1110: 1107: 1102: 1098: 1094: 1090: 1086: 1082: 1079:(5): 516–24. 1078: 1074: 1067: 1065: 1061: 1055: 1053: 1051: 1047: 1042: 1037: 1035: 1031: 1026: 1022: 1014: 1010: 1005: 1003: 999: 991: 987: 983: 974: 967: 962: 960: 958: 949: 947: 944: 939: 937: 933: 929: 925: 924:Rossmann fold 921: 911: 907: 905: 901: 897: 893: 888: 886: 881: 876: 873: 869: 861: 860:square-planar 857: 853: 841: 833: 829: 822: 817: 810: 808: 806: 802: 798: 789: 787: 783: 775: 769: 767: 763: 759: 755: 754:square-planar 747: 742: 734: 729: 727: 725: 722: 720: 715: 711: 707: 703: 699: 698:nitrous oxide 691: 687: 679: 677: 675: 671: 666: 664: 660: 653: 649: 645: 639: 635: 631: 627: 623: 619: 610: 603: 601: 583: 575: 554: 543: 524: 516: 507: 498: 485: 484: 477: 470: 468: 445: 437: 416: 405: 387: 378: 375: 369: 360: 356: 347: 333: 332: 329: 327: 323: 319: 315: 311: 307: 299: 297: 295: 291: 287: 275: 273: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 219: 216: 214: 210: 207: 204: 202: 198: 195: 192: 190: 186: 181: 177: 174: 170: 167: 165: 164:Gene Ontology 161: 158: 155: 152: 149: 146: 142: 139: 136: 134: 130: 127: 124: 122: 118: 115: 112: 110: 106: 103: 102:NiceZyme view 100: 98: 94: 91: 88: 86: 82: 79: 76: 74: 70: 65: 62: 59: 57: 53: 48: 41: 36: 31: 19: 2362:Translocases 2359: 2346: 2333: 2320: 2307: 2297:Transferases 2294: 2281: 2138:Binding site 1886: 1844: 1762: 1737:Transferases 1686: 1680: 1643: 1639: 1591: 1587: 1539: 1535: 1522: 1493: 1489: 1479: 1452: 1448: 1438: 1421: 1417: 1374:(5): 511–5. 1371: 1367: 1317: 1313: 1279: 1275: 1236:(5): 542–9. 1233: 1229: 1223: 1198: 1194: 1150: 1146: 1114: 1109: 1076: 1072: 1038: 1009:paramagnetic 1006: 982:paramagnetic 979: 953: 940: 916: 903: 899: 895: 891: 889: 877: 872:acetyl group 825: 820: 790: 770: 740: 738: 718: 685: 683: 667: 657: 637: 634:methanogenic 615: 604: 471: 303: 294:carbon cycle 279: 269: 229: 228: 90:BRENDA entry 2133:Active site 1979:Factor XIII 1050:diamagnetic 986:diamagnetic 943:hydrophobic 868:tetrahedral 762:tetrahedral 663:acetic acid 652:Autotrophic 630:autotrophic 78:IntEnz view 50:Identifiers 2405:Categories 2336:Isomerases 2310:Hydrolases 2177:Regulation 1594:: 142–52. 1056:References 1046:zerovalent 1034:ferrodoxin 1013:ferrodoxin 938:molecule. 936:tryptophan 928:ferredoxin 724:isocyanide 690:dinitrogen 659:Acetogenic 628:for their 626:acetyl-CoA 618:acetyl-CoA 320:using the 318:acetyl-CoA 266:Acetyl-CoA 147:structures 114:KEGG entry 2215:EC number 1471:2155-5435 1041:insertion 990:oxidation 968:Mechanism 920:α-helices 730:Structure 714:oxidation 706:reduction 688:can make 576:− 562:⇀ 555:− 544:− 537:↽ 517:− 424:⇀ 417:− 406:− 399:↽ 388:− 276:Chemistry 67:Databases 61:2.3.1.169 2411:EC 2.3.1 2239:Kinetics 2163:Cofactor 2126:Activity 1831:P300/CBP 1672:18203715 1618:24036122 1566:21130022 1396:23263180 1388:15221484 1350:39880131 1342:12386327 1296:11848835 1250:15221481 1215:15491124 1177:24521136 1101:21597571 1093:15221478 963:Activity 932:arginine 852:cysteine 840:thiolate 774:proximal 758:proximal 254:bacteria 248:such as 218:proteins 206:articles 194:articles 151:RCSB PDB 2395:Biology 2349:Ligases 2119:Enzymes 1663:2820341 1609:3946514 1557:3061974 1322:Bibcode 1314:Science 1258:6536992 1168:4002135 1007:In the 1002:cluster 832:cluster 830:. The 766:ligands 752:) in a 735:History 696:) from 250:archaea 173:QuickGO 138:profile 121:MetaCyc 2381:Portal 2323:Lyases 2050:HMGCS2 1887:other: 1878:SPTLC2 1873:SPTLC1 1814:HGSNAT 1693:  1670:  1660:  1616:  1606:  1564:  1554:  1469:  1394:  1386:  1348:  1340:  1294:  1256:  1248:  1213:  1175:  1165:  1099:  1091:  782:nickel 746:distal 721:-butyl 572:acetyl 238:nickel 201:PubMed 183:Search 169:AmiGO 157:PDBsum 97:ExPASy 85:BRENDA 73:IntEnz 56:EC no. 27:Enzyme 2275:Types 1991:2.3.3 1942:2.3.2 1932:ABHD5 1819:ARD1A 1754:2.3.1 1532:(PDF) 1392:S2CID 1346:S2CID 1254:S2CID 1097:S2CID 998:redox 880:dimer 856:amide 587:CFeSP 521:CFeSP 312:into 133:PRIAM 2367:list 2360:EC7 2354:list 2347:EC6 2341:list 2334:EC5 2328:list 2321:EC4 2315:list 2308:EC3 2302:list 2295:EC2 2289:list 2282:EC1 1861:CPT2 1856:CPT1 1836:NAT2 1747:2.3) 1691:ISBN 1668:PMID 1614:PMID 1562:PMID 1494:1862 1467:ISSN 1384:PMID 1338:PMID 1292:PMID 1246:PMID 1211:PMID 1173:PMID 1089:PMID 894:and 846:. Ni 803:and 786:zinc 624:use 616:The 304:The 252:and 213:NCBI 154:PDBe 109:KEGG 1658:PMC 1648:doi 1644:283 1604:PMC 1596:doi 1592:544 1552:PMC 1544:doi 1508:hdl 1498:doi 1457:doi 1426:doi 1422:249 1376:doi 1330:doi 1318:298 1284:doi 1238:doi 1203:doi 1163:PMC 1155:doi 1151:114 1081:doi 716:of 674:ATP 580:CoA 528:CoA 264:to 189:PMC 145:PDB 2407:: 1944:: 1745:EC 1739:: 1666:. 1656:. 1642:. 1638:. 1626:^ 1612:. 1602:. 1590:. 1586:. 1574:^ 1560:. 1550:. 1540:15 1538:. 1534:. 1506:. 1492:. 1488:. 1465:. 1453:12 1451:. 1447:. 1420:. 1404:^ 1390:. 1382:. 1370:. 1358:^ 1344:. 1336:. 1328:. 1316:. 1304:^ 1290:. 1280:96 1278:. 1266:^ 1252:. 1244:. 1232:. 1209:. 1199:37 1197:. 1185:^ 1171:. 1161:. 1149:. 1145:. 1123:^ 1095:. 1087:. 1075:. 1063:^ 906:. 805:Ni 801:Zn 799:, 797:Cu 726:. 692:(N 644:. 504:CH 495:CO 434:CO 344:CO 272:. 171:/ 2383:: 2369:) 2365:( 2356:) 2352:( 2343:) 2339:( 2330:) 2326:( 2317:) 2313:( 2304:) 2300:( 2291:) 2287:( 2111:e 2104:t 2097:v 1848:: 1766:: 1743:( 1729:e 1722:t 1715:v 1699:. 1674:. 1650:: 1620:. 1598:: 1568:. 1546:: 1516:. 1510:: 1500:: 1473:. 1459:: 1432:. 1428:: 1398:. 1378:: 1372:9 1352:. 1332:: 1324:: 1298:. 1286:: 1260:. 1240:: 1234:9 1217:. 1205:: 1179:. 1157:: 1103:. 1083:: 1077:9 1017:p 994:p 864:p 848:d 844:d 836:p 793:p 778:p 750:d 719:n 694:2 642:2 609:) 607:2 605:( 584:+ 525:+ 508:3 499:+ 476:) 474:1 472:( 454:O 446:2 442:H 438:+ 384:e 379:2 376:+ 370:+ 366:H 361:2 357:+ 348:2 282:2 20:)

Index

Acetyl-CoA synthase

EC no.
2.3.1.169
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
Gene Ontology
AmiGO
QuickGO
PMC
articles
PubMed
articles
NCBI
proteins
acetyl-CoA synthetase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑